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The ionization of molecular systems is important in many chemical processes such as electron transfer and hot electron
injection. Strong coupling between molecules and quantized fields (e.g. inside optical cavities) represents a new
promising way to modify molecular properties in a non-invasive way. Recently, strong light-matter coupling has shown
the potential to significantly improve the rates of hot electron driven processes, for instance in water splitting. In this
paper, we demonstrate that inside an optical cavity the residual interaction between an outgoing free electron and the
vacuum field is significant. We further show that, since the quantized field is also interacting with the ionized molecule,
the free electron and the molecular system are correlated. We develop a theoretical framework to account for the field
induced correlation and show that the interaction between the free electron and the field free electron-field interaction
has sizeable effects on the ionization potential of typical organic molecules.

I. INTRODUCTION

Strong coupling between molecules and quantized fields
has proven to be a very effective way to engineer molecular
properties.1–4 Possible applications range from the control of
photochemical processes5–7 to the modification of molecular
reactivity.8–13 The easiest way to achieve strong coupling is
through optical cavities, devices composed of mirrors confin-
ing the electromagnetic radiation in a reduced volume.14–17

Inside an optical cavity the photonic vacuum couples to the
molecular system creating mixed light-matter states called
polaritons.18–20 Since the properties of polaritonic states can
be tuned21,22 by changing the field inside the resonator, po-
laritonic chemistry promises to be a non-invasive methodol-
ogy to modify molecular properties on demand.23–26 The the-
oretical comprehension of phenomena in the strong coupling
regime is still in its infancy and ab initio approaches to study
strong light-matter interaction have only been developed in
recent years.27–33 Under strong coupling conditions the elec-
tromagnetic field is a crucial part of the system. For this
reason, the field must be treated on the same footing as the
electrons, that is, following quantum electrodynamics (QED)
prescriptions.34 A widely used strategy to tackle problems in
the strong coupling regime is to take inspiration from standard
quantum chemistry theories. Indeed, many concepts can be
generalized, in a relatively simple way, to QED environments
(i.e. QED Hartree Fock,27 QED coupled cluster,27,30,33,35

QED density functional theory28,29,36,37). However, instances
where this generalization procedure is nontrivial can also
arise.

Ionization is a key process in chemistry, as electron re-
moval is used to follow the advancement of chemical reac-
tions, or to characterize molecular systems in spectroscopic
techniques such as the X-ray photoelectron spectroscopy38

(XPS).39–42 Additionally, molecular ionization can be used to
initiate and promote new reactive pathways.43,44 In some re-
cent papers, DePrince,45 Liebenthal et al.46 and Pavovsevic et
al.33,35 demonstrated that ionization potentials and electronic
affinities change inside optical cavities. This is of particular

relevance in the context of cavity QED since the pioneering
work by Shi et al.47 has shown that the production of hot elec-
trons under strong coupling conditions is a viable way to im-
prove water splitting processes. While detailed theoretical de-
scriptions of ionization processes outside optical cavities are
available,48–53 much work is still needed for QED environ-
ments as the free electron will still interact with the electro-
magnetic field.

In this work we present a new definition of ionization poten-
tials for strongly coupled systems. In particular, we demon-
strate that a quantized field induces sizeable interactions be-
tween the free electron inside the cavity and the ionized
molecular system. The new definition implies that ionization
properties can be profoundly modified using quantum fields.
Despite respecting a theoretical consistency, the methods pro-
posed in Refs. 33, 35, 45, and 46 do not account for the cavity
mediated interactions between all parts of the system because
the free electron is not considered explicitly. Here we develop
new methodologies to include the free electron contributions.

In standard electronic structure theory, ionization potentials
can be approximated using the Hartree Fock orbital energies
by means of Koopmans’ theorem.54,55 A QED extension of
the theorem has not yet been developed since a consistent
molecular orbital theory for polaritonic systems was not avail-
able. Recently, we solved this problem using a new ab ini-
tio method called strong coupling QED-HF (SC-QED-HF),56

which allows us to formulate a QED version of Koopmans’
theorem and test its accuracy.

The paper is organized as follows. In Sections II and III we
present a comprehensive theoretical framework for ionization
processes in optical cavities. In particular, we provide a de-
tailed definition of the ionization potential (IP) in the strong
coupling regime and we discuss different approximations to
include interactions between the ionized system and the free
electron. In section IV our methodologies are applied to sev-
eral organic molecules to assess the relevance of the differ-
ent energy contributions. The results of this section have also
been compared to data from the literature. The final section
contains our concluding remarks and perspectives.
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II. LONG-RANGE INTERACTIONS IN QED
ENVIRONMENTS

