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1. Introduction 

Suppose tha t  F(z) is meromorphic in [z[ < 1 and satisfies F ( 0 ) = 0  there, and t h a t  

](z)= F' (z). We define as usual 

m(r, F) = ~ log + IF(re'~ dO, 

n(r, F) as the number  of poles in ]z] d r  and 

= f r  n(t, F)  dt 
N(r, F)  

J0 $ 

Then T(r, F) = re(r, F) + N(r, F) 

is called the Nevanlinna characteristic function of F(z). The function T(r, F ) i s  

convex increasing function of log r, so tha t  

T(1, F) = lim T(r, F) 
r--~l 

always exists as a finite or infinite limit. I f  T(1, F) is finite we say tha t  F(z) has  

bounded characteristic in ]z] < 1. 

Examples show tha t  F(z) m a y  have bounded characteristic in ]z] < 1, even i f / (z)  

does not.(1) We may  take for instance /(z) to be a regular function 

l(z) = ~ 27.z ~-1, 
n = l  

(1) The  first  such example  is due to  F r o s t m a n  [3]. 
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where 0 < ~ < 1 ,  2 , = K "  and K is a large positive integer depending on ~. Then for 

I~1<1 
i.F(z)l< y..~.,Vl= ~ Kn(,_I)= I KI_ , _-~-~ < 1, 

s o  that IF(~)I<x in I~1<1, T(1,P)=0. for I~l=e -''~, we havea: l z la"=K"' /e ,  while 

~ K~(m - n) ~ l 

~n m = n + l  ~.~n [z [ a'' ~ ~ K a<m ~ n) e -  ~ - "  < ~ .  K i n _ ,  - t=l ~ Ka-~) t  < K 1-~ - 1' 

and  
1 . - 1  1 . - 1  1 

- ~: x : , l ~ l ' ~ g ~  Y K ~ < K ,  1" 
~ m=l m=l 

Thus if K is so large that  K ' >  10, KI-~> 10, then 

m * .  

1 2) 1 . . , ,  
I ~ l l l ( ~ ) t >  ;--~ ~:>~ �9 

Thus for r = e  -1~", and so for e - X / X ~ < r < e  -11an+t we have 

1 
T ( r , l ) > l o g  = a log ~, + 0(1) = ~ log ~-_r  + 0(1). 

l i m  T ( r ,  [ )  
- -  1 

'-*~ log l - r 

On the other hand, if F(z)  is bounded 

- - ~ > ~ .  (1.1) 

/ ( z ) = ? l ! ,  and log[/(z)[~<lOgl-~r+O(1).  

Thus lim T(r ,  [___~) ~< 1. (1.2) 
1 

,--,t l o g  1 - r 

This result remains true for functions for bounded characteristic. 

For the sharpest results on the bounds for T(r, [) if T(1, F) is finite see Kennedy [8], 

where more refined examples of the above type are constructed and sharper positive 

theorems are proved. Since the minimum modulus of ](z) is unbounded in the above 

,examples while the maximum modulus of F(z)  remains bounded, all means of F(z)  

and no means of [(z) on[z ]  = r  remain bounded as r -+ l .  
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I t  is natural to ask whether conversely /(z) can have bounded characteristic, 

while F(z) has bounded characteristic. This problem was raised during a recent Con- 

ference at  CorneU University. (X) 

At first sight the evidence appears to be in the opposite direction. Let  us write 

/1 (re") = :2 T i/(re'~ I . (1.3) 

Then clearly [F(z)] <~r/l(z), ]z] = r <  1, (1.4) 

If  we write 

Ioo (r,/) = lim I~ (r,/) = sup ]/(z)], 
~+oo Izl=r 

then Hardy and Littlewood [4] proved that  if [(z), F(z) are regular, then 

la(r,F)<~l~(r, ll)<<.A(2)lx(r,/), 0 < r < l ,  0 < 2 <  oo, 

where A(2) depends only on 2, and also the stronger inequality [5] 

l~(r,F)<A(2)la(r, /) ,  0<2~<1,  

where / ~ = 2 / ( 1 - 2 ) ,  and in particular p =  + co, if 2 = 1 .  

If /(z) is regular then log+ I/(z) l is subharmonic. Hence it  follows from the Hardy -  

Littlewood maximum theorem [4], tha t  for 2 > 1 

Ia(r, log+ F(z))~I~(r ,  log + I/x(z)l)-<A(X) Z~(r, log+/(z)), 0 < r <  1. 

The result we require, would follow at  least for regular functions F(z) if the above 

inequality were to remain true for 2 =  1. In  fact such an extension is not possible. 

2. S ta tement  o f  results 

We shall prove the following theorems, using the notation introduced above. 

THeOReM 1. Suppose that /(z) is meromorphic and o/ bounded characteristic in 

[zl<R , where 0 < R < ~ ,  and that /(0)~=oo. Then we have /or 0 < r < R  

1 1 log + R + r 2~ 11 (re~~ dO ~ T(R,/) + log ~ m(R,/) + %o N(R,/) 

(1) [9, P r o b l e m  6l. See also [7, p. 349]. 
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( l - t )  log (1 + ~ - ~ - )  2g ]/f] 

where ~o(t) = - 1 (2.2) 

n Vt log 

The first inequality o/ (2.1) is sharp i~ /(z) is regular, so that 

T(R , / )  = re(R,/), N(R,  ]) = O. 

For meromorphic functions the inequality (2.1) is no longer sharp. However, we 

note that 

v2(t)-~0 as t-->0 (2.3) 

1 
and v2(t)= l o g ~ + O ( 1 ) ,  as t -+ l .  (2.4) 

Thus the bound in (2.1) is asymptotic to the correct bound as r-->0 and as r-->R. 

We shall also prove an analogue of Theorem 1 in which - log  ]]1 is replaced by a 

subharmonic function (Theorem 4). 

We deduce immediately 

T ~ . o ~ . M  2. Suppose that F(z) is meromorphic in Iz]<R, that F(0)=0, and that 

/(z) = F'  (z) has bounded characteristic in I z l < R. Then we have /or 0 < r < R 

R + r  
+V2(R) N ( R , / ) +  log+r m(r, F) <~ T(R, [) + 1 log ~ re(R, [) 

Hence we have 

and i/ F(z) is regular the sharper inequality 

(1 + ~1 R + r\  
T(r, F) <~ log R-~- r) T(R, / ) .  (2.7) 

A result of the same general type as (2.6) but with A / ( 1 - t )  log [1/ (1- t ) ]  in- 

stead of ~o(t) was proved by Chuang [2]. A version of (2.7) with the correct order of 

magnitude but a less precise form is due to Biernaeki [1, Lemma 1, p. 103]. 
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In  the opposite direction we can show by  examples tha t  the orders of magnitude 

of the bounds of Theorem 2 are correct as r-->R. We have in fact 

THEOREM 3. Given C > 0  there exists /(z) regular and satis/ying [ / (z ) [> l  in 

[ z [ < l  and 

T(1,1)  = log II(0) I = c ,  (2.s)  

while at the same time 

1 
T ( r , F ) >  .12Clog~-~_r, r 0 < r < l .  (2.9) 

Here F(z) = /(~) de, r 0 = 1 - [min (�89 C)] A 

and A is a positive absolute constant. 

