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ABSTRACT, We show that under certain assumptions, the measurable cohomol-
ogy class of the linear holonomy cocycle of a foliation yields information about 
the characteristic classes of the foliation, Combined with the results of a pre-
vious paper, this yields vanishing theorems for characteristic classes of certain 
actions of lattices in higher rank semisimple Lie groups, 

Let r be a discrete group acting by diffeomorphisms on a smooth compact 
manifold M. Associated to this action are certain characteristic classes in 
H'(r, R), which are constructed as characteristic classes of a natural foliation 
associated to the group action. The action of r on M induces an action of r 
on the principal frame bundle P(M) of M and the characteristic classes of the 
action can be interpreted as obstructions to the existence of invariant geometric 
structures on M, i.e., principal subbundles of P(M) invariant by the r-action. 

If r is a lattice in a higher rank semisimple Lie group, then r has strong 
rigidity properties (see, e.g., [M, Zl]). In an earlier paper [S], we showed, using 
techniques from ergodic theory, that for a certain class of r-actions there is 
always an invariant measurable reductive geometric structure, i.e., a measurable 
principal subbundle with reductive structure group, which is invariant by the 
r-action. Moreover, the noncompact semisimple part of this reductive group is 
locally isomorphic to a semisimple factor of the ambient Lie group of r [Zl]. 
Zimmer [Z3] recently proved this result for a large class of actions (which does 
not a priori include the class of actions considered in [S]). A natural question 
is whether these results remain true in the smooth category. The purpose of 
this paper is to show that the characteristic classes, which obstruct a smooth 
geometric structure, vanish in the presence of a measurable geometric structure. 
Explicitly, we have 

Main Theorem. Let (M,!F) be a codimension n, C2-foliated manifold and 
suppose that the linear holonomy cocycle is measurably equivalent to a locally 
tempered cocycle taking values in a subgroup H c GL(n, R) which is stable 
under transpose. Then the Wei! homomorphism 

x: H'(g[(n) , O(n» -+ H;(M, !F)* 
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182 GARRETT STUCK 

factors through H'(~, H n O(n)). In particular, if the restriction of 't' E 
Hk(g[(n),O(n)) to Hk(~, H n O(n)) vanishes, then X('t'):Hcrn-k(M, 7) -+ R 
is zero. 

The theorem follows immediately from the functoriality of the characteris-
tic homomorphism in the case that the linear holonomy co cycle is smoothly 
equivalent to a cycycle of the specified form. We note in passing that the Main 
Theorem holds for measurable, leaf saturated subsets of M, i.e., for the Wei! 
measures [H-H] associated to 7. We leave it to the reader conversant with 
these notions to formulate and deduce the more general statement. 

Combined with the results of [S and Z3], the previous theorem yields the 

Main Corollary. Let G be a semisimple Lie group with/mite center, all of whose 
simple factors have real rank at least two. Let r be a lattice in G and suppose 
r acts on a smooth manifold M preserving a /mite measure. Assume that either 

(i) M is compact and r is cocompact, or 
(ii) r is irreducible, the action of r on M is mixing, and dimension of 

M is smaller than the minimum dimension of an almost faithful real 
representation of G . 

Then there is a reductive subgroup He GL(n, R) with compact center such that 
the Wei! homomorphism of the associatedfoliation of G/ K xrM factors through 
H'(~, M), where M is the maximal compact subgroup of H. Moreover, the 
noncompact semisimple part of H is locally isomorphic to a semisimple factor 
ofG. 

It is straightforward to show, using the Margulis super-rigidity theorem, that 
if M is a homogeneous manifold L/A and the action of r on M is given by 
a homomorphism of r into L, then there is a smooth r-invariant reduction 
of P(M) to a reductive group. The Main Corollary gives evidence that every 
volume preserving action of r enjoys this property of homogeneous actions. 

Hurder and Katok [H-K] proved a version of the Main Theorem for amenable 
foliations; they showed (roughly speaking) that the linear holonomy cocycle of 
an amenable foliation is measurably equivalent to a tempered cocycle into a 
maximal amenable subgroup of GL(n, R) and then tnat the Weil homomor-
phism factors through the relative Lie algebra cohomology of the Lie algebra of 
the amenable group. They also proved a slightly weaker version of the Main 
Theorem for H = SL(n, R), but their proof does not extend to the general 
case. 

The structure of the paper is as follows: In the first section we define char-
acteristic classes of foliations and the Wei! homomorphism. At the end of § 1 
we give a brief overview of the proof of the Main Theorem. In §2 we define 
the measurable equivalence class of the linear holonomy cocycle and in §3 we 
discuss a procedure for averaging in noncompact symmetric spaces. §§4, 5, 
and 6 complete the proof of the Main Theorem and in § 7 we discuss the Main 
Corollary. 
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1. CHARACTERISTIC CLASSES OF FOLIATIONS 

Characteristic classes of foliations have been constructed in various ways by 
several authors. We follow the presentation given in [K-TJ. 

Let 9 be a (real) Lie algebra and g* its dual. Define the Weil algebra of 
9 to be W(g)=l\g*®Sg*. W(g) hasabigrading W q ,2p (g) = I\qg* ®SPg* 
and with the associated total grading W(g) is a graded commutative algebra. 
For X E 9 let i(X) be the unique derivation of degree -Ion W(g) such that 
i(X)a = a(X) for a E I\lg* and i(X)P = 0 for P E Slg* . Let O(X) be the 
unique derivation of degree 0 on W(g) such that O(X) = (adX)* on 1\1 g* 
and Slg* . There is a differential of degree 1 on W(g) defined as follows: for 
a E 1\ 1 9 * , d a = d" a + ii where d" is the Chevalley-Eilenberg differential on 
I\g* and ii is the 1-form a considered as an element of Slg* ; for P E Slg* , 
dP E I\lg* ®Slg* and satisfies O(X)P = i(X)dP. The differential d satisfies 
O(X) = di(X) + i(X)d for all X E g. 

If ~ is a Lie subalgebra of g, we say that an element a E W(g) is ~-basic if 
O(X)a = i(X)a = 0, "IX E ~. Define the relative Weil algebra W(g,~) to be 
the set of ~-basic elements in W(g). W(g,~) is a differential subalgebra of 
W(g). If G is a Lie group with Lie algebra 9 and He G is a subgroup with 
Lie algebra ~ C g, we sayan element a E W(g) is H-basic if a is ~-basic and 
Ad h· a = a, Vh E H. Define W(g, H) to be the set of H-basic elements of 
W(g); W(g, H) is also a differential subalgebra of W(g). If H is connected, 
W(g, ~) = W(g, H). 