In optical cavities, the vacuum field mediates long-range in-
teractions between molecules introducing non size-extensive
effects.30,57 This means that under strong coupling condi-
tions two molecules infinitely far apart are somehow still feel-
ing each other. The cavity-induced non size-extensivity is a
consequence of the photon coherence, meaning that all the
molecules interact with the same electromagnetic field inde-
pendently from their distance to each other. In simple terms,
since each molecule interacts with the same cavity photons
and partially changes the field shape, different molecules are
indirectly coupled through the field. Because of these field-
mediated long-range interactions it is reasonable to expect that
the cavity photons might also introduce correlation between
free electrons and molecules. Such a situation appears, for
example, after ionization. In standard quantum chemical cal-
culations, the interaction between the free electrons and the
ionized molecule does not affect the IP, see Fig.1a and 1c.41,58

Moreover, since the ionization potential is defined as the min-
imum work needed to release an electron, the outgoing free
electron has zero energy. The process can therefore be de-
scribed both as an excitation to a continuum orbital with zero
energy or, equivalently, as the annihilation of one electron.
In this work, we refer to the continuum orbital with the in-
dex ν . The equivalence between the two descriptions does
not hold inside optical cavities, Fig. 1b and 1d, for different
reasons. Firstly, the minimum free electron energy inside the
cavity εν(λ ), where λ is the light-matter coupling strength, is
larger than zero as shown in Fig. 2 and demonstrated in Sec-
tion III B. Therefore, a first approximation of the ionization
potential inside an optical cavity should be

IP = Eion(λ )+ εν(λ )−Emol(λ ), (1)

where the free electron energy εν(λ ) has been added to the
standard definition of ionization potential. In Eq. (1), Eion(λ )
and Emol(λ ) are the energies of the ionized and the non-
ionized molecule inside the cavity, respectively. However, in
Eq. (1) we are disregarding the field coherence. This is repre-
sented in Fig. 3b where the free electron and the ion are in two
different cavities and therefore feel two different electromag-
netic field. An accurate treatment of the ionization problem
instead requires the inclusion of field mediated correlation be-
tween the system components, Ecorr(λ ), see Fig. 3c. In the
next section we therefore present the theoretical methodolo-
gies developed to include the contributions discussed above.

III. THEORY

We start this section by introducing the essential notation.
The interaction between photons and matter will be described

-
-

a)

c) d)

b)

FIG. 1. a) and c) Outside the cavity exciting an electron from a
molecule to the continuum (free orbital) is equivalent to annihilat-
ing an electron. b) and d) This equivalence is not respected inside
optical cavities.

No interaction between
     ν and the cavity

Interaction between
   ν and the cavity

εν(λ) = εν(0)

εν(λ)

εν(0)

Emol(0) Emol(0)

 Emol(λ) Emol(λ)
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FIG. 2. Pictorial representation of the cavity effect on the energy of
the molecule and free electron. If the interaction between the free
electron and the cavity is neglected only the energy of the molecu-
lar system increases. The energy of the free electron is instead un-
changed. On the other hand, if the interaction between the free elec-
tron and the cavity is considered, the energy of both the molecule and
the free electron increases.

Eion(λ)+εν(0)
 Emol(λ)

E
-

-

-

Eion(λ)+εν(λ)

Eion(λ)+εν(λ)+Ecorr(λ)

a)

b)

c)

FIG. 3. Different approximations to calculate IPs in an optical cav-
ity. a) the interaction between the cavity and the free electron is ne-
glected, b) the free electron is included, but without interaction with
the molecule, c) the free electron is included also taking into account
the interaction with the molecule.
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using the minimal coupling Hamiltonian34,57

H =
1
2 ∑

i

(
pi−

λ√
2ω

ε(beik·ri +b†e−ikri)

)2

−∑
iα

Zα

|ri− rα |
+

1
2 ∑

i 6= j

1∣∣ri− r j
∣∣ +ωb†b, (2)

where i and j label electrons and α labels nuclei with charge
Zα . The cavity parameters ω , ε and k are the frequency, the
polarization and the wave vector, respectively. The bosonic
operators b and b† annihilate and create photons. In this work
we only consider a single cavity mode. When the field wave
length is large enough compared to the molecular dimension,
the dipole approximation eik·r ≈ 1 can be employed in Eq. (2)
leading to59

H =
1
2 ∑

i

(
pi−

λ√
2ω

ε(b+b†)

)2

−∑
iα

Zα

|rα − ri|
+

1
2 ∑

i6= j

1∣∣ri− r j
∣∣ +ωb†b.