I t  is interesting to compare the results of Theorems 2 and 3 with the corre- 

sponding inequalities in the opposite direction. I f  T(1, F ) i s  finite, then (1.1)and (1.2) 

show tha t  

lim T(r, /) <~1, 
1 

r-~l log 1 - r 

and tha t  equality is possible even if T(1, F ) = 0 .  Thus the restriction on the order of 

magnitude of T(r, [) when T(1, F) is finite is similar to tha t  on T(r, F) when T(1, [) 

is finite. However, in the first case the constant multiplying log [ 1 / ( 1 - r ) ]  is bounded 

by one, while in the second case it  is bounded by  a fixed multiple of T(1, [) and so 

can be as large as we please. 

We shall prove Theorems 1 to 3 in turn. We reserve for a late paper  the appli- 

cations of these results to integral functions and functions meromorphic in the plane. 

3. Some preliminary results 

In  order to prove Theorem 1, we need some preliminary estimates. We suppose 

tha t  0 < r < R, 0 < I ~b] < :~ and write 

n 2 - -  r 2 

(3.1) P(R, r, 4) R e -  2Rr cos q~ + r 2' 

p(R, r, 4) = sup P(R, t, 4). (3.2) 
0~<t~<r 
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We also suppose that  0 < x < R and write 

r x ' "  lo RZ-xre~ G(R, , ,9) = g R ~ d ~ x x  ) , (3.3) 

and g(R, r, x, r  = sup G(R, r, t, r (3.4) 
O<~t~z 

L EMMA 1. We have with the above notation 

'L -~ p(R,r,r162 R+r ~t log ~ r '  (3.5) 

lf~g(R,r,R,r162 R2-r' (1 + 2~trR ~ and 2--~ ~ log ~L-~_ r~ ] . (3.6) 

We note that  P, p, G and g are homogeneous functions in R, r and x and so we 

may suppose without loss in generality that  R - 1 .  

3.1. We proceed to prove (3.5). We note that  for R = 1 and �89 ~ ]r < ~  P(1, r, r 

is a decreasing function of r. For 0 <  Ir < �89 the function P(1, r, r increases from 0 

to Icosecr as r increases from 0 to c o s r  and then decreases again. If  

r is the number in the range 0 < r 1 8 9  given by 

cosr __ r  
l + s i n r  r, or tan 2 l + r '  

[ p(1, r, r 0<1r162 
then p(1, r, r = sup P(1, t, r = { [cosec ~b[, r < [~b[ < �89 

o<t<., / [ 1 , �89 < [r --.<=. 

Thus f:,p(1, r,r162 + 2 f:P(1, r,r162 2 f2"cosecCdr 

On setting t = t a n  (�89162 to=tan  (1r = (1 - r ) / ( 1  +r) ,  this becomes 

r t + 4  (t, (1 -r2)dt ~1 dt 
- Jr, t Jo (1 ~ + - r ) 2 t  *+2 - 

=zt + 4 t a n - ' / 1  + r i o )  +log cot ~ 
\1 - r  

[l +r~ 
= 2~r + 2 log \~L-~_ r ] .  

This gives (3.5) when R =  1 and so generally. 
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3.2. We proceed to  prove (3.6). Suppose t h a t  R = I ,  0<lr189 and  set 

a(1,  r, x, ~b) = log K. 

We obta in  

(1 - r 2) (1 - x ~) K2 
r~+x~_2rxcosr - 1 ,  ( K ~ - r g ) x 2 - 2 ( K 2 - 1 ) r x c o s ~ + K ~ r ~ - l = O .  

For  fixed K, r and ~b this is a quadrat ic  in x, and  the  max imum value of K occurs 

when this quadrat ic  has equal roots, i.e. when 

This m a y  be wri t ten as 

(K ~ - r 2) (K*r ~ - 1) = r 2 cos * ~ (K 2 - 1) ~. 

(K~ + l )2_ icz ( l  + r4-  2r~ c~ 2r = O. 
r ~ sin 2 

Since the m a x i m um  value of K is greater  t han  one, we deduce t h a t  

K 2 - K V b + I = 0 ,  where b =  
1 + r 4 -- 2r 2 cos 2r  

r 2 sin ~ ~b 

or  K = � 8 9  cYcV+ l, 

where c = �89 ~/b----- 4 = - -  
1 - -  r 2 

2r Isin ~[" (3.7) 

Again if � 8 9  it is evident  t h a t  K decreases with increasing x for 0 < x < l ,  

so t h a t  K at ta ins  its m a x i m um value when x = 0. Thus 

log [c + I/cY+ 1], 

9(1' r '  1' ~) = ] l o g  1 ' 

where c is given b y  (3.7). 

Hence 

o<1r189 

1 1 1 f { "  = ~ log ;  + ;  log [c + 1/1 + c ~1 a~ 

1 1 [~  log [c + I/1--~e,]] "~ + 1 
= 2 1 ~  Jo at 

f ~o Cdc (3.s) 
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Now 
1 - r  ~ - 1 - -  ~.S c~ where %= 2---~ 

C = 2 r s i n ~  sin 

Hence 
~c = - co cos r d~ 

sin s 

and 
1 y  ~ % (~" 4, cos ,/, a,~ 

(3.9) 

We now note that  

In fact we have for 0 < r < 2 

sin s ~b > 
r 1 6 2  ~ '  o < ~ < � 8 9  

sing-~'/'- cos ,/, = 1 - cos 2 ~ _  

cs 24, ~ 

1 f (2r  s 

. . . .  >0 .  
6 24 

cos ~b 

Thus we have for 0 < r < �89 g. 

sin ~b Vsin 2 ~b + c~ sin' ~b 2 s ~Ty:~__2 _ s 
cos ~b - ~/co-os ~ + Co tan r > l/~b + Co ~b. 

Hence c of[ r <~f [  ar 

[ = CO [log {$ + l, cl, c l , ~ / l l ~ , , _ C o , o .  = + ~l+~c~c ~ 

~t co =-~r-~r l~ 1 + 1 - ~ ] "  

Thus we obtain from (3.8) and (3.9) 

1 1 l o g l +  1 1 - r s l  (1 2~r\ --2~t f:,g(1, r,r ~ log [co + ~/1-~cc~] + 2~-~-nr ~ + 1 - ~ )  

= l o g l +  1 - r s  ( 1 +  2~tr]  

as required. This completes the proof of (3.6) and so of Lemma 1. 
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4. Proof of Theorem 1, when f(z) is regular 

We can now prove 

Lr~MA 2. Suppose that ](z) is regular and o/ bounded characteristic /or Iz]<R. 
Then, i/ /t(z) is given by (1.3) 

1 ;  ( 1 R+r~ 
2-~ log+/l(re~O)dO<<, 1+ lOgR_rjT(R,]), 0 < r < R  (4.1) 

and this inequality is sharp. 

To see that  (4.1) is sharp, we set 

1(~) = exp {c ~--zJR + ~, 

where c is a positive constant. Then since log [/(z)] is positive and harmonic 

T(R,/} = re(R,/) = lim re(e,/) = log [/(0) [ = c. 

Also log + [t (re fr = cp(R, r, r 

and now Lemma 1, (3.5) shows that  equality holds in (4.1). 