Now let W be a connection in a principal bundle n: P -+ M with structure 
group G; recall that W is a g-valued I-form on P and the curvature Q is 
a g-valued 2-form. Define an algebra homomorphism K(W): W(g) -+ Q(P) as 
follows: for a E 1\ 1 g*, K(w)(a) = a 0 w; for P E Slg*, K(W)(P) = po Q. 
K(W) is a map of differential graded algebras, and in fact the differential d on 
W(g) is the unique one making K(W) a differential map for all connections w. 
Furthermore, for X E 9 define X to be the vertical vector field on P given 
by Xu = !rlt=ou, exp tX . Then K(W) 0 i(X) = i(X) 0 K(W) and K(W) 0 O(X) = 
O(X) 0 K(W) for all X E g. For r E 1\ g* we abbreviate K(w)(r) = r(w); for 
a E Sg* we write K(w)(a) = a(Q) . 

Let K be a maximal compact subgroup of G. The restriction of K (w) to 
W(g, K) takes values in the subalgebra Q(P)K = {a E Q(P)li(X)a = 0, "IX E 
e; a' k = a, Vk E K}. Q(P) K is naturally isomorphic to Q(P / K), and 
P / K -+ M is a bundle with contractible fiber, so there is a smooth section 
s: M -+ P / K unique up to homotopy. The Chern- Wei! homomorphism is the 
composition 

s* 0 K(W): W(g, K) -+ Q(M). 

This is a map of differential graded algebras and it therefore induces a map on 
cohomology, 

H(s* 0 K(w)):H'(W(g, K)) -+ H·(Q(M)). 
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It is a standard result that H(s* 0 K(W)) does not depend on the choices of s 
and W (since any two sections are homotopic and the set of connections is a 
convex subset of the affine space of g-valued I-forms on P), For 9 = gl(n) 
and K = O(n), the image of the map H(s* OK(W)) is the algebra ofPontryagin 
classes of p, 

Now let (M,!T) be a codimension-n, C2 foliation, T!T the tangent bun-
dle of !T , and Q = T M / T!T the normal bundle of !T, Fix a Riemannian 
metric g on M and use it to identify Q with the subbundle of T M orthog-
onal to T!T; let 1CQ : T M -+ Q be orthogonal projection, Let 1C: P(Q) -+ M 
be the principal GL(n, R) bundle associated to Q, Let J = J(!T) be the 
differential ideal of forms vanishing on T!T, 

Definition. Let W be a connection on P( Q) and 'V the associated covariant 
derivative on Q, W is called a Bott connection if for all X E T!T and every 
section Y of Q, 'V xY = 1CQ [X, Y], 

Bott connections always exist in the full frame bundle of the normal bundle 
[B2], and the set of such connections is convex, A Bott connection has the im-
portant property that the curvature of the connection vanishes when restricted 
to the leaves, Thus, if c is an invariant homogeneous polynomial of degree k 
on gl(n) then c(Q) E Jk , Note that J is locally generated by n independent 
I-forms, so I n+1 = 0, In particular, if the degree of c is greater than n, then 
c(Q) = 0, This is the Bott vanishing theorem [B2], 

We now suppose P is a principal subbundle of P(Q) with structure group 
G c GL(n, R) and we assume that P admits a Bott connection w, i.e" there 
is a Bott connection on P( Q) , which restricts to a connection W on p, This 
is equivalent to assuming that P is a "holonomy invariant" reduction of P( Q) 
(see below), Let K be the maximal compact subgroup of G; we assume that 
K = G n O( n) (we can always take a conjugate of G for which this is true), By 
our preceding remarks, if a E Wp ,2q (g) and q > n, then K(w)(a) = 0, Let 
F2QWlg) = S2qg* 'W(g) and define W(g)n = W(g)/F2n+2W(g) , W(g)n is a 
differential graded algebra and K(W) factors to a map K(W): W(g)n -+ Q(P) , If 
we apply the same construction to the subalgebra W(g, K), we get a quotient 
W(g, K)n and a map K(W):-+ W(g, K)n -+ Q(P/K); by composing with s* 
we get a map 

~(W) = s* 0 K(W): W(g, K)n -+ Q(M), 

The induced mat> ~(w)*: H'(W(g, K)n) -+ H'(M) is independent of the choice 
of Bott connection (and of s) and will be denoted ~*' If P = P(Q) , then 
the image of H'(W(gl(n) , O(n))n) by ~* is called the algebra of characteristic 
classes of !T , 

The characteristic homomorphism ~* satisfies two important functorial 
properties: first, if p' c P is a reduction of P to the group G' c G and 
p' admits a Bott connection, then the following diagram commutes: 
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r. 
--+ H·(W(g/, K\) 

Ll·l 
H·(M) , 

185 

where r* is the map induced by the restriction map r: g* -+ g'* . Thus the char-
acteristic classes of the foliation can be viewed as obstructions to the existence 
of Bott connections in principal subbundles of the principal normal bundle of 
the foliation. In other words, these classes are obstructions to holonomy in-
variant reductions of P(Q). Notice that if P(Q) admits a holonomy invariant 
reduction to O(n) , then the algebra of characteristic classes of the foliation is 
exactly the algebra of Pontryagin classes of the normal bundle. The algebra of 
Pontryagin classes of Q always appears as a subalgebra of ~*(H·(W(g, K)n)). 

~* is also functorial with respect to transversal maps of foliations. If 
(M,!T) and (M' , !T' ) are codimension-n foliated manifolds and f: M -+ M' 
is a C2 transversal mapping, then the normal bundle Q of !T is isomorphic 
to f* Q' ,where Q' is the normal bundle of !T' . Let p' c P( Q') be a subbun-
dIe with group G c GL(n, R) and suppose that p' admits a Bott connection. 
There is a subbundle P c P(Q) with group G isomorphic to J p' and a 
bundle map f.: P -+ p' such that the following diagram commutes: 

p~pl 

M --..L...... M'. 

The pullback of the Bott connection on p' is a Bott connection on P and the 
following diagram commutes: 

H·(W(g, K)n) H·(W(g, K)n) 

Ll·l Ll·l 
H·(M) H·(M' ). 