(3)

Using the Power-Zienau-Woolley transformation,60–62 the
length gauge form of the light matter Hamiltonian is
obtained63–65

H =He−λ

√
ω

2 ∑
pq
(d ·ε)pqEpq(b+b†)+ωb†b

+
λ 2

2 ∑
pqr

(d ·ε)pr(d ·ε)rqEpq

+
λ 2

2 ∑
pqrs

(d ·ε)pq(d ·ε)rsepqrs,

(4)

where d is the molecular dipole operator and we adopted the
second quantization formalism for the electrons. The elec-
tronic Hamiltonian He is defined as

He = ∑
pq

hpqEpq +
1
2 ∑

pqrs
gpqrsepqrs, (5)

where hpq and gpqrs are the one and two electron integrals,
while

Epq = ∑
σ

a†
pσ aqσ

epqrs = EpqErs−δrqEps,
(6)

with a†
pσ and apσ respectively creating and annihilating an

electron in the orbital p with spin σ . The lowest energy eigen-
function of the Hamiltonian in Eq. (4) can be approximated
using one of the ab initio methods mentioned above. In this
work, we mainly focus on two approaches: SC-QED-HF56

and QED-CC27.

A. The ionization potential in QED environments

In absence of light-matter interaction, ionization of a
molecule can be described both as an annihilation of one

electron or as an electronic excitation to the continuum (See
Fig. 1a and 1c).

These two approaches are equivalent. In fact, if the basis is
divided into a set of localized molecular orbitals p,q,r,s plus
one bath orbital ν describing the continuum, the Hamiltonian
He takes the form

He = ∑
pq

hpqEpq +
1
2 ∑

pqrs
gpqrsepqrs

+hνν Eνν +
1
2

gνννν eνννν ,

(7)

where all the integrals coupling the ν orbital and the molec-
ular orbitals are equal to zero, while hνν and gνννν are set
to zero along the lines of Ref. 58. The Hamiltonian is there-
fore separable and the energy of the ionized system is the sum
of the molecular energy plus the energy of the free electron.
Moreover, since the free electron is assumed to have zero en-
ergy, the excitation to the ν orbital is identical to an electron
annihilation.
The same considerations are not valid in the presence of the
field, as schematized in Fig. 1. The minimal coupling Hamil-
tonian, Eq. (3), is indeed equal to

H =∑
pq

(
hpq−

λ (p ·ε)pq√
2ω

(b+b†)+
λ 2δpq

4ω
(b+b†)2

)
Epq

+

(
hνν −

λ (p ·ε)νν√
2ω

(b+b†)+
λ 2

4ω
(b+b†)2

)
Eνν

+
1
2 ∑

pqrs
gpqrsepqrs +

1
2

gνννν eνννν +ωb†b, (8)

where, again, all the integrals coupling the ν orbital and the
molecular orbitals are set equal to zero. In Eq. (8), the field
interacts with both the free electron and the molecular system,
preventing the separability of the Hamiltonian.
This result is even more evident in length gauge form in
Eq. (4)

H =∑
pq

hpqEpq−λ

√
ω

2 ∑
pq
(d ·ε)pqEpq(b+b†)

+hνν Eνν −λ

√
ω

2
(d ·ε)νν Eνν(b+b†)

+
1
2 ∑

pqrs

(
gpqrs +λ

2(d ·ε)pq(d ·ε)rs
)

epqrs

+
1
2
(
gνννν +λ

2(d ·ε)νν(d ·ε)νν

)
eνννν

+
λ 2

2 ∑
pqr

(d ·ε)pr(d ·ε)rqEpq

+
λ 2

2
(d ·ε)νν(d ·ε)νν Eνν

+λ
2
∑
pq
(d ·ε)νν(d ·ε)pqeνν pq +ωb†b,

(9)

where, in addition to the indirect interaction through the cavity
field, there is also a purely electronic interaction term between



4

the free electron and the ionized molecule arising from the
dipole self-energy (d ·ε)2.59 This implies that for the QED
environments we have that:

• Annihilating an electron is not equivalent to promoting
an electron to a continuum orbital;

• The energy after the ionization will not be equal to the
energy of the free electron plus the energy of the ionized
molecule.

In the following sections we will develop two different
particle-conserving approaches to calculate the ionization po-
tential in the strong coupling regime using SC-QED-HF and
QED-CC. We start by considering the analytic solution for one
electron in the cavity and then analyze the correlation effects.

B. A free electron in an optical cavity

We begin by solving the eigenvalue problem for a free elec-
tron confined in a cavity. This problem has also been inves-
tigated by Rokaj et al.66 We start from the minimal coupling
Hamiltonian in the dipole approximation

H =
1
2

(
p− λ√

2ω
ε(b+b†)

)2

+ωb†b. (10)

Since the momentum p is the only electronic operator in
Eq.(10), the electronic part of the eigenfunctions are plane
waves

|ψ〉q = ∑
n
|φq,n〉Cnq

|φq,n〉=
eiqr
√

V

(
b†
)n

√
n

∣∣0ph
〉
,

(11)

with fixed momentum q. In Eq. (11) the cavity volume is
denoted by V. For a state with momentum q, the Hamiltonian
Eq. (10) takes the form

H =
q2

2
+

λ√
2ω

(q ·ε)
(
b+b†)+ λ 2

4ω

(
b+b†)2

+ωb†b,

(12)
that only depends on photonic operators.Equation (12) can be
transformed into an harmonic oscillator form, H̃ = Ωb†b us-
ing a series of unitary rotations. We first apply a squeezed
transformation S

S†bS = bcoshs−b† sinhs, (13)

where

coshs =

(
ω +
√

ω2 +λ 2
)

2
√

ω
√

ω2 +λ 2

S = exp
(

1
2

s
(
b2−b†2)) .