To prove (4.1) in general we may suppose without loss in generality that  ](z) 
is regular in ]z I ~< R, since the general case can be deduced from this by a limit 

argument. Now the Poisson-Jensen formula shows that  for 0 < r < R, 0 ~< 0 ~< 2Jr 

log + [[(re'~ < ~-~ f:~log + I/(Re't I P(R, r, 0-r  

log+ lllre'~ f log+ 

1 f:"log+[l(reiO, dO<<~_ ~ f2ndol_ f:" log + I lIRe'~)lpIR, r, O . r dr Thus ~ ./o 2z~ 

= l  f2"l~247 '/(Re")'d~(~--~ 

= (1 ~1 R+r\ 
+ log ~--~-r) re(R,/), 

by (3.5). This completes the proof of Lemma 2. 
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5. Completion of proofs of Theorems 1 and 2 

We suppose now tha t  /(z) is meromorphic in [zl<~R, /(0):~oo, and tha t  

b,=lb~le 'r v = l  to N are the poles of [(z) in H<~R with due count of multiplicity. 

Then the Poisson-Jensen formula yields for z=re ~~ using (3.1), (3.3), 

log+ I/(z)l < log+ll(Re'*)lP(R,r,O--r162 ~ a(R, lbd,r,r 
v = l  

Thus in view of (3.2) and (3.4) we have 

f? f ; ' f /  12~z l~ /x(re'~ dO-~ log+l/(Re'*)lp(R,r,O-r162 

+ ~ g(R, Ibd,r,r e~ 
v = l  ,~ 

(5.1) 

In  view of / .emma 1, (3.5) we have 

log+/(Retr f ~ p(R,r,O_r R+r\ ;~ log ~ ) .  (5.2) 

We next  set RI=(rR)�89 and suppose first tha t  RI<]b,I<R. Then G(R, Ib, I,r,r 
is a positive harmonic function of z = re ~~ for 0 < r ~< R 1. Hence we may  apply Lemma 2 

with R1 instead of R and G(R,b,r,r instead of log+l](re'~ 
This yields for R 1 < I b~ [ < R 

1;- ( . ,+g 1 f,, 
2-~ g(R, lb, l,r,r l+llogR~-~_r]~~ O(R, lbd,r,C-O)dO 

=(l+llogR~__~;)G,R,[b,[,O,O)=(l_ +~iogR__ r)  l o g ~ . l .  Rx+r' R (5.3) 

Next  if 0<lb~]~<R 1 we have from / ,emma 1, (3.6) 

2-~ g(R'lb']'r'r g(R'lb"l'R'r dO 

R R~-Ib.I 2 (1 ~ 2~lb-dR-] 
< log ~ + ~ ~ log R ~ - lb. 12/" (5.4) 
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I t  remains  to es t imate  the  r igh t -hand  sides of (5.3) and  (5.4). To do this we set  

1 - t 2 ( 2~tt '~ 
h(t)-2~i~g-1/tlog l + l_t2 ], O < t < l ,  

and  note  t h a t  h(t) is an  increasing funct ion of t for  0 < t < 1. I n  fact  

H ( t ) =  t ( 1 - t 2 )  d logh(t) ( l - t 2 )  1 
( l §  2) dt (l +t2)logl/t + ( ~ t ~ )  ( 1 +  log 1 +  27et] 1. 

1 - t 2] 

We app ly  the  e l emen ta ry  inequal i ty  

21ogx<x-x  -1, x > l  

in tu rn  wi th  x = t -�89 and  x = 1 + 2 g t / ( 1 -  t2), and set  t = y2. This  gives 

y(1 +y2) , (1 - y ~ )  1 
H(t) > i ~- ~ ~- 1 - y~ + 7ey 2 

y(1 - y) [(1 + y2) (1 + y + y~ + y3) _ ~y(1 - y) (1 + y + y2)] 

(1 + y4) (1 - y4 + y~y2) 

> Y(1-y)(I  +y+y2)[I +Y~-gY(1-Y)] >O, 0 < y < l .  
(1 + y4) (1 - y4 + 7ey2) 

Thus  h(t) is an  increasing funct ion of t for 0 < t < 1. 

We  deduce t h a t  for 0 < t <  R1/R= (r/R)�89 we have  

Thus  (5.4) gives for [bvl 4 R  1 

1 R 
(5.5) 

I - -  t 2 
Next  we note  t h a t  L(t) 

2t log l i t  

decreases wi th  increasing t for 0 < t < 1. To see this set  

l _ l §  so t h a t  1 - t  2_  2y 
t 1 - y '  2t  1 _ y 2  
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1 ( l~yY~)log{l+Y] = l y y ~  
and L(t~) - \1 - y] - -  (y + ~ya +. . . )  

= 1 - (1 - a 1) y~ - ( i  - t )  y4 - . . .  

which is clearly a decreasing function of y. In particular we see that 

L(0 > 1. (5.6) 

Thus 

1 l + t  l l o g  1 +  l o g  1 < h ( t ) .  
~l~  1 _t-~ ~ i L ~  ] + i -Z~)  = L ~  

Thus (5.3) yields for R1 < ]b,,] < R  

i f ; "  [ l+h r = R 

On combining (5.1), (5.2), (5.5) and (5.7) we obtain 

--2~ log+/1 (re'~ dO <~ re(R,/) 1 + ~ log ~-~_rI + 2 log [ ~  1 + ~0 ~ , 

which is the first inequality of (2.1). The second inequality follows at once, since 

by (2.2), (5.6) we have, setting t =r/R,  

~o(t) > 1 log (1 + ~_~t / )>  1 log (1 + l~_t ) =~1 log R--  r 'R+r (5.8) 

This completes the proof of Theorem 1. 

In view of (1.4) we have 

log + IF(rd~ I ~ l~ +/1 (reta) + l~ + r, 

so that  re(r, F) <~ l~ +/1 (re~~ dO + log + r, 

and now (2.5) and (2.7) follow from (2.1). Also since the poles of F(z) occur at the 

same points as the poles of /(z) and have smaller multiplicity, we deduce that 

N(r, F) <~ N(r, /) <~ T(r, /) <~ T(R, /), 

so that  T ( r , F ) = m ( r , F ) + N ( r , F ) < ~ [ 2 + ~ ( R ) ] T ( R , / ) + l o g + r  

by (2.5). This proves (2.6) and completes the proof of Theorem 2. 
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6. An extension to subharmonie functions 

Suppose t ha t  u(z) is subharmonie in ]z[ ~<R. In  view of Riesz' decomposit ion 

theorem [10] there  exists a positive mass dis t r ibut ion dtze(~ ) in I~1 < R ,  such t ha t  

for  O<r<~R 

n(r) = flr e(~) 

is finite and u(z) - f log I z -  ~1 dr e(~) 
JI ~l<~r 

remains harmonic for [z[ < r. We also have the Poisson--Jensen formula,  [6, p. 473] 

which asser t s  t ha t  for  z = re ~~ 0 < r < R, 

u(z) = ~-~ fi~u(Re") P(R, r, r O) dO + f ,r l ~ l dlz e(r (6.1) 

We set u + (z) = max  (u(z), 0), u -  (z) = - min (u(z), 0). 

T(r, u) = ~ u + (re ~~ go, 

re(r, u) = -~  u-  (re ~~ dO, 

hr(r, u) = Jofrn(t)-dt-t :l<r log ~ d/~ e(~). 

Then  if we pu t  z=O in (6.1) we obtain the analogue of Nevanl inna 's  first  funda- 

mental  theorem, namely  

T(R, u) = re(R, u) + ~V(R, u) + u(O). (6.2) 

Suppose now tha t  u(0) is finite, so t ha t  N(r,  u) is f inite for  0 < r ~< R, and set 

ul (re i~ = sup u- (teta). 
0~t<~r 

We then  prove the following analogue of Theorem 1. 