The algebra W(gl(n) , O(n))n contains a subalgebra WOn whose cohomology is 
isomorphic to the cohomology of W(gl(n) , O(n))n . This subalgebra is obtained 
as follows: first note that W(gl(n)) is acyclic in positive dimensions. The set 
of O(n)-basic elements of W(gl(n)) is the polynomial algebra R[c l , ... , cn], 
where cj is the ith Chern polynomial. The elements cj are closed and therefore 
exact. Choose Yj E W(gl(n)) with dY j = cj • Let 

Wn = I\(YI 'Y2 ' ••• , Yn) ® R[c l , ... , cn]n' 

where R[c i ' ... , cn]n is the truncation of R[c i ' ... , cn] in degrees greater than 
2n (recall that degree(cj ) = 2i). The next two theorems are classical (cf. [Ha]). 
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Theorem 1.1. The inclusion Wn ---+ W(gl(n)) induces an isomorphism in coho-
mology, 

For i odd, it is possible to choose the elements Yj in W(gl(n) , O(n)), De-
fine 

WOn = A(YI 'Y3' ", , Yq) ® R[c1 , ", , cn]n' 
where q is the greatest odd integer less than or equal to n, 
Theorem 1.2 [Ha]. The inclusion WOn ---+ W(gl(n) , O(n))n induces an isomor-
phism in cohomology, 

In degree :::; 2n, H'(WOn) is the algebra of Pontryagin classes, J, Vey 
computed the following basis of H'(WOn) in degree greater than 2n, Let 
I = (iI' ", , ik ) be a multi-index with 0 < il < ", < ik :::; m; i j odd, Let 
1 = U1 ' ", , Jp ), with 1:::; J1 :::; ", :::; Jp :::; n and set III = Lf=1 Jt , Define 

YICJ = y. 1\ .. , 1\ y. ® c, ® .. , ® c. , 
II Ik h lp 

The collection of all such Y IC J is a basis of WOn' The subset 

{yIcJllll :::; n; III + il > n; i 1 :::; any odd Jt } 

is a basis of H'(WOn), The classes in degree greater than 2n with III = n 
are called the residual classes, These classes have the property that their images 
under the characteristic homomorphism of a foliated manifold lie in the nth 
exterior power of the ideal of forms vanishing along the leaves, 

We now define the Weil homomorphism, Let 

Q(M, :Jr) = In and Qc(M,:Jr) = Q(M, :Jr) 1\ Qc(M) , 

where Qc(M) is the space of compactly supported forms on M, O(M,:Jr) is 
a differential ideal in Q(M) and is therefore a differential sub complex of the 
De Rham complex of M, We set 

H'(M, :Jr) = H'(Q(M , :Jr), d), 
H~(M , :Jr) = H'(Qc(M , :Jr) , d), 

Denote by U\gl(n)*)o(n) the sub algebra of W(gl(n) , O(n)) conSlStmg of 
O(n)-basic elements of "gl(n)*, (/\gl(n)*)o(n) is closed with respect to the 
Chevalley-Eilenberg differential d" and 

H' ((AgI(n)*)o(n) ,d,,) = H'(gl(n) , O(n)) 

by definition, Define a map 

X: (AgI(n)*) ---+ Qc(M, :Jr)* 
O(n) 

by X ( T:)( ¢) = J M d( r) 1\ ¢, The map X is a map of differential complexes, 
where we take the differential on Qc(M, :Jr)* to be the adjoint of the exterior 
derivative, Thus X induces a map X: H'(gl(n) , O(n)) ---+ H~(M,:Jr)* which 
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is independent of all choices. This map is called the Wei! homomorphism. For 
each r E Hk(gl(n) , O(n)) we have x(r):H;-k(M, 7) - R; x(r) is called 
the Wei! operator associated to r. 

Let YIc J be an element of the Vey basis representing a residual characteristic 
class, and let r I be the purely exterior part of Y I' Then Ll. (y I C J) = ~. (rIc J) . 
Moreover, Ll(cJ ) is a well-defined (independent of the Bott connection) element 
of H(M, 7). Let ¢ E O;(M) be a closed form, where k = dimM - degYI' 
Then Ll( C J ) /\ ¢ defines a class in He (M ,7) and 

By Poincare duality the class Ll. (y IC J) is therefore determined completely by 
the map x(rI ) and the class Ll.(cJ ) E H(M, 7). Note that the Wei! homo-
morphism is functorial with respect to holonomy invariant reductions of the 
normal bundle. Thus if P( Q) admits a holonomy invariant reduction to a 
group He GL(n, R), then the following diagram is defined and commutes: 

H'(W(gl(n),O(n)) H'(~, H n O(n)) 

xl xl 
H~(M, 7)* H~(M, 7 /), 

We stress that if r I E H'(gl(n) , O(n)) restricts to zero in H'(~, H n O(n)) 
then every residual class Y IC J (7) vanishes. 

We now give an overview of the proof of the Main Theorem. Let r E 
H'(gl(n) , O(n)). The Wei! operator x(r) is given by integrating Ll(r) against 
forms ¢ which are "maximally transverse," i.e., lie in the nth exterior product 
of the ideal of differential forms vanishing along the leaves. Thus to compute 
fMLl(r) /\ ¢ we need only know the values of Ll(r) restricted to T7. This 
suggests that we might be able to compute x(r) using a version of Ll(r) , which 
is smooth along the leaves but only measurable transversally. 

The hypothesis to the Main Theorem yields a principal H -subbundle p' of 
P( Q) which is measurable, smooth along the leaves, and holonomy invariant. 
We show in §5, following [H-K], that the Bott connection makes sense along the 
leaves for this subbundle and takes values in the Lie algebra ~ of H . By apply-
ing r to the Bott connection, we get a measurable tangentially defined 1-form 
r(w) on p'. To get a measurable version of Ll(r) we construct a section of 
p' / K - M , which is measurable and smooth along the leaves, and use this sec-
tion to pull back r( w) along the leaves. It is in the construction of this section 
that we require that H be reductive with compact center. Finally, we show, 
again following [H-K], that the measurable version of Ll(r) suffices to compute 
the Wei! operator x( r). For this we construct a uniformly bounded sequence of 
smooth forms converging to the measurable version of Ll(r); the proof follows 
by an application of the Lebesgue Dominated Convergence Theorem. 
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2. THE HOLONOMY COCYCLE AND THE MAIN HYPOTHESIS 

We begin by establishing some notation that will be used throughout the rest 
of this chapter. 