(14)

This effectively eliminates the quadratic terms in the field. Af-
terwards, we use a coherent state transformation Ẑ

Z†bẐ = b̂− z, (15)

where

z =
(q ·ε)λ√

2
√
(ω2 +λ 2)3

Z = exp
(
z
(
b−b†)) ,

(16)

to reabsorb the interaction term between the molecule and the
field. The transformed Hamiltonian Ĥ becomes

Ĥ =
q2

2
+ ω̃ b†b− (q · ε)2

λ 2

2ω̃2 +
1
2
(ω̃−ω) , (17)

where

ω̃ =
√

ω2 +λ 2 (18)

has been introduced by the squeezed transformation. The
eigenfunctions of the Hamiltonian in Eq. (17) are the photonic
occupation number states. The eigenfunctions of the Hamil-
tonian in Eq. (10) then become

|ψ〉q = SZ
eiq·r
√

V

∣∣nph
〉
, (19)

with energy

Efree (q,n) =
q2

2
+nω̃− (q ·ε)2

λ 2

2ω̃2 +
1
2
(ω̃−ω) , (20)

where n is the number of photons in the cavity. We point out
that the free electron in Eq. (19) must respect the boundary
conditions of the cavity, meaning that:

qz = m kz, (21)

where m = 1,2,3 ...

C. Excitation to the cavity continuum orbital

When we consider ionization as an excitation to a diffuse
orbital ν inside the cavity, we must account for the interaction
between this continuum orbital and the cavity field. Most im-
portantly, since the Hamiltonian is not separable (as discussed
in section III A), the free electron and the molecule still in-
teract indirectly via the cavity field and directly via the dipole
self-energy for the length gauge Hamiltonian (see Eqs. (8) and
(9) ). In this section we explain how we incorporate these ef-
fects. We start from the length gauge Hamiltonian in Eq. (9),
where all the free electron interactions are mediated through
the dipole operator, (d · ε)νν . Notice that we do not deter-
mine an explicit expression for the continuum orbital ν , nor
do we use the dressed wave function found in Eq. (19). In-
stead, we fix the matrix element (d · ε)νν to a physically rea-
sonable value. Specifically, we require that (d · ε)νν respects
the following properties:

• The energy of the ν orbital should be equal to the min-
imal energy of the free electron in the cavity. This is
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obtained choosing q = k (m = 1 in Eq. (21) ) and n = 0
in Eq. (20):

Efree(k,0) =
k2

2
+

1
2
(ω̃−ω). (22)

For consistency with the dipole approximation, we ne-
glect k2 = ω2/c2 where c is the speed of light. In all the
calculations presented this contribution is significantly
smaller than 1 meV. We point out Efree = 0 corresponds
to the case where an electron has been annihilated.

• If the molecule is displaced by a vector a, the dipole
matrix element should change according to

(d ·ε)νν −→ (d ·ε)νν +
Qtot

Ne
(a ·ε), (23)

where Ne is the number of electrons and Qtot is the total
charge of the system. This ensures the origin invariance
of the IPs as shown in the Supplementary Material.

From Eqs. (22) and (23), the free electron dipole matrix ele-
ment is defined as

(d ·ε)νν =

√
2Efree

λ
− ∑α Zα rα

∑α Zα

+
∑α Zα rα

Ne
. (24)

A more detailed discussion on why Eq.(24) is a reasonable
choice for the bath orbital dipole matrix element is given in
the Supplementary Material. Now that the full Hamiltonian in
Eq. (9) has been defined, we can use one of the QED methods
discussed below to calculate ionization potentials in the pres-
ence of the field. Although the free electron contributions are
approximated, the framework presented here will still capture
the cavity induced effects on the ionization process. The two
main approximations are:

• The free electron is only modeled through the dipole
operator, disregarding the wave function shape;

• For convenience, the dipole approximation is adopted
in section III B for the free electron. A full minimal
coupling treatment of the problem (i.e. starting from
Eq. (2) ) is needed for more accurate results as the free
electron is not confined in a small region of space.

All the approximations discussed above have the effect of un-
derestimating the correlation effects between the components
:free electron, cavity field and molecule. Despite these ap-
proximations, the interaction between the free electron and
the molecule is still a sizable contribution to the energy and
will be significant for the IP.