THw 0 ~r~M 4. We have with the above notation 

~zl(rei~ l + ~ l o g ~ - ~ _ r ) m ( R , u ) +  1+~o N(R,u)  

where ~(0 is given by (2.2). 

1 3 -  642907. Acta mathematiea. 112. Imprim6 le 2 dgeembre 1964. 
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To put  the above result in its setting we recall that  u ( z ) = -  oo is possible for 

a dense set of z in ]z I < R ,  so that  ul(re~~ = +oo may hold for a dense set of 0. 

To prove Theorem 4, we deduce from (6.1) and (3.1), (3.3) that  

u-(re i.) < ~--~ f ~ u - ( R e  ~+) P(R, r, r -O)dO 

+ fo.,<, fo<+< O(R,t,r,r �9 

Using (3.2), {3.4) we deduce at  once that  

' f :  u 1 (re ~~ <~ ~ u- (Re '~) p(R, r, • - O) de 

+ fo~,<, f o < + J  (R' t, r, + -  O)V e(te'r �9 (6.3) 

We now integrate both sides with respect to 0 and invert the order of integration, 

which is justified since all integrands are positive. In view of (5.5)and (5.7)we have 

'f:= 2-~ g(R, t, r, r - O) dO < log l+yJ  , 0 < t < R ,  0 < r < R .  (6.4) 

Thus we deduce from (6.3), using (3.5) and (6.4) 

' f  ( y0 2-~ u1(re~)dO<~ 1 + 1  R + r \  1 log R - r )  -~ u- (Re ~~ dO 

This is the first inequality of Theorem 4. In view of (5.8) we deduce 

(1 1" R + r \  + [ 1 + ~  2 + ,og jo<r 

by (6.2). This compl.etes the proof of Theorem 4. 

We note that  if u(z) is non-positive in [z[~R so that  T(r,u)=O, we have 
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where ~p(t)-->0 as 5->0. In fact the left-hand inequality of (6.5) is trivial, since 

- u 1 (re ~~ = inf  u(te t~ <<. u(O) 
O~t<~r 

in this case. The right-hand inequality follows from Theorem 4. The inequality (6.5) 

shows tha t  on most radial segments, going outward from the origin and having length 

r, u(z) is not much smaller than u(0), provided that  r is small compared with R. 

7. Outline of proof of Theorem 3 

We proceed to construct the counter examples whose existence is asserted it* 

Theorem 3. To do this we define(1) a function a(t) in the interval [0, 1], to satisfy 

the following conditions 

(i) a(t) is increasing for 0 ~<t~< 1, and ~(0)=0, a(1)= 1. 

(if) Suppose that  a(t) has already been defined when t is of the form p 10 -N, where 

p is an integer, such that  0~<p~< I0 N. Then we define 

I t  follows from (i) and (if) that  ~(t) is constant for (p+~)10-u~<t~<(p+~0)10 -~r. 

Thus a(t) is defined at  all points of the form p 10 -N, where p, N are positive integers 

and p~<10 N. Clearly ~ [ ( p + l )  10-N]- -a [p l0-N]=0 or 2 -N. Thus ~(t) is uniformly 

continuous on the points p 10 -N and so there is a unique continuous extension of a(t) 

to all real numbers t, such tha t  0 ~<t ~< 1. This extension is the unique function a(t) 

in [0, 1], which satisfies (i) and (if). 

We set ](z) =exp C da(t)l , 

where C is a positive constant and 

f: F(z)-- 1(r de. 

We shall then prove that  F(z) satisfies (2.9). I t  is trivial that  (2.8) holds, since for- 

0~<r< l ,  0<0~<2~, 

(1) We  could p robab ly  improve  our  es t imates  somewhat  by  replacing 10 b y  a smaller  in teger ,  

e.g. 5 or 6 in th is  definit ion,  b u t  a t  t he  cost  of considerably more  delicate analysis.  
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log I / ( re '~  = c P(1, r, t -  O) dot(t) > O, 

so that  log I/(z)l is positive and harmonic in I zl < 1, and 

' f :  T(r,l)=m(r,l)=~--~ logll(re'~ 0 < r < l .  

The idea of our proof is as follows. We set 0o = (P + �89 10-N, h -- �89 10 -N, % = 2 -N, 

and suppose that  ot(Oo+h)-ot(Oo-h)=2 -N. Then when z=re ~~176 and r is near to i - h ,  

C% [I +re ~h 1 +re-~n~ C % ( 1 - r  2) 
II(~:)1 ~ e x p - v  l l  _--~r 4 1 - - - - ; ~  '~J " -  e ~  (1 - r) 2 + h v 

Thus if 6 is a small absolute constant and N is large 

f o  C ~ ( 1  - r e) . C ( 1 - 6 )  % 
IF(~ '~ ~ exp  (1 -- r)2-+--~ ar  > exp  h 

Also if O o - h ( ~ - 6 ) < a r g z < O o + h ( ~ - 6 ) ,  I= l>t -hr  then I1(=)1 is much smaller 

than F(e~~176 and so 

'F(z)] =lFC~ + f~io./(~)d~l > ' �89176 

In particular 

1 (o .+.(~- , ) log + IF(~*'~ ao 
2zt Jo,- h(~-~) 

C%(1 - 6 )  2h(~ - 6 )  4Coto 

2zh 5~t 

The argument is applicable for fixed N and 2 N distinct values of 00, provided that  

6~h 68 
(1 - r) < y = ~- lO -N. 

For each N the total contribution to re(r, ]) from all the 2 N intervals of length ~ 10 -N, 

in which ot(t) is constant is about 2~4C%/(5zt) i.e. 4C/(hzt). 

For N we have 

62 1 1 +A.  
10~<S(l_r----- 3, N ~ < l o ~ l ~  r 

Thus the total contribution of all the intervals for varying N to re(r, F) is a t  least 
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4C log A 
5z log 10 1 - r > ~-~ log 1 - r '  

when r is sufficiently near 1, which is the type of result we require. 
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8. The saddle points 

Unfortunately a good deal of rather dehcate analysis is required for the actual 

lower bound for IF(et~176 and to this we now turn, using a saddle point technique. 

L E M ~ ,  3. With the above notation set 1 - z e  -~~176 $ = ~ + i ~ l ,  and write 

~log/(z)= f~ e't +z d~(t) = g(~) = u + iv. 

Then i/ N is su/ficiently large, g(~) has the ]oUowing properties: 

h 
- ' 7 ~ ~  ]9" 5~~ /or < ~ < h ,  I~1<~. (a) ~ g " ( ~ ) <  h a - ,  and (~)1<-~-,  

(b) There exists r such that .84h<~0<.96h , [v/o[<A, and 9'(r 

h ]arg(_g,,(~))] 44.  (c) We have /or 1~-r 

We divide the interval [0, 1] up as follows. We denote the interval 0 o - h <. t ~ 0 o + h, 

i.e. p 10 -N ~< t ~< (p + 1) 10 -N, by J0. We define intervals J r ,  J : ,  0 ~< v ~< N - 1, as follows. 

Suppose that  Jr is an interval of the form prlO r-~ < t  <~ (p,  + 1)10 r-~, where p, is an 

integer, and that  a(t) increases by  2 r-N in Jr .  This is true for v = 0 with Po =P-  

Then by  (if) we must have p r - : 0  or 9 (modl0) .  If p r - : 0 ( m o d l 0 ) ,  we define 

pr+l=pr /10 ,  T~=/gr+9. If  pr=--9(modl0), we define p ' , , = p r - 9 ,  and pr+l=p: / IO .  