M is an m-dimensional, orientable, C2 manifold with a C2 , codimension 
n foliation !T, T!T is the tangent bundle of !T, and Q = TM/T!T is 
the normal bundle of !T which we identify with the orthogonal complement 
of T!T in T M relative to a Riemannian metric g on M. Let 7rQ be the 
orthogonal projection of T M onto Q. Let P be the principal frame bundle 
of Q; the metric g restricts to a metric h on Q and therefore determines a 
smooth section s:M - P/O(n). 

Let X = GL(n, R)/O(n). X has a left invariant Riemannian metric of 
nonpositive sectional curvature. This metric induces a Riemannian metric on 
the fibers of the bundle 

P/O(n) s:: P xGL(n,R) X.2:... M. 

For x E M let p x denote the associated distance function on the fiber (P / O( n)) x 

= 7r- I (x). A connection W yields an isomorphism TuP - T7t(u)M E9 gl(n) for 
each U E P. We define a Riemannian metric on P via the above isomorphism 
by giving T7t(U)M the metric g, gl(n) an O(n)-invariant metric compatible 
with the metric on X, and taking T7t (U)P to be perpendicular to gl(n). This 
metric on P is invariant by the (right) action of O(n) and therefore induces a 
Riemannian metric on P / O( n) . 

Let I denote the interval (-1, 1). A foliation chart for !T consists of an 
open set V c M and a diffeomorphism ¢: V _ I m- n x In such that for each 
x E In, the set ¢-I(lm-n X {x}) is a connected component of L n V for 
some leaf L of !T. ¢ -I (lm-n X {x}) is called a plaque. ¢: V _ I m- n x In 
is a regular foliation chart if there is a foliation chart'll: V _ (-2, 2)m-n x 
(_2,2)n such that V c V and IfIIV = ¢. We fix a simple locally finite 
covering {(Va' ¢a)}aEA of M by regular foliation charts. Let {Aa}aEA be a 
partition of unity subordinate to {Va} aEA • 

Each regular foliation chart (¢a' Va) induces a trivialization PIVa _ 1m X 

GL(n, R), as follows: an element U E P is an isomorphism u: Rn - Q7t(u)' 

If we fix the standard basis in Rn and choose a basis in Q7t(u) , we can write 
U as an element of GL(n, R). For x E Va we take as our basis of Qx the 
set {7rQ(¢: .. 1(8/8x))}i=m_n+I, ... ,m' Define aBott connection W on P by first 
taking local connections wa on PlUa for which the trivialization is parallel 
(i.e., wa is the product connection on 1m X GL(n, R)) and then glueing these 
local connections together using the partition of unity. Since the transition 
functions for the local trivializations of P are constant along the leaves, the 
connection W = EaEA AaWa is flat along the leaves. 

Let <l> a: Va - In be the composition of ¢ a with the projection I m- n x In -
In and define Ta = In. Let T = UaEA Ta' For each Q there is a map 
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To. -+ Uo. given by x 1-+ ¢> ~ 1 (0, x). This gives a map '1': T -+ M, which 
is a local diffeomorphism onto its image; let T = '¥(T). T is a complete 
transversal for :T, i.e., every leaf of :T meets T in a countable, nonempty 
set. 

Let Uo. p = Uo. n Up and Tap = <fJp(Uo.p). Define Yap: Tap -+ Tpo. by 
Yo.p(x) = <fJo.(<fJpl(x)). The collection {Yo.plUo. p =F 0} generates the holonomy 
pseudogroup g' acting on T. Let PT = T x GL(n, R) be the principal frame 
bundle of T; the collection {Dy o.p I Uo. p =F 0} generates the linear holonomy 
pseudogroup Dg' acting on PT. We say that P admits a holonomy invariant 
reduction to a group He GL(n, R) if there is a principal H subbundle of PT 
which is invariant by Dg'. (We will see that any Dg' -invariant subbundle of 
PT -+ T "pulls back" to a subbundle of P -+ M.) 

The orbits of the pseudogroup g' yield an equivalence relation R on T: 
we have (x, y) E R if and only if '¥(x) and ,¥(y) lie in the same leaf of 
:T. For x E T we let Rx c T denote the equivalence class of x. Each 
equivalence class of R has a natural metric induced from the word metric on 
g'; explicitly, for (x, y) E R, d(x, y) is the smallest integer k such that 
x = Yo. I PI 0 ···0 Yo.kPk (y), Pi = a i+ l • Equivalently, d(x, y) is the minimal 
number of plaques in a "plaque path" from x to y. 

A cocycle over R is a measurable map v: R -+ GL(n, R) satisfying the 
cocycle identity 

v(x, y)v(y, z) = v(x, z) for all y, z E Rx ' 
almost everywhere (see [F-M, pp. 304-305]). Two cocycles v, a are equiva-
lent (or cohomologous) if there is a measurable map f: T -+ GL(n, R) such 
that v(x, y) = f(X)-IO(X, y)f(y) almost everywhere. The map f is called 
a coboundary from a to v. Let RI = {(x, y) E Rld(x, y) = I}; a cocycle 
v is locally tempered if for every compact set K eM, vlRI n,¥-I(K)2 is 
essentially bounded. 

Define a co cycle v: R -+ GL(n, R) as follows: for (x, y) E R, x =F y, 
choose Y E g' with y = y(x). Let v(x, y) = Dyx' i.e., the differential of y 
evaluated at x E T. The following lemma shows that v is well defined. 

Lemma 2.1 [H-K]. Almost every leaf has trivial linear holonomy. 
Thus for almost every x E T, y(x) = x implies that Dyx is the identity 

matrix. It follows that v satisfies the cocycle identity almost everywhere. Note 
also that v is locally tempered because the foliation charts are regular and the 
covering is locally finite. We now state the Main Hypothesis from which we will 
derive information about the vanishing of certain residual characteristic classes 
of:T . 

Main Hypothesis. v is measurably equivalent to a locally tempered cocycle a 
taking values (essentially) in a closed subgroup He GL(n, R) which is stable 
by some Cartan involution of GL(n, R). 
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We can assume without loss of generality that H is stable by the standard 
Cartan involution of inverse transpose on GL(n, R), so that the maximal com-
pact subgroup of H is K = H n O( n) . The importance of the assumption on H 
is that the submanifold H / K -+ X is totally geodesic (see § 7). The importance 
of c5 being tempered will become apparent below. 