D. SC-QED-HF

The SC-QED-HF wave function is defined as:

|ψ〉= exp

(
−λ (b−b†)√

2ω

[
∑
p

ηpẼpp +ην Eνν

])
|HF〉⊗ |0〉 ,

(25)

where Ẽpp refers to orbitals that diagonalize the (d · ε) op-
erator, |HF〉 is an electronic Slater determinant and |0〉 is the
photonic vacuum.56 The ηp parameters are orbital specific co-
herent state coefficients that are optimized in the ground state
calculation. To fulfill the requirements presented in section
III C, the coherent state coefficient for the ν orbital must be
equal to

ην =−∑α Zα rα

∑α Zα

+
∑α Zα rα

Ne
. (26)

The SC-QED-HF wave function incorporates electron-photon
correlation explicitly and provides origin invariant molecular
orbitals.56 This enables us to define a consistent Koopmans’
theorem for QED environments. At the same time, using the
definition in Eq. (24), part of the correlation between the pho-
tons and the free electron can be included in the ionization
treatment. In particular, we notice that if the free electron
contribution is neglected (Efree = 0 in Eq. (24)), the ionization
potential from orbital i is equal to

IP =〈0|⊗ 〈HF |a†
iσ aνσ H̄a†

νσ aiσ |HF〉⊗ |0〉−ESC−QED−HF =

=〈0|⊗ 〈HF |a†
iσ H̄aiσ |HF〉⊗ |0〉−ESC−QED−HF =

=− εi, (27)

where H̄ is defined as

H̄ = e
λ√
2ω

∑p ηpẼpp(b−b†)He−
λ√
2ω

∑p ηpẼpp(b−b†)
, (28)

and εi is the energy of the occupied orbital i. Equation (27)
shows that using SC-QED-HF, the ionization potential is
equal to minus the orbital energy, in line with standard Koop-
mans’ theorem for HF. A similar argument can be also applied
to electron affinities

EA =−εa, (29)

where εa is the energy of the unoccupied orbital a. Consider-
ing the similarities, we refer to Eqs. (27) and (29) as the QED
Koopmans’ theorem. The recovery of Koopmans’ theorem for
strongly coupled systems confirms that the orbitals provided
by SC-QED-HF have the same key properties as the HF or-
bitals. The QED version overestimates the real ionization po-
tential since neither the electronic nor the photonic parts of the
wave function are re-optimized after the electron is removed
from the molecule. However, we point out that the quantities
in Eqs. (27) and (29) are correct to first order in the fluctuation
potential. They provide a first approximation to the ionization
potentials and electron affinities reported by DePrince45 using
equation of motion QED-CC (EOM-QED-CC).

When the free electron contribution is included, the ioniza-
tion potential becomes

IP =
〈

a†
iσ aνσ H̄a†

νσ aiσ

〉
−ESC−QED−HF

=E f ree− εi (30)

−λ
2((d ·ε)νν −ην)∑

p
Uip((d ·ε)pp−ηp)U

†
pi,
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where U is the unitary transformation between the dipole and
canonical bases. We notice that since

(d ·ε)νν −ην =

√
2Efree

λ
, (31)

Eq. (30) gives Eq. (27) when Efree = 0. Since the free electron
energy is included in the calculation of the ionization poten-
tial, we refer to the level of approximation in Eq. (30) as Free
SC-QED-HF (F-SC-QED-HF). We point out that the first or-
der contribution from the fluctuation potential54 in Eq. (30)
is not equal to zero as the free electron contribution is in-
cluded. This suggests that additional correlation is needed to
properly describe the ionized state. Therefore, the ionization
potentials obtained using F-SC-QED-HF might be less accu-
rate than those obtained by Koopmans’ theorem for the purely
electronic case. Since the ionized state is treated as an excited
state, a time dependent SC-QED-HF treatment would be more
reliable. These aspects will be investigated in the future.

E. EOM-QED-CC

Accurate ionization potentials can be computed using the
QED-CC approach27. The wave function is parametrized as

|ψ〉= eT |HF〉⊗ |0〉 , (32)

where T is an electron-photon excitation operator

T =∑
ai

ta
i Eai +

1
2 ∑

abi j
tab
i j EaiEb j + ...

+∑
ai

sa
i Eaib† +

1
2 ∑

aib j
sab

i j EaiEb jb†...

+γb† + ...