Then if J :  is the interval p: 10r-N~<t-~<(p:+l) 10 r-N, and 

J~+l  t h e  i n t e r v a l  P ,+ I  l 0  T M  ~ t ~ (Pr+l  + 1) 10 r+l-~, 

it is evident tha t  a(t) increases by 2 "-N in J :  and so by  2 "+I-N in J,+l- Hence our 

inductive hypothesis is satisfied also for J,+l. We note tha t  J ,  contains J~-l, for 

1 ~<v ~< N -  1. Also if r is continuous in [0, 1], then 

j" + r ~(t) = f ,  r d~(t) + f,;r ~(t), o <,, < ~v- 2. 
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Thus  f:~(Od~(O=(f~_ + f,N_) ~(Od~(t) 

= + 

f~ N-l f j;  = ~(t) d~(t) + 5 r da(t). (8.1) 
e ~ = 0  

In  order  to es t imate  the integrals occurring in this iden t i ty  we note  t ha t  if t, $' lie 

in J , ,  J~ respectively,  then  

I t -  rl  ~ 8 .10  "-~ = 16h 10". (8.2) 

I n  par t icular  this inequal i ty  holds if t lies in Jo and $' in J : .  

8.1. We now set 1 - ze -~~ = C = ~ + b?, and suppose t ha t  

-54h<~<h ' i~/I <2-o'h (8.3) 

f 2  e it + et~ (1 - C) d~(t) 
We write g(C) = e~e_e~O,(1 _ ~  , ,  =go(C) +gt(C), 

where  9o (c) = f e u ea _ + eta, (1 et~176 ( 1 _- ~C) rialtO,,, 

~-1 ~ e.+e,O.(l_C) da(t). 
g'(c)=,oo ~ J,; ~ c) 

,, i "  4e t(t +20.) d~(t) 
~ h u s  go (C) = j , .  [e~ ~ = ~]3-  

We set t = 0 o + v, and note  t ha t  

4ei(t+2Oo) _ 4e t~ 

[ea -e~~176  C)] 3 [ 1 - e i ~ - C ] a  

Thus  

- 4[(1 - cos v -- ~) + i (sin v + ~?)]a ei~ 

11 - e " -  CI s 

,, f ]  {4[~-- i(v + ~?)]3 + O(h')} d~(t) 
ao (C) = . I~ + i ( r +  n)l s + O(h') ' 

R go (C) = .]~. [~:, + (,7 + T)~]~ ~ 
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We note  t h a t  d a ( 0 > 0 ,  only for  ~ h < [ T l 4 h .  Since ~, ,) sat isfy (8.3) we have  

.8h ~< ~ 4 h, and  .75h ~< I z + 71 ~< 1.05 h. Consider now 

4a(3b 2 - a 2) 
r  b)- [a ~ + 5,]3 

in the  range .8h ~< a ~< h, .75h ~< b ~ 1.05h. Then  

~b(a, b) _ 12 (a 4 + b a - 6a ~ b 2) < 0 

0a (a ~ + b~) * 

in the  range.  Thus,  for f ixed b, r  b) is smallest  when a = h. Also 

~ ( a ,  b) 48ab(a ~ -  b ~) 

~b (a* + b*) ~ ' 

so t h a t  for f ixed a, r  f i rst  increases to  a m a x i m u m  a t  b = a  and then  de- 

creases�9 Thus  

r  b) >1 min  {r 1.05h), r .75h)} 

�9 [4(2.3075) h -a 
=mm l ~ ,  

:_ (11)(2 la) .72 

10~h 3 ~ h a �9 

Thus  it  follows t h a t  

I, Rgo (r _.~_2 d ~ ( O + O  ~ = - 

a 

Mso we have  in the  range (8.3) 

r "~ ~ <h3[(~)~+ (~)~]~ 

(n/4) h-a / 

ha + 0  ~ . (8.4) 

/aok 4ao ). 
Again in view of (8.2) we have  in J ; ,  Iz[~>16hl0~, and  [ ~ l < h / 2 0 ,  and  

Also [ , [ < 1 ,  so tha~ [ s i n z [ ~ > [ , [ s i n l > ~ [ z [ .  Thus  in the  range (8.3) and  for t i n  J :  

I1-  ~'~- ~l > ~- 1oh l O ' - ~  > 13h lo'. (8.o) 
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Thus N-1 f]; 4 ~ 13 dot(~ ) 
Igi'(~J)[ ~< ,=02 i i _ e , ,  - 

N-1 4 .2 "o t  o 4ot. (1 2 ( 2 )2 
~< ,~o ~ (13hlO")S=219-7h~ + l i ~  + ~ 

ot0 
+ . . .  < ~ h ~ .  

Thus we deduce from this and (8.4) that  

9"  ($) < ~ [ - .72 + . 002  + O(h)]  < - - -  
.7 oto 
h s 

(8.7) 

if h is sufficiently small, i.e. if N is sufficiently large. Further by (8.5) and (8.7) 

we have 

Ig"(~)l < Ig;'(r + M'(~)I < ~ 4+ +o(h) 

This completes the proof of Lemma 3 (a). 

8.2. We proceed to prove (b). To do this we suppose now that  ~ =0,  0 < ~ <h.  

Then 

~-1 [ _ 2e,~ dot(t) 

,~ o J~'; ( d  ~ - 1 + ~)2" 

We note that  (8.6) still holds on J~. Thus 

= ~  2 " + ' "  - 4 "  ( 1 ( 1 )  z ) 

(13hlO,)2-~30~h~ 1 +  + ~ + . . .  < ~ (8.8) ,=  1 4000 h 2" 

Again we have in 4 1 7 h < l v l = t - - O o < 1 9 h ,  (8.9) 

so that  e ~" - 1 + ~ = ~ + i~ + O(h*). 

f~ -2e'~ dot(t) f~ [, +O(h)]dot(t) 
Thus (e f~ - 1 + ~)~ = - 2 [~ + i~ + O(h2)] 2 

= f,~ 2(v ~ - ~ )  dot(t) 4 i ~ v  dot(t) 
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In  view of (8.9) and 0 < ~ < h, we deduce t ha t  

2% . 2(17 2 -  1) 
(fq~>~> ~ 7 i ~  ~ (8.1o) 

4~% (8.11) 
and ]I'} < (17h)a. 

Again go(t)= ~;  _~-1 ~-~ 4 +0 , , h (~z+ ~2)2 

since the mass da(t) is symmetr ical  about  the centre of Jo and is zero on the in terval  

( - ~h, ~h). 

The funct ion ot(t) increases by  ot0/4 in each of the intervals  (.Sh, .82h) and 

(.98h, h) and is constant  in the  interval  (.82h, .98h). Thus  if ~ =  .95h then  

f(~ 
2 _  v2) dot(t) % [ (.95) 3 -  1 (.95) 2 -  (.82) 3 

h i ~ + ~  >~Lt( .95)-~T(-~)212 + [(.95)~+(.82)~?J 

oto (,13) (1 .77 ) -  (.05) (1.95) > .13~o> % 

> 4 h  - -~  4 1 ~  125h ~" 

Thus for this value of ~, we have for large /V in view of (8.8) and (8.10) 

-- 4% 2% ~o 0(%) - V  < 0. 

Again, for  ~ = . 8 5 h ,  

f: 
a [ ~  - T=] dot(t) [(:85) 2 - (.98) 3 . 