Let f: T -+ GL(n, R) be the coboundary from 1/ to c5, so c5(x, y) = 
f(X)-I1/(X,y)f(y) and c5 (essentially) takes values in H. If we consider f as 
a section T -+ PT, then the (right) H-orbit of f determines a D~-invariant 
measurable principal H-subbundle P'T of PT. We define a subbundle P' c P 
as follows: the map <1>",: U", -+ T", induces a bundle map (<I>cJ.: PIU", -+ PTIT",. 
We take P'IU", to be the inverse image of P'TIT", under this map. It is easy 
to see that P'IU", is canonically isomorphic to the pullback <I>:(P'TIT",). The 
holonomy invariance of P'T guarantees that the local bundles P'I U", fit to-
gether to give a global principal H -bundle P' -+ M. This bundle is measurable 
and smooth along the leaves, i.e., P' admits local sections which (as maps 
into P) are measurable and smooth along the leaves. The quotient bundle 
P'/K -+ M has the important property that each fiber (P'/K)x is a totally 
geodesic submanifold of (P/O(n))x' 

3. NONLINEAR AVERAGING 

It will be necessary at several points in the proof of the Main Theorem to 
construct global sections of P / O( n) -+ M by piecing together local sections. 
In this section we introduce a suitable technique for doing this. We refer the 
reader to a paper of Karcher [K] for proofs of some of the results in this section. 

Recall that each fiber of P / O( n) -+ M has a metric of non positive sectional 
curvature. Let {t",: U'" -+ P/O(n)IU",} be a collection of local sections. For 
Z E M define a function Pz on (P/O(n))z by 

Pz(x) = LA",(Z)Pz(x, t",(z))2. 

'" 
Then gradPz(x) = - E", A",(Z) exp;1 t",(z) [K]. It can be shown that gradPz(x) 
has unique zero mz , and that mz is the unique minimum of the function 
Pz(x). We write mz = EA",(Z)t",(z). Define a global section t:M -+ P/O(n) 
by t(z) = EA",(Z)t",(z). 

Example. Consider the special case of GL(2, R)/0(2). Let a = (6 nand 
r = (~ ?) , where the bar denotes a coset of 0(2). We will compute 

m = !r+ !a. 

The point m is the unique minimum of the function P(x) = !p(x, r)2 + 
!p(x, a)2 . Clearly m will be the midpoint of the geodesic segment connecting 
r to a. This geodesic is given by 

----
t -+ (e~ e~t)' 
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and by an easy computation we see that 

m=(1 4)-
Notice that both (J and r are in the totally geodesic subspace SL(2, R)/SO(2) 
and so is their average m. 

The basic facts we require about this averaging procedure are 
1. The averaging is invariant by isometries. 
2. If the points t a (z) all lie in a totally geodesic subspace of (P / O( n)) z ' 

then L:Aa(z)ta(z) lies in the same totally geodesic subspace. 
3. If the sections ta are smooth, then the global section t is smooth. 
4. If the sections ta are smooth, have bounded first derivatives, and lie 

within a uniformly bounded distance of the fixed section s, then the 
global section t has bounded first derivatives. In fact, the derivatives 
of t are bounded in terms of the derivatives of ta , the derivatives of 
Aa' and the (fiberwise) distances of ta from s. 

Remark. Hurder and Katok [H-K] use a different averaging technique to piece 
together local sections. Their technique consists of taking a linear average in 
the convex cone Sen) of positive definite symmetric matrices, which is natu-
rally identified with GL(n, R)/O(n). This technique is inappropriate for our 
purposes, because in general H/H n K is not a convex subset of S(n). Nev-
ertheless, Hurder and Katok do state and give a proof of a weaker version of 
the Main Theorem for the case H = SL(n, R). Their proof has a mistake in 
statement (7.25), although this error can be fixed by interpreting all multipli-
cations to be not matrix multiplication, but the action of GL(n, R) on S(n); 
the appropriate local sections are then the positive square roots of the matrices 
defined in (7.25). 

In the next section we show that the residual characteristic classes can be 
computed from "nice" measurable sections of P/O(n). In §5 we construct a 
sequence of nice measurable sections of P / O( n) converging to a measurable 
section of pi / K . 

4. COMPUTING THE CHARACTERISTIC CLASSES FROM 
A MEASURABLE SECTION 

A measurable section t: M ---- P / O( n) is bounded if 

ess sup px(t(x) , sex)) < 00. 
xEM 

A measurable section t: P / O( n) is smooth (Ck ) along the leaves or tangentially 
smooth (C k ) if the restriction of t to any plaque of a foliation chart is smooth 
(Ck ). A tangentially C l section is said to be tangentially C l bounded if it 
is bounded and esssuPvET'Y-- Ilt.vll < 00, where rig- is the bundle of unit 
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vectors tangent to !T, t.. denotes the leaf wise differential of t, and II t .. v II is 
the length of t .. v in the metric on P / O( n) . 

Suppose we are given a measurable section t: M - P / O( n) , which is smooth 
along the leaves and tangentially C l bounded. We will construct a sequence 
of smooth sections ti:M - P/O(n) such that ti(x) - t(x) for almost every 
x E M and ti .. - t .. almost everywhere. We construct the sections ti by 
first constructing local sections over foliation charts and then piecing the local 
sections together to get a global section. 

The local trivializations of P induce local trivializations P / O( n) I Ua. -
1m xX, and via these trivializations t yields functions ta.: I m - n xln - X which 
are measurable, bounded, and smooth along the plaques. Let Xo be the identity 
coset in X; since X has nonnegative sectional curvature, exp: Tx X - X is a 

o 
diffeomorphism. Fix an isomorphism of Tx X with Rq and define 7 : 1m - Rq 

o a. 

by 7 (x) = expx-I t (x). Then 7 is essentially bounded, measurable, and a. oa. a. 

smooth along the plaques, and the derivatives of ~ along the plaques are es-
sentially bounded. 