(33)

The parameters ta
i , t

ab
i j as well as sa

i ,s
ab
i j and γ are called am-

plitudes where the indices i,j and a,b label occupied and vir-
tual orbitals respectively. In the limit where all excitations
are included in the T operator, the parametrization in Eq. (32)
is exact and gives the same result as QED full configuration
interaction.27,30 The ground state wave function in Eq. (32) is
obtained by solving the projection equations54

Ωµ,n = 〈µ,n|e−T H̃eT |HF,0〉= 0, (34)

where µ and n are the electronic and photonic excitations, re-
spectively. The ground state energy equals

E = 〈HF,0|e−T H̃eT |HF,0〉 , (35)

where we adopted the notation

|µ〉⊗ |n〉= |µ,n〉 . (36)

The H̃ operator in Eq. (34) is the Hamiltonian in Eq. (9) after
a coherent state rotation

H̃ = e−z(b−b†)Hez(b−b†), (37)

where

z =− λ√
2ω
〈HF |d ·ε |HF〉 . (38)

The excitation energies are obtained as the eigenvalues of the
Jacobian matrix A, defined as

Aµn,ρm = 〈µ,n|e−T
[
H,τρ

(
b†)m

]
eT |HF,0〉 , (39)

where τρ is an electronic excitation operator. Ionization po-
tentials are readily obtained using a particle-conserving EOM-
CC approach.51,53 In this case, the Jacobian matrix also in-
cludes excitations that create an electron in the continuum or-
bital ν .41,58 Consistently to what has been done for SC-QED-
HF, if the free electron energy is included in (d ·ε)νν (Efree 6= 0
in Eq. (24)), we refer to the method as Free EOM-QED-CC
(F-EOM-QED-CC).

IV. RESULTS

In this section, we use the methods presented above to com-
pute IPs for several organic molecules (see Fig. S1 in Supple-
mentary Material). Here we only discuss the results for aniline
as similar conclusions can be drawn from the other molecules.
The data for all molecules in are reported in the Supplemen-
tary Material. The calculations have been performed with a
development version of the eT program67 using a cc-pVDZ
basis set.68–72 The molecular geometries have been optimized
using DFT-B3LYP/def2-SVP73 basis set with the ORCA soft-
ware package.74

In Fig. 4a, we show the dispersion of the aniline ionization
potential as a function of the light-matter coupling for a fixed
cavity frequency ωc = 2.0 eV, where

∆IP(λ ) = IP(λ = 0.0)− IP(λ ). (40)

The dispersion with respect to the cavity frequency at λ =
0.05 a.u. is shown in Fig. 4b, where

∆IP(ωc) = IP(ωc = 13.6 eV)− IP(ωc). (41)

We compare the results obtained using different levels of the-
ory (QED-HF, SC-QED-HF, EOM-QED-CC) denoting the in-
clusion of the free electron contribution by an F in front of the
acronym (F-SC-QED-HF and F-EOM-QED-CC). The main
differences among the various QED-HF based methods are
summarized in Table I. The data reported in Fig.4 expose the
crucial role played by the free electron in the ionization pro-
cess. In particular, the comparison between the two coupled
cluster based calculations (EOM-QED-CC and F-EOM-QED-
CC) reveals that inclusion of the free electron leads to a major
trend change in the dispersion of the ionization potential. This
behaviour can be explained in terms of the qualitative con-
cepts discussed in section II. Specifically, referring to Fig. 2,
our results suggest that the energy of the continuum orbital
ν increases more than the energy of the molecular orbitals
when either the coupling increases or the frequency decreases.
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a) b)

FIG. 4. Dispersion of the aniline ionization potential with respect to a) the coupling λ and b) the cavity frequency ωc. Calculations have been
performed with different methodologies including or neglecting the free electron contribution. The cavity polarization is perpendicular to the
aromatic ring.

Method name QED-HF SC-QED-HF F-SC-QED-HF

Wave function e−
λ 〈d·ε〉√

2ω
(b−b†

|HF〉⊗ |0〉 e−
λ (b−b†)√

2ω
[∑p ηpẼpp+ην Eνν ] |HF〉⊗ |0〉 e−

λ (b−b†)√
2ω

[∑p ηpẼpp+ην Eνν ] |HF〉⊗ |0〉

Free electron energy 0 0 0.5(ω̃−ω)

Ionization potential −εi −εi E f ree− εi−λ 2((d ·ε)νν −ην )∑p Uip((d ·ε)pp−ηp)U
†
pi

TABLE I. Summary of the three different QED-HF based methods.