~o [ (1.83)(.13), <i> -- ~ - *  

Thus for ~ = . 8 5  we have,  using (8.8), (8.10), 

otO otO 

50h 2 4000h ~ 

Thus  there  is a value ~1, such t ha t  

and 

( .85)2- (.8)3 ] 

(05)(1.65) 1 ot. 
(1.36) z ] < 200h 2. 

> o .  

.85h < $1 < .95h 

R g' (~i) = o. 

(8.12) 
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Also for this value $1 we have by (8.8) and (8.11) 

Ct o 

o~ 4 1 
~< ~ [4--9-~ + ~ + O(h)] 

~o < - -  
900h 2' 

when N is large. Thus % (8.13) 
Ig'(~)l < 9ooh'" 

We now set ~ = ~ + i T = re ~ + ~1. We suppose r < h/20, so that  the estimates of 

Lemma 3 (a) hold. Also 

g' (C) =g'(~:l) + g"(z)dz=g'(~l) + g"($x+te~t)e~tdt. 
1 

Thus by Lemma 3 (a) 
70~or 

Re-~[g'(C)-9'(~l)] < lOha. 

7 ~o r 
In  particular 

We choose r=h/630, so that  in view of (8.13) 

10h s 900h 2 

Thus by Rouchd's Theorem g'(~)-g'(~el) and g'(~)=g'(~)-g'(~ez)+g'(~l) have equally 

many zeros in I~-~:11 <r ,  i.e. at  least one. We set such a zero equal to ~o = ~o + i~o 

and note that  

h 
I~1- ~o I < ~ ,  (8.14) 

where ~1 satisfies (8.12). This gives (b). 

8.3. I t  remains to prove (e). We note that  in view of Lemma 3 (a) and (b) 

h 
Rgo'($) < 0  for ]~--~:z] <~-~= ro say. 

Also if go'(~)=ao+~a,,(~-~l) ", ) ~ - ~ ] < r  o, 
1 
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then a o is real and negative, and by the Borel-inequalities la, l <~21aol/r~. Thus for 

I ro/ , we have 

Ig;' ( )-aol < 2 laol/5_ laol 

Again in the same disk Iz-~zl<~ro/5, we have also by (8.7) 

.7~  
. . . .  a ~  and ]9"(z)]>-- ha Ig"(~)-go (z)l= M (~)1 <~ooh ~, 

�9 , .7~Zo ~o ~ >  ~o 
In particular la~176 ( ~ x ) l > ~  500h 2h s" 

We deduce further for [ z -  ~11 <<- %/5, that  

[g"(z)-ao]<~]go' (z)-ao[+]y'l" (z) ] ~< [ -~  + ]2~0] < ~ .  

Since a o is real and negative we deduce that  

_<~_ . r o h 

]arg [ - ' q "  (z)]] "~ 4 '  z - ~ l {  ~<g - 100' 

and so in particular for I z - -~ol<h/120<h/ lOO--h /630 .  This completes the proof of 

Lemma 3. 

8.4. We also need a global estimate for the growth of u(~). 

L ~ A  4. With the notation o/ Lemma 3 the /unction u(~) assumes its maximum 

value /or 0 < ~ < 1 at ~ = ~1, where I~1- ~ol <h/630.  Also u(~) increases in the interval 

[0, ~1] and decreases in the interval [~1, 3hi and u(~)<u(3h) /or ~>3h .  

We have seen that  u(~) has a local maximum at ~ = ~1, where by (8.14) and (8.12) 

h 
I~1- ~ol < 6 ~ '  and .85h < ~1 < .95h. 

I t  also follows from Lemma 3 (a) that  

d~u 
d~ 2 < 0 ,  . 8 h < ~ < h ,  

so that  u(~) increases in the interval [.Sh, ~1] and u(~) decreases in the interval 

[~, hi. 
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Suppose now that  ~ < .8h. Then as we saw in section 8.2 

d-~ = ]~go(~) + Rg~.(~) > 4 d a ( t ) + I - - - + O  > 0 ,  
a (~  + ~)~ 4000h 2 

in view of (8.10). 

Thus u increases in the range [0, .8h] and so in [0, ~1]. Again for ~ > h  

Since ]vl~>17h, we see again that  

f~ (~2_ ~.) da(t) (dot(t) < 2~ 
2 ( ~ + ~ ) ~  < 2 j ~ - - ~  (17h)~. 

Suppose first that  h < ~ < 2h. Then 

4 J~a -(~ + ~1~ < 4 (~ + ~2)~ 
_ [~2  _ ( . 8 2 h ) 2 ]  

< 
[~  + (.82 h)2] 2 

The right-hand side is less than 

Thus in this range 

.32h ~ 

du  ~o ~<~ [_ 2 O~o .o,28 +i~+ 4~o0 ] +0(~)<0. 

fh (T2_~2)d~(t) 4 ~ ~d~,(t) -24~o 
N e x t   >2h < -  2 5 e  " 

Thus du o~ o + 4--0~ ~--~+0 <0 if ~<lOh. 

Thus u decreases also in the range [h, 10h] and so in [~a, 10h]. 

Finally if ~>  10h 

f~ 2d:c(t) . N,~:fs; 2d~(t) 
~,< .ir (l_~)l*Z,o Ir �9 

In Jo 

so that  

le ~ - (I - ~)] > ~ + O(h ~) > lOh + O(h2), 

f~ 2d~(t) u.o 
~ [e"-(1-~)[< ~ + 

0(%). 
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Also in J~ we have by (8.6) for 0 < ~ < 1 ,  

I1 - e ~ ' -  ~] < 13h 10", 

so that  
N-I~.. f~,; I e~-2da(t) < N-1 2~(o 2, < 2~ ~ _ 5a ~ 

,=o 1 + ~1 ,~o (13h) 10" l a h ( ~ -  ~) ~6h" 

Thus in this range we have 

~0 5ao 2 ~  
u < ~ +  2 ~ +  0(~(o)< ~- ~ �9 

On the other hand, we have for ~ = 3h 

fs [e~§ f~ u(~) > ~ 
, e ~ ' -  ( 1  - ~ )  

[ i  - ( I  - ~)~] d:((t) 

1 + (1 - ~)2 _ 2(1 - ~) cos 

= f ~ , 2 ~ + O ( h  2)~ .. 2a0~ . 3ao a~(,~ > ~ .  0(~o)= ~-  + 0(~o). 

Thus u(~)<u(3h)  for ~>10h,  and hence also for ~ > 3 h ,  since u(~) decreases in the 

interval [3h, 10h]. This completes the proof of Lemma 4. 

9. Construct ion o f  the  path  o f  integrat ion 

We shall need 

Lv .~MA 5. Suppose that g ( z ) = u + i v  is regular and not constant in the dislc 

[z - z ol <~ r and satis]ies [arg g"(z) l <~ �88 there and g' (Zo) = O. Then  there exists an ana- 

lytic Jordan arc ~ with the /ollowing properties 

(a) ~ is a cross cut in I z - z o I < r with end points on I z - z o ] = r and passing through 

the point  z o. 

(b) I] z describes ~ in a suitable sense v is constant on ~ and z o divides ~ into 

two arcs ~'2, ~'1, such that u decreases on ~2 and increases on ~1. 

(c) On 71 we have l a rg (z -Zo) ]<~g ,  and on ~2 we have ] a r g ( z - z 0 ) - g l < ~ g .  