Let {ki } be a sequence of smooth kernels on In X In with support converging 
uniformly to the diagonal. We denote a point of 1m by z = (x, y) where 
x E I m- n , y E In. Define t:glm _ Rq by 

7~(x, y) = r ~(x, w)ki(w, y)dw. lIn 
-i -. -:1 -. • Then ta. - t a. m measure and (ta.). - (t) .. m measure wIth respect to the 

norm on linear maps Rm- n _ Rq • In fact, 

(t~).(8 /8xi ) = /n (8 /8 x) 'i!.(x , w)ki(w, y) dw, 

so ,u{(x, Y)III(t~) .. (8/8xi)(X'Y) - (t~).(8/8x)(x,y)11 > e} - 0 as j - 00 for all 
e > O. Thus 

,u{(x,Y)III(t~/-(t~)'II(x,y»e}-O asj-oo, Ve>O. 

-i -Now by passing to a subsequence we may assume that ta. - ta. almost every-
where and (7~)* - (~) .. almost everywhere. 

Define t:: 1m - X by t i (z) = expx 7i (z) . Via our trivialization of 
~ n 0 Q 

P/O(n)!Ua. we get smooth sections t~: Ua. - P/O(n)IUa.. These sections have 
the property that t~(z) - ta.(z) for a.e. z E Ua. with respect to the metrics on 
the fibers of P/O(n) , and (t~)* - (ta.) .. almost everywhere. 

For each i, the collection {t~} a.EA is a collection of local smooth sections 
of P / O( n), but of course these local sections need not agree on the overlaps. 
Define ti:M _ P/O(n) by ti(z) = LAa.(Z)t~(z). 
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Now fix an element Y/c J of the Vey basis representing a residual character-
istic class and let r / be the purely exterior component of y/. Let k be the 
degree of y /. Let t: M -+ P / O( n) be a measurable section smooth along the 
leaves and tangentially C 1 bounded. We now define a linear map 

n m- k Cir A = A, : U c (M, ..7 ) -+ R. 
I 

Let ¢ E n~-k (M ,!T) and define a measurable m-form A¢ as follows: fix 
x EM and let Y1 , ••• , Ym be a basis of TxM such that Y1 ,···, Ym- n are 
tangent to !T. Define 

A"(Yi ' ... , Yi ' Ym- n+1 ' ••• , Ym) 
Of' 1 k-n 

=c· L (-ltr/(w)(t*YU(I),···,t*Yu(k)) 

. ¢(YU(k+l) , ... , Yu(m-n)' Ym- n+1 ' ••• , Ym), 

where c = l/(ISkl· ISm-n-kl). 
compactly supported m-form on 
A(¢) = fMA¢. 

A¢ is a measurable, essentially bounded, 
M, in particular, A¢ is integrable. Define 

Proposition 4.1. A vanishes on closed/arms. As an element 0/ H;-k(M,!T)* , 
A coincides with X ( r /) . 

Proof. Let ¢ = dYf, Yf E n~-k-I (M, !T). Set a = t*r/(w); then 

Define d(a 1\ Yf) = dg-a 1\ Yf + (_1)degY1a 1\ dYf. Notice that if t is a smooth 
section, then d(aI\Yf)=d(aI\Yf) since YfEJn . We claim that fMd(aI\Yf) =0 
and that d g-a 1\ Yf = 0, and therefore that A( ¢) = O. The first claim follows 
from the leaf wise Stokes theorem of [H-H]. The second claim follows from 
the fact that dr/(w) E n*J so dr/(w)(t*YU(I)' ••• ' t.Yu(m-k+I)) = 0 since 
YU(I) , ••• , YU(m-k+I) E Tx!T. Thus A vanishes on exact forms. 

To prove the second part of the theorem we use the sequence {ti} of smooth 
sections converging to t which we constructed above. Define a i = ti*K(w)(r/). 
a i is a smooth k-form and defines a linear map Ai: H;-k(M,!T) -+ R. We 
will show that A = Ai = X(y/). 
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Fix ¢ E Q~-k(M) with d¢ = 0 and let Yl' ... ' Ym be an orthonormal 
basis of TxM such that Y1 , ••• , Y m-n are tangent to gr . Then 

I (AJ\ ¢ - A t\ ¢)(Yl' ... , Ym)1 = I(Q i - Q) t\ ¢(Yl' ... , Ym)1 

~ c· L I(Qi - Q)(t*YI1(I)' ••• , t*YI1(k))1 

. 1¢(YI1(k+l) , ... , YI1(m-n) ' Ym- n+1 ' ••• , Ym)1 

~ II¢II· L I(Q i - Q)(YI1(I)' ... , YI1 (k)) I 

= II¢II· L Ir/(w)((t: - t*)YI1(I) ' ••• , (t: - t*)YI1(m-k))I. 
I1ESm _ n 

Since t! ---> t* almost everywhere, it follows that Ai t\ ¢ ---> A t\ ¢ almost 
everywhere. Moreover, the tangential C l boundedness of t implies that the 
Ai are uniformly tangentially C l bounded and therefore that the Ai t\ ¢ are 
uniformly bounded. Thus by the dominated convergence theorem we conclude 
that Ai (¢) ---> A(¢). The lemma now follows since all the maps Ai are smoothly 
homotopic and therefore coincide with x(r/) as elements of Hc(M, gr)*. 0 

5. TEMPERING THE CO BOUNDARY 

In this section we construct a sequence of tangentially Cl-bounded mea-
surable sections of P / O( n) ---> M which converge pointwise to a section of 
pi / K ---> M. In the next section we use this sequence to draw our conclusions 
about the residual characteristic classes of gr. We begin by constructing the 
section of pi / K ---> M. The coboundary f: T ---> GL(n, R), considered as a 
section f: T ---> piT, yields local sections fa: Ua ---> pllUa as follows: recall 
that pllUa = (cI>a)~I(PITITa)' where (<I>a).:PIUa ---> PTITa is the differential 
of <l>a. The map (<I>a)* is injective on the fibers of PlUa so we can take fa(x) 
to be the unique element of p; satisfying (<I>a)*(fa(x)) = f(<I>a(x)). Note that 
fa is smooth along the leaves and that for x E Uap ' fa(x) and fp(x) differ 
by an element of H. This last statement follows easily from the identity 

c5(x, Yap(x)) = f(X)-lv(X, Yap(x))f(YaP(x)) , 

since v(x, YaP(x)) is the transition function for local coordinates on P and 
c5 takes values in H. Let la: Ua ---> pi /KlUa be the composition of fa with 
the quotient map. Now construct a global section F: M ---> pi / K by setting 
F(x) = I:aEA A.a(x)la(x) , where we consider la to be a section of P/O(n)IUa 
and we use the averaging described in §3. The fact that F takes values in pi / K 
follows from the total geodesity of H / K in X . The section F is smooth along 
the leaves, but it is not necessarily bounded, so we cannot use the results of §4 
directly to compute the residual characteristic classes. To solve this problem we 
construct a sequence of tangentially Cl-bounded sections converging to F . 
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Let 7: T ~ X be the projection of f to the quotient and let 0 denote the 
identity coset in X. For an element x E X define Ixlp = p(o, x). For each 
integer i > 0 define the i-truncation of 7 to be 

. { 7(x) , if 17(x)lp :::; i 
T (x) = the point at distance i from 0 _ 

along the geodesic from 0 to f(x), otherwise. 