Moreover, since both F-SC-QED-HF and F-EOM-QED-CC
include the effect of the free electron, their differences are
mainly due to electron-electron and electron-photon correla-
tion, Ecorr in Fig. 3. As noted in section III D, the first order
contribution from the fluctuation potential for F-SC-QED-HF
is not equal to zero, therefore correlation contributions are
quite large. The SC-QED-HF (QED Koopmans’ theorem)
is always closer to EOM-QED-CC than standard QED-HF.
In particular, while the QED Koopmans’ theorem is always
in qualitative agreement with EOM-QED-CC, the QED-HF
method incorrectly predicts a dispersionless behaviour with
respect to the frequency (see Fig. 4b).
In general, analogously to the standard Koopmans’ theorem,

SC-QED-HF seems to consistently overestimate the ioniza-
tion potential compared to the corresponding coupled cluster
value. The overestimation becomes even more pronounced
when the free electron contribution is included because addi-
tional correlation is needed to accurately describe the ionized
state. Nonetheless, F-SC-QED-HF captures the general be-
haviour predicted by F-EOM-QED-CC. Similar results can be
observed for the other systems in Fig.S1. The main character-
istics of the cavity induced effects can be summarized as:

• The QED Koopmans’ theorem is a good approximation
to the ionization potential obtained using EOM-QED-
CC and reproduces, at least qualitatively, the coupling
and frequency dispersions.

• The inclusion of the free electron is needed to achieve
qualitative and quantitative accuracy in the ionization
potential for QED environments.

We now compare our methods with the ∆QED-CC method
introduced by DePrince for sodium halides.45 In Table II, the
cavity frequency ωc is equal to 2.0 eV, and the field polariza-
tion is along the bond axis. As expected, we observe a good
agreement between EOM-QED-CC and ∆QED-CC results.
On the other hand, some differences can be observed if we
compare SC-QED-HF with the results in Ref. 45. Specifi-
cally, for NaF the QED Koopmans’ theorem (SC-QED-HF)
predicts opposite QED effects than ∆QED-CC. This is the
only example we have observed where SC-QED-HF does
not capture the correct dispersion behaviour of the ionization
potential and indicates some care should be exercised using
the QED Koopmans’ theorem. Nonetheless, we notice that
SC-QED-HF still outperforms the results obtained using
QED-HF. As observed before, qualitative differences appear
if the free electron contributions are included. In particular,
the F-EOM-QED-CC data show the same trend change as
the aniline results shown in Fig. 4a. These differences are to
be expected as the free electron is not explicitly treated in
Ref. 45.
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λ QED-HF SC-QED-HF EOM-QED-CC ∆QED-CC45 F-SC-QED-HF F-EOM-QED-CC

NaF

0.00 0.0 0.0 0.0 0.0 0.0 0.0
0.01 -0.003 -0.002 0.002 0.00 -0.023 0.001
0.02 -0.011 -0.008 0.007 0.01 -0.093 0.002
0.03 -0.025 -0.016 0.015 0.01 -0.203 -0.007
0.04 -0.045 -0.027 0.026 0.03 -0.351 -0.033
0.05 -0.070 -0.043 0.039 0.04 -0.536 -0.084

NaCl

0.00 0.0 0.0 0.00 0.0 0.0 0.0
0.01 0.001 0.006 0.003 0.00 0.051 0.002
0.02 0.003 0.013 0.010 0.01 0.013 0.006
0.03 0.007 0.020 0.023 0.02 -0.067 0.006
0.04 0.011 0.028 0.040 0.04 -0.177 -0.006
0.05 0.015 0.037 0.061 0.06 -0.317 -0.035

NaBr

0.00 0.0 0.0 0.00 0.0 0.0 0.0
0.01 0.004 0.004 0.003 0.00 -0.000 0.003
0.02 0.016 0.016 0.012 0.01 -0.014 0.010
0.03 0.036 0.030 0.027 0.02 -0.056 0.018
0.04 0.063 0.053 0.048 0.04 -0.122 0.022
0.05 0.095 0.079 0.074 0.06 -0.205 0.019

TABLE II. Cavity induced variations of the ionization potential ∆IP = IP(0.0) - IP(λ ) for sodium halides calculated at different λ values and
with different methods, including or neglecting the free electron. The variations are in eV and the cavity frequency is 2.0 eV.

V. CONCLUSION

In this paper, we investigate cavity induced effects on
molecular ionization processes. In particular, we provide the
first consistent definition of ionization potentials and electron
affinities in QED environments. In this regard, we have high-
lighted the crucial role played by the cavity mediated inter-
action between the molecule and the free electron. Differ-
ent approximations to the ionization problem have been pre-
sented using coupled cluster based methods as the reference.
These approaches provide a quantification of the different ef-
fects participating in the ionization process. They also pro-
vide a benchmark methodology for ionization potentials and
electron affinities. Using the recently developed SC-QED-HF
theory, we formulated a QED version of Koopmans’ theo-
rem. Our work extends the investigations recently presented
in Refs. 33, 35, 45, and 46 on ionization processes. The
methodologies presented in this work have the same scaling
as standard coupled cluster methods54 and can be applied to
large number of molecules interacting with many free elec-
trons. Studies on large systems are needed in order to inves-
tigate the relevance of collective effects on the ionization po-
tential. Inclusion of the complete interaction between the free
electron and the molecule as well as a beyond dipole approxi-
mation treatment of the ionization process will be the subject
of a future publication. This will pave the way towards pro-
viding a reference method to compute ionization potentials in
the strong coupling regime without adopting a model for the
free electron. Such a method is, at the moment, not available.
Moreover, it will also allow us to investigate the particular
configuration where the cavity is in resonance with the ion-
ization. In that case, we expect that a Rabi splitting should be
observed. However, the presented models cannot reproduce