(d) I /  Zl, ze are points on ~1, ~'2 respectively and ]~,[ <<. ~ ,  ] r  <<. ~ then /or 

i = 1, 2, u(zj § re%) increases while t increases through positive values as long as zj § re% re- 

mains in ] z -  Zol <~ r. 

I t  follows from our hypotheses that  ~g"(z)>~O in I Z - Z o l < r .  Here strict in- 

equality holds unless g " ( z ) -  ifl, which conflicts with our hypotheses, unless /3 =0.  
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I n  th is  case g'(z)= cons t an t  = g ' ( z 0 ) = 0 ,  so t h a t  g(z) is cons t an t  c o n t r a r y  to  hypo-  

thesis .  Thus  

R g " ( z ) > O ,  Iz-z0l<r. 

I f  we set  g"(zo)=2a~, i t  follows t h a t  a2~=O a n d  hence b y  classical  theorems  t h e  set  

v = v(zo) consists  nea r  z = z o of two J o r d a n  arcs  which  in te r sec t  a t  r igh t  angles, a t  %. 

W e  have  nea r  z = z o 

g(z)-g(Zo),..a2(Z-Zo) 2, as z--->z o, 

a n d  hence arga~(z-Zo)2-+O or 7t, as  z--->z o, 

so t h a t  v(z)= cons tan t .  W e  choose for 7 t h a t  a rc  for  which 

a rg  [(z - z0) 2] --> - a rg  a S = e 

say,  where b y  hypo thes i s  we m a y  suppose  ]e I ~< �88 Thus  

e E 
arg  (Z-Zo)--->~ or ~-T ~ as z--->z o on 7. 

As z descr ibes  7, d g ( z ) = g ' ( z ) d z  is pu re ly  real .  W e  have  

g'(Zo+ee~~ f~g"(Zo+te~~176 O < o < r .  

F r o m  this  and  our  hypo thes i s  t h a t  l a r g g " ( z ) [ < ~ n  i t  follows t h a t  

O -- 4 <-< arg g' (Zo + ee'~ < O + ~ 

a n d  t h a t  g'(z)#O, O<[z--Zol<r. 

I f  Z=Zo+~e ~~ is a p o i n t  on 7, t hen  b y  (9.1) 

(9.1) 

(9.2) 

-<-~ if ~t a rg  dz = - a rg  g' (z) -~ 8 '  0 = ~ ,  

7g 7r 
a r g d z > ~ - ~ ,  if 0 = - ~ .  

I f  we denote  b y  71, Y2 the  arcs  of 7 on which a r g ( z - z 0 )  approaches  �89 a n d  � 8 9  

respect ive ly ,  t hen  i t  follows t h a t  Yx remains  in t he  sector  

l a rg  (z - Zo) ] ~ 8" (9.3) 
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Similarly 7~ remains  in the sector  

]arg ( z -  z0) - g l ~ ; "  

We  have  for z on 7, if s denotes  arc length on 7 

~-~= ~ = o .  

I f  z describes 71 away  from Zo, then  it  is clear t h a t  init ially 

u(z)  - U(Zo) .., a2(z - zo) ~ .., la2l ]z - Zol 2 > O. 

Thus ~ = I g'(=) I 
Os 

as 7z is described in this direction. I t  follows f rom (9.1) t h a t  7z can have  no double 

points  and  continues as a J o r d a n  arc to the  bounda ry  circle [ z -  z01 = r. Also 

~u=la'(=)l>o 
~s 

on the  whole of 7z. Similarly if 7~ is described away  f rom z o 

= [ g ' ( z ) [ > 0  on 7~ 
~s 

and 73 continues to the  bounda ry  circle [ z - z o [ = r .  Since 71, 72 lie in different  sec- 

t ions of the  plane t hey  do no t  mee t  and  so we have  p roved  (a), (b) and  (e). 

I t  remains  to  prove  (d). I f  z z = z o + Q e  i~ is on 71, and  a r g g ' ( Z z ) = 0 1 ,  t hen  on 71 

we have  b y  (9.1) and  (9.3) 

]argdz I = ] - 0 ~ [  < 10[ + 4~-<3~'~-8" (9.4) 

Hence  if ] r  we have  1 r 1 8 9  so t h a t  

u(=l + t e,o,) = [g, (zl)[ cos (r + 01) > 0, a t  t = 0. 

Also for t I> 0 

u(z~ + t e ~1 ) = R ~ g(zl + te ~*') = R e ~*' g" (Zl + te ~') > 0, 



208 

since by our hypotheses 

W .  K .  H A Y M A N  

]arg {e~'~'a ''(~1 + te'*')}l < -~ + : r  < ~ .  
4 

Thus if u(zl+ te ~r =ul( t )  then 

u;(t) = ui(0) + ui' (~) d~ i> u;(0) > 0, 

provided that  (z~+te tr lies in ]Z-Zo]<r, so that  ul(t ) increases with t as required. 

Similarly u(zs+te ~r increases with t, when z2 l i e s  o n  ~2 and 1r ~< ~ .  This 

completes the proof of Lemma 5. 

lO. The est imate for F(e l~ 

We can now prove 

LEMMA 6. We have with the notation o~ Lemma 3 

provided that N >1 A2(1 + log + I//C) where AI, A~ are positive absolute constants. 

Let  ~0 be the zero whose existence is asserted in Lemma 3. We apply Lemma 5 

with z 0 = $o = ~o + i~}0, r = 10-3h and - g(~) instead of g(z). Let  ~ be the corresponding 

cross cut with end points ~2, ~3, where ]$3] <]~0] < ]~s]. Let  Ca, ~4 be the points 

h h 
~, = ~o 130' ~4 = ~o + 13---d (I0.]) 

and let F be the contour 0 r r ~3r 1, taken along straight line segments from 0 to 

~1,~1 to ~ ,~3  to ~4 and from ~4 to 1 and along ~ from ~ to ~a. We proceed to 

estimate 

I = f e cg(c) d~ 
J r  

by considering the integrals along each of these arcs in turn. 

Set ~ = ~0 + re~<'), - 10-Sh ~< r ~< 10-Sh, 

on ~, where r = -  10-3h, 10-3h correspond to ~,  ~a respectively, and 

g(~)=U(r)+iv,  
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on ~, where v is constant. Also by (9.4) we have on 7 

]arg d~[ = [arg 9'(~)[ "~ -8-" 

e C U(r) COS 

Now since g'(~o)= 0, we have 

g(r = g(r + (~ - z) g" (z) dz. 
a 

We integrate along a straight line segment from ~0 to ~.+re ~(T), and note that  in 

this segment we have by Lemma 3 (a) 

Ig"(~)l < h-~, 

Thus for l z -%[  = r we have 

5~o r~ 
[u(z) - u(z0) l < Ig(z)-  g(z0) l < ~ �9 

Thus eCg(;)d~ > ~ c ~  eu(z~176 exp~ ~-~ )dr 

8 \-~o~o/ d_t, e-t'dt' 

where t o = 10 -a = C �89 10 -e-5 5 �89 

Hence to--~co as N--~c~, and we deduce that  

(h'~�89 A, l o g ~ ,  (10.2) 

where Aa, Aa, A 5 are absolute constants. 