The section t: T ~ P T I O( n) pulls back to give local sections 7~: Va ~ 
PIO(n)IVa . Define 

pi(X) = L Aa(x)7~(x). 
aEA 

Clearly pi: M ~ PI O( n) is a bounded, tangentially smooth action of PI O( n) , 
and pi converges to P pointwise. It is not yet clear that pi is tangentially 
C 1-bounded. 

The Cartan involution on GL(n, R) yields decompositions of ~ and g[(n) 
into ±1 eigenspaces: ~ = p EB e; g[(n) = p(n) EB o(n). Consider the diagram 

H ---+ GL(n, R) 

Exp r Exp r 
p ---+ p(n) 

exp 1 exp 1 
HIK ---+ GL(n, R)IO(n) , 

where Exp denotes the Lie algebra exponential map and exp is the metric 
exponential at the identity coset; the horizontal maps are all inclusions. This 
diagram commutes and the composition () = Exp 0 exp -1 gives a section of 

. -i 
H ~ HI K (respectively, GL(n, R) ~ X). Define t = () 0 f and set 

Fix x E M and choose 0: with x E Va' We will compute the tangential 
derivative of pi in the local coordinates (¢>a).:PIO(n)IVa ~ Va X X. If 
x E Vp set xp = <l>p(x) E Tp; by definition, for x E Va n Vp ' Xa = 'YaP (xp) . 
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In local coordinates, 
(¢a).Fi(x) = L Ap(X)(¢a)*l~(x) 

PEA 
= LAp(X)(¢a).(¢p)~I(¢p).l~(x) 

PEA 
= L Ap (X)(YaP)*/(<I>p (X» 

PEA 
= L Ap(X)1I(Xp ' Xa)/(Xp) 

PEA 
= L Ap(X)/ (xayi (xp , Xa) 

PEA 
= /(xa) L Ap(X)(fi(Xp' Xa)· 

PEA 
The second to last equality holds because / is a coboundary from 11 to <5 i ; 

the last equality holds because the center of gravity construction is invariant 
by translation. The functions x ~ xa are (locally) constant along the leaves 
so the tangential derivative of Fi depends only on the tangential derivatives 
of the Ap 's and li(xa , xp)lp. The following shows that the latter quantity is 
uniformly bounded on compact sets independent of i. 

-i -
Lemma 5.1 [H-K]. 1<5 (xp ' xa)lp :5 3{lv(xp' xa)lp + 1<5(xp' xa)lp} for all x E 
Va n VP' 

It follows that li(xa , xp)lp is uniformly bounded on compact sets because 
d(xa' Xp) = 1 and 11 and <5 are locally tempered. 

We are now prepared to prove 
Lemma 5.2. There is a sequence of tangentially smooth, tangentially C 1-bounded 
sections Fi of P /O(n) --+ M which converges pointwise to F. Moreover, the tan-
gential derivatives of the Fi are uniformly bounded on compact sets (independent 
of i), and the tangential derivatives of the Fi converge to the tangential deriva-
tives of F, 
Proof, We have established everything save the last statement for the sequence 
{Fi} defined above. Fix x E M and choose N> 0 such that Fi(x) = F(x) 
for i ~ N . Then by the construction of F i , and the fact that both Fi and F 
are smooth along the leaves, there is an open neighborhood V of x in the leaf 
through x such that Fi(y) = F(y) for all y E V and i> N. 0 

Note that we are not claiming that the Fi are uniformly bounded, only that 
the tangential derivatives are. 
Corollary 5.3. The measurable tangential form F* r / (w) is bounded and there-
fore defines a map AF : n~-k(M, 7) --+ R, This map vanishes on closed forms 
and as an element of H;-k(M, 7)*, AF coincides with x(r/), 
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Proof. By Lemma 4.1, the corollary holds if we replace F by Fi. But 
(Fi)*r/(w) converges uniformly on compact subsets of T!T to F·r/(w). There-
fore by the dominated convergence theorem, for ¢ E Q~-k(M,!T), 

AF(¢) = ! F·r/(w) t\¢ = lim !(Fi)·r/(W)t\¢=limAFi(¢). 

But the operator AFi vanishes on closed forms and AFi = X( r /) as elements 
of H;-k(M,!T)·. Thus AF =x(r/). 0 

6. THE CONCLUSION OF THE PROOF 

We have established at this point that we can compute the Weil homomor-
phism using a section F: M -+ P jO(n) which takes values in a measurable 
holonomy invariant subbundle with fiber H j K (recall that F: M -+ p' j K) . 
We now show that the Weil homomorphism factors through H·(f) , K). 

Let r E /{(g!(n)*)o(n); we can compute the Weil operator x(r) by integrat-
ing forms in Q~-k(M,!T) against the measurable tangential form F·r(w) = 
row 0 F •. Notice that this last expression does not quite make sense since 
F is a section of PjO(n) and w is a I-form on P. We can make sense of 
the expression, however, since r is O(n)-basic, i.e., r is defined on g!(n)jo(n) 
and is Ad O( n) invariant. Thus if we consider w 0 F. as being defined "mod 
O(n)", we can evaluate r on it. Now if r E /\k(f)·)K we have the problem that 
w 0 F. may not take values in f) "mod O(n)", in which case we would not be 
able to evaluate r on it. The next lemma shows that w 0 F. does take values 
in f) "mod O(n)". 

Lemma 6.1. For any r E /\k(f))K' F·r(w) is a well-defined tangential k-forrn 
on M. 