this effect because the transition dipole between ground and
excited state is set to zero. We have applied our methodologies
to a set of organic and inorganic molecules and compared our
results to previous calculations from the literature.45,46 Based
on our results we expect this framework to be particularly rel-
evant to model hot electron processes. In this case, electronic
excitations in nanoparticles produce free electrons that travel
inside the optical cavity before being reabsorbed by a charge
acceptor.47 We believe the present study will provide the nec-
essary motivation to develop experimental devices capable of
measuring photoelectron spectroscopy in optical cavities. In
this way, it will be possible to experimentally observe the field
induced variations of ionization potentials in QED environ-
ments.
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32Y. Ashida, A. İmamoğlu, and E. Demler, Phys. Rev. Lett. 126, 153603

(2021).
33F. Pavosevic, S. Hammes-Schiffer, A. Rubio, and J. Flick, J. Am. Chem.

Soc. (2022).
34R. Loudon, The quantum theory of light (OUP Oxford, 2000).
35F. Pavosevic and J. Flick, J. Phys. Chem. Lett. 12, 9100 (2021).
36J. Flick, C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio, ACS pho-

tonics 5, 992 (2018).
37C. Schäfer, F. Buchholz, M. Penz, M. Ruggenthaler, and A. Rubio, Proc.

Natl. Acad. Sci. USA 118 (2021).

38T. Ghodselahi, M. Vesaghi, A. Shafiekhani, A. Baghizadeh, and M. Lameii,
Appl. Surf. Sci. 255, 2730 (2008).

39B. K. Agarwal, X-ray spectroscopy: an introduction, Vol. 15 (Springer,
2013).

40A. Gulino, Anal. Bioanal. Chem. 405, 1479 (2013).
41T. Moitra, A. C. Paul, P. Decleva, H. Koch, and S. Coriani, Phys. Chem.

Chem. Phys. 24, 8329 (2022).
42T. Lewis, B. Winter, A. C. Stern, M. D. Baer, C. J. Mundy, D. J. Tobias,

and J. C. Hemminger, J. Phys. Chem. B 115, 9445 (2011).
43C. E. Liekhus-Schmaltz, I. Tenney, T. Osipov, A. Sanchez-Gonzalez,

N. Berrah, R. Boll, C. Bomme, C. Bostedt, J. D. Bozek, S. Carron, et al.,
Nat. Commun. 6, 1 (2015).

44T. Kim and F. Zaera, J. Phys. Chem. C 116, 8594 (2012).
45A. E. DePrince III, J. Chem. Phys. 154, 094112 (2021).
46M. Liebenthal, N. H. Vu, and E. DePrince, The Journal of Chemical

Physics (2021).
47X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, Nat.

Nanotechnol. 13, 953 (2018).
48M. Saitow, A. K. Dutta, and F. Neese, B. Chem. Soc. Jpn. 92, 170 (2019).
49C. Melania Oana and A. I. Krylov, J. Chem. Phys. 127, 234106 (2007).
50A. Landau, K. Khistyaev, S. Dolgikh, and A. I. Krylov, J. Chem. Phys. 132,

014109 (2010).
51S. Coriani and H. Koch, J. Chem. Phys. 143, 181103 (2015).
52E. Ronca, Z. Li, C. A. Jimenez-Hoyos, and G. K.-L. Chan, J. Chem. The-

ory. Comput. 13, 5560 (2017).
53A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
54T. Helgaker, P. Jorgensen, and J. Olsen, Molecular electronic-structure

theory (John Wiley & Sons, 2014).
55R. Manne and T. Åberg, Chem. Phys. Lett. 7, 282 (1970).
56R. R. Riso, T. S. Haugland, E. Ronca, and H. Koch, Nat. Commun. 13, 1

(2022).
57C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio, P. Natl. Acad. Sci.

116, 4883 (2019).
58J. F. Stanton and J. Gauss, J. Chem. Phys. 111, 8785 (1999).
59V. Rokaj, D. M. Welakuh, M. Ruggenthaler, and A. Rubio, J. Phys. B-At.

Mol. Opt. 51, 034005 (2018).
60R. G. Woolley, Phys. Rev. Res. 2, 013206 (2020).
61M. Babiker and R. Loudon, P. Roy. Soc. Lond. A Mat. 385, 439 (1983).
62D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, J. Chem. Phys.

148, 040901 (2018).
63A. Vukics, T. Grießer, and P. Domokos, Phys. Rev. Lett. 112, 073601

(2014).
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