Again we have for z=~o+re ~, 0<r~<10-ah,  

e-~C~g'(z)=e-fC g"(r162 g"(r162 

Thus we have in view of Lemma 3 (a) 

14-642907 .  Acta mathematica. 112. Imprim6 lo 2 d6cembre 1964. 
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f ou Also on 7 g ( z )  - g ( r  = u ( z )  - U(Zo) = ~ d s  = - 

.7 ~o .35 Cr r~ 
~< - ~ t d t  ~< hS 

In particular we have if ~=~2 or ~3, so that  r =  lO-~h, 

I~ext we have 

>1 "7ao r 
ha �9 

I tanarg(~2--~l) l< 2, so that  l a r g ( ~ - ~ l ) l <  8, 

h 
h h >.0065h, I 1 ' : / ($~-~ l ) '<6~+lO-3h< .OO26h .  since ~ ($~-- ~1) >/130 1000 

Also 
[~-~ol< ~ +i~6 <12o" 

(10.3) 

Thus by applying Lemma 5 (d) and using Lemma 3 (c) we see that  l eCg(r increases 

as $ describes the segment ~152, so that  (10.3) holds on this segment also. Similarly 

(10.3) holds on the segment Sa~a- 

Finally by Lemma 4 and (10.1) 

u(~) <u(~4) on the segment [~a, 1] and u($)~<u(~) on the segment [0, ~1] 

so that  (10.3) holds on these segments also. 

Thus (10.3) holds on all of F except y. Since the total length of the four segments 

which make up this part  of I ~ is at  most 2, we deduce from (10.2) and (10.3) that  

for N 1> A 4 log (As/C) we have 

~ \ C a o /  ~ \ 2" ' s  ~ \ C a o ]  

provided that  2 exp ( - A ~ C ~ ~  <12 A3 \C%] {ha~'' 

i.e. if AeC5 >~logC+log~--~3+ ~ l o g 2 + N l o g ~ -  , 

which is true if N > A : l o g  (As/C). This completes the proof of Lemma 6. 
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11. Proof of Theorem 3 

To complete the proof of Theorem 3, we need to estimate I/(z)] from above in 

the neighbourhood of e ~~176 and to estimate the quantity u(~o) which occurs in Lemma 6 

from below. The result is contained in 

LwM~A 7. We have /or all su//iciently large N 

1.1 a0 ( l l .1)  U(~o) > - ~  

Also i/ z=re ~~ and ~ are related as in Lemma 3 and 

U(z) = u[~(~)] = ~ jo" 
e tt q- Z 

eT~-z d ~ ( t ) , 

then i/ 0<(~<~,  ]O-Ool<(~-~)h and 1 - ~ h < r < l ,  we have 

U(z) < �89 (11.2) 

I t  follows from the arguments leading to the proof of Lemma 6 that  u(~) assumes 

its maximum value on the path F at the point ~0. Also F contains the interval [0, ~1] 

of the real axis and 

h 
~1 = ~o - ~ > .83 h, 

by Lemma 3 (b). Again when $--.83h, z=re ~~176 where r= 1 -  .83h 

f~  (1-r~)d~(t) f~ (1-r~)d~(t) U(z)= 
l - 2 r c o s ( O o - t ) + r  2>~ o l - 2 r c o s ( O o - t ) + r  ~ 

= ~a [ 4 ( l - - r )  +0(1)]  da(Oo + z). 
, ]~h L(1 - r )  ~ + ~'~ J 

The function ~(0o+T ) increases by ~o/4 in each of the intervals [.8h, .82h] and 

[.98h, h i .  Thus 

[ (1 1 (1 -r)~+h ~ 1  ] V(z)>~(1-r)~o _ r ) 2 ~ ~ +  +0(~o) 

= -  h .83)~-(.82) 2"~ 1+ 83) ~ + 0 ( ~ ~  l'101~~176 

Since u(~0)>u(~)= U(z), we deduce (11.1) for small h, i.e. large N. 
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Next  suppose tha t  z=-re '~ where r >  1 - ~ h / 8  and [0 -0o l  < ~ h ( 1 - ~ ) .  Then we 

have by  (8.1) 

f j  (l_r2)d~(t) N~lfj; (l_r2)dac(t) 
U(z) = 1 - 2 r cos (0 - t) + r 2 + . =1 1 - 2 r c o s ( O - t ) + r  ~" 

~ 4 (0  - -  t )  ~ 
We have 1 - 2 r c o s ( O - t ) + r  >--sin (O-t)>~ 7t ~ , (11.3) 

since 1 0 - t l ~ < l < � 8 9  and also since 0 lies in J0 and so in Jr  we have for t i n J :  

Io-,1>~16hlo" 
by  (8.2). Thus 

~- :  ( (1 - r ~) da(t) u-1 ( 2(1 - r) da(_t) y 
,~o J J; 1 - 2 r  cos ( 0 - , ) +  r~<Y,.o )J; [_~ h lO,]~ 

_ 2-'(1 - r) ~0 ~1(50)-,  < (l_- ~ o  < ~o 
322h 2 ,~o 45h 360h" 

Again in Jo we have It-Oo]>~th in the intervals in which a(t) is not constant and 

lo-oo[<thO-o). Thus by  (11.3) 

4 
1 - 2 r c o s  ( 0 - t )  +r2~>~(~Oh)  2, 

f l  (1-r~)da(t) - 2%(1 - r) 25z~2 a~ 
,so tha t  o 1--~ 2rcos(O_t)+r~< 6 ~  i < ~ ,  

if (1-r)<32O~h/(25:t 2) i.e. certainly if r>l -b~h /8 .  Thus in this case 

1 
U(z) < ~h + ~ < ~(~o) 

b y  (11.1). This completes the proof of Lemma 7. 

11.1. I t  remains to put  our results together. I f  we set 

f t( F(z) = z) dz, 

then  with the notation of Lemma  3 

f e  tOa 1 
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by Lemma 6, provided that  N~>A( l+ log  + 1/C). Suppose next that  zo-=re ~~ with 

6~h and 10-0ol< (1-6). r > l - ~ - ,  

We integrate /(z) from e ~~176 so Zo, first along a radius from e i~176 to re ~~176 and then along 

the smaller arc of Iz]=r from re i~176 to z o. On this path we have by (11.2) 

Also the length of the path is less than 2. Thus 

L\ ] 

by (11.1), provided that  N > A ( d ) ( l + l o g  + 1/C), where A(6) depends only on 6. Thus 

~ 0. + ~h(1-~) 8 h(1 - 6) ~o C 
log + IF(re~~ dO > (1.1 - 6) 

j 0,- ~h(~- ~) 5 h " 

There are just 2 N= 1 /% different values of 0 o for fixed N, and their totM contribu- 

tion is thus a t  least 1 .6(1-6) (1 .1- (~)C.  For N we have the inequalities 

A(6) (1 + log + I /C)  < N and h -- } 10 -~ > (I - r), 

6 2 
so that  N log 10 < log 16(1 - r)" 

The number N o of distinct values of N satisfy/ng these inequalities itself satisfies 

No > l o g ~  {l~ ~ _  r -  l~ ~ 6 } -  A ((~) (1 + log+ ~ )  - 1  , 

>(1-6)[ .  1 ] 
1-; ig 16 / '~ l' 

if log 1-~r >A1 (6) ( I  + log+ C) ,  (11.4, 

where A1(6 ) also depends only on ~. In  this case 

1 .6 (1 -  t )~(1 .1-  6) r 1 
2~r log 10 log ~-Z~_ r. 
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We note  t h a t  (1 .6) (1 .1) / (2glog 10 )=  .121 . . . .  Thus  if 8 is a sufficiently small absolute 

cons tan t  and  (11.4) holds we deduce t h a t  

• f ,  ~ l~  IF(re'~ dO> .12Clog  I _1 r" 

This gives Theorem 3. 
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