Proof. Fix x E M and a coordinate chart Vo. containing x. Then by a compu-
tation similar to one in the preceding section, we see that (in local coordinates 
on P jO(n)) 

(¢o.)..F(x) = f(xo.) L Ap(x)6(xp ' Xo.). 
PEA 

Let t 1--+ x(t) be a C 1 path in the leaf through x with x(O) = x. The functions 
x 1--+ Xo. are locally constant along the leaves and 6 takes values in H j K so 

(¢o.).F(x(t)) = f(xo.) L Ap(x(t))6(xp ' Xo.) 
PEA 

is a path in HjK. It follows that for X E Tx!T, (¢o.).F.X E T(HjK). 
Now recall that the Bott connection w is the weighted sum of the canon-

ical connections on the local coordinate charts. Thus wo.: TPIVo. = TVo. x 
TGL(n, R) = TVo. x GL(n, R) x g!(n) -+ g!(n) is just projection on the last 
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coordinate. Since (¢a.),.F.X E T(H/K) it follows that T(wa.)(¢a.).F.X) is de-
fined. Since this is true for each a with X E Ua.' it follows that T(w)(F.X) is 
defined. 0 

It follows that for each T E Ak(f)K the operator X(T): n~-k(M7) --+ R by 

X(T)(W) = 1M F·T(W) 1\ W 

is well defined. Moreover, if T is the restriction to Ak(~)K of an element 
r E A(g(n)*)O(n) ' then X(T) = X(T). It remains only to show that the map 
x: Ak(~·)K --+ n~-k(M, 7)' is a map of differential algebras. 

X(d/\T)(¢) = IMF·d/\T(W)I\¢= IM(dg-F·T(W»I\¢ 

= 1M d(F· T(W) 1\ ¢) ± 1M F· T(W) 1\ d¢ 

= ± 1M F·T(W) 1\ d¢ = A(T)(d¢). 

Thus X factors through H'(~, K) and this completes the proof of the Main 
Theorem. 

7. THE MAIN COROLLARY 

To derive the Main Corollary from the Main Theorem we need the following 
key fact: 

Theorem 7.1 [Z, S]. Let G be a semisimpie Lie group with finite center each 
of whose simple factors has real rank at least 2. Let reG be a lattice and 
suppose r acts on a smooth manifold M n preserving a finite measure. Suppose, 
moreover, that either 

( 1 ) M is compact and r is cocompact, or 
(2) r is irreducible, the action of r on M is mixing, and the dimension 

of M is smaller than the minimum dimension of an almost faithful real 
representation of G . 

Then the derivative cocyc/e v: r x M --+ GL(n, R) is measurably equivalent to 
a cocyc/e satisfying: 

(i) J takes values in a reductive algebraic subgroup L = H· K c GL(n, R) 
where K is compact, H is locally isomorphic to a semisimple factor of 
G, and both K and H are normal subgroups of L. L is minimal in 
{H c GL(n, R)IH is an algebraic subgroup and v is equivalent to a 
cocyc/e into H}. 

(ii) The projection J:r x M --+ L --+ L/K is given (up to a finite covering) 
by a homomorphism of r into L/K. 

Set N = K\G xr M and let 7 be the natural foliation of N transverse 
to the fibers of the bundle p: N --+ K\G/r. We will use the above theorem to 
show that (N, 7) satisfies the hypotheses of the Main Theorem. 
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Let {V , ~ } EA be a simple locally finite covering of K\ G /r by regular co-o Q 0: 1 

ordinate charts and likewise {Wp' '1 p} PEA2 a covering of M. For each a E A I 

fix a point xaE ~ and an identification M~p-I(xa)' For each ZEP-I(Xa), 
the connected component of Z in L z np-I(~) is mapped diffeomorphically 
by p onto ~. In this way we obtain a trivialization p-I(~) ~ ~ x M. Set 
A = Al xA2 and for each a = (ai' a 2) E A set U = V x W ,using the above a a1 a2 

trivialization to realize this as an open subset of N. Let <P a: Ua -+ Rm = Rk X Rn 

be the product map ~ x '1~ , where k = dim( G / K). Then {U~, <p } is a a 1 ~2 ~ a 
simple locally finite covering of M by regular foliation charts. Referring to the 
notation established in §2, we see that the generators {YaP} of the holonomy 
pseudogroup are given by the restrictions (in local coordinates) of elements of 
r acting on M. In particular, the equivalence relation induced on M by the 
orbits of r is stably orbit equivalent (see, e.g., [Z2]) to the equivalence relation 
on the transversal T induced by !T. Moreover, the linear holonomy cocyc1e 
on T is related via a stable orbit equivalence to the derivative cocyc1e of the 
action of r on M. Since the algebraic hull of a cocyc1e is an invariant of stable 
orbit equivalence [R], it follows from 7.1 that: 

Corollary 7.2. The holonomy cocyc/e v of (N,!T) is equivalent to a locally 
tempered cocyc/e r5 into a reductive group L = H· K c GL(n, R), where K is 
compact and H is locally isomorphic to a semisimple factor of G . 

Proof. We have explained everything save the local tempering. The local tem-
pering follows from the fact that K is compact and the projection of the cocyc1e 
of Theorem 7.1 into L/ K is given by a homomorphism of r into L/ K. 0 

It remains now only to show that some conjugate of L is stable under trans-
pose. 

Proposition 7.3. Let L = H· K c GL(n, R) where H is semisimple, K is 
compact and central in L, and Hand K are connected. Then there is a 
Cartan involution of GL(n, R) stabilizing L. 
Proof. Note first that L c SL(n, R). There is a decomposition Rn = va EB 
V; EB ... EB Vk ' where H acts trivially on va and irreducibly on each of the ~ 
for 1 :5 i :5 k. Let G = GL(VO) X Rk. Then G is the connected component 
of the identity of the centralizer of H in GL(n, R), where we consider each 
copy of R as acting by scalars on one of the ~, 1 :5 i :5 k. Since K is 
compact, connected, and centralizes H it follows that K c GL(VO). Let Qbe 
a semisimple subgroup of GL(VO) containing K. By [Mo], there is a Cartan 
involution () of SL(n, R) which stabilizes H x Q, and pointwise fixes K. 
Thus () stabilizes L. 0 

Now apply the Main Theorem to the foliation (N,!T) to deduce the Main 
Corollary. 
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