On the Characteristic Properties of Travel-Time Curves

M. L. Gerver and V. M. Markushevich
(Presented by B. M. Naimark)

Abstract

Summary The uniqueness of the determination of a velocity cross-section from the travel-time curves for surface and deep sources was investigated by Gerver \& Markushevich $(1966,1967)$. The Earth was assumed spherically symmetrical with a finite number of waveguides.

The present report states the conditions when a solution of this inverse problem exists.

1. Statement of the problem

The formulation of the problem investigated by Gerver \& Markushevich (1966, 1967) is the following (see Fig. 1). The wave propagates from a surface point A with velocity $v(r)$ inside the circle $r \leqslant R$ according to the laws of geometric optics. The travel time is known at every point where the pulse arrives at the surface.

Let us denote by $\tilde{\theta}$ the angular epicentral distance and by α the angle between a ray and radius $C A$ at the point A. Then on the plane θ, t we shall have the travel-time curve $\tilde{\Gamma}_{0}\{\tilde{\theta}=\tilde{\theta}(\alpha), t=t(\alpha)\}, \alpha \in\left(0, \frac{1}{2} \pi\right)$. The psoblem is to determine $v(r)$ knowing $\tilde{\Gamma}_{0}$.

The ray may perform some number of revolutions around the centre of circle. Assuming this number k is known, we can consider instead of $\tilde{\Gamma}_{0}$ the curve
where

$$
\begin{gathered}
\Gamma_{0}\{\theta=\theta(\alpha), t=t(\alpha)\}, \quad \alpha \in\left(0, \frac{1}{2} \pi\right), \\
\theta(\alpha)=\tilde{\theta}(\alpha)+2 \pi k .
\end{gathered}
$$

Fig. 1

Fig. 2

The transformation

$$
\begin{equation*}
x=\frac{R}{v(R)} \theta, \quad y=\frac{R}{v(R)} \ln \frac{R}{r}, \quad u(y)=\frac{v\left(R e^{-\{[v(R) \mid R] y\}}\right)}{v(R) e^{-\{[(R) \mid R] y\}}} \tag{1.1}
\end{equation*}
$$

reduces our problem to the more simple one for a half-plane $-\infty<x<\infty, y \geqslant 0$, where travel-time curves

$$
\tilde{\Gamma}\{x=2 \tilde{X}(p), t=2 T(p)\} \text { and } \Gamma\{x=2 X(p), t=2 T(p)\}, p \in(0,1)
$$

are given, and the velocity $u(y)$ (given $u(0)=1$) is to be determined.
Here $p=\sin \alpha$ is a ray parameter,
$X(p)$ is an abscissa of the deepest point on the ray with parameter p,
$T(p)$ is a travel time along the ray from source to the deepest point,

$$
\tilde{X}(p) \equiv X(p)\left[\bmod \frac{\pi R}{v(R)}\right], 0 \leqslant \tilde{X}(p)<\frac{\pi R}{v(R)} \text { (see Fig. 2). }
$$

2. The case of the surface source

The functions $X(p)$ and $T(p)$ can be determined from Γ (in some cases additional information is needed) (Gerver \& Markushevich 1967).

According to Gerver \& Markushevich (1966),

$$
\begin{equation*}
X(p)=\int_{0}^{Y(p)} \frac{p u(y) d y}{\sqrt{ }\left[1-p^{2} u^{2}(y)\right]}, \quad T(p)=\int_{0}^{Y(p)} \frac{d y}{u(y) \sqrt{ }\left[1-p^{2} u^{2}(y)\right]}, \quad p \in(0,1), \tag{2,1}
\end{equation*}
$$

where $Y(p)=\inf \{y, p u(y) \geqslant 1\}$ is the ordinate of the deepest point of the ray with parameter p.

We assume that $u(y)$ is a positive piecewise smooth function which does not go to infinity in any finite interval on the positive semi-axis, and $u(y) \rightarrow \infty$ if $y \rightarrow \infty$.

We assume also that $u(y)$ forms only a finite number of waveguides. To be definite we assume that the first waveguide does not begin at the surface. Fig. 3 shows $u(y)$ with two waveguides.

If $X(p)$ and $T(p)$ are known, we can regard (2.1) as a system of equations with $u(y)$ unknown. We have already found out (Gerver \& Markushevich 1966) that the system has no unique solution. But it may also have no solution at all.

Fig. 3
The system (2.1) has a solution $u(y)$ which satisfies the above limitations if some restrictions are imposed on $X(p)$ and $T(p)$. These restrictions are given by the following theorem.

Theorem 1. The following conditions are necessary and sufficient for the curve $\Gamma\{2 X(p), 2 T(p)\}, p \in(0,1)$, to be a travel-time curve from a surface source in a halfplane with the velocity $u(y)$, if $u(y)$ satisfies the limitations described above.
A. The functions $X(p)$ and $T(p)$:
(1) are positive,
(2) are differentiable almost everywhere,
(3) $T^{\prime}(p)-p X^{\prime}(p)=0$ almost everywhere in (0,1),
(4) for all points p, where $X(p)$ and $T(p)$ are not differentiable, we have $X(p \pm 0)=X(p)=T(p \pm 0)=T(p)=\infty$ (except maybe for a finite number of them).
B. The function $\tau(p)=T(p)-p X(p)$:
(1) monotonically decreases,
(2) $\tau(1-0)=0$,
(3) is continuous everywhere, except at the points $p_{i}, p_{1}>p_{2}>p_{3}>\ldots>p_{n}$, where it has jumps $\sigma_{i}=\tau\left(p_{i}-0\right)-\tau\left(p_{i}+0\right)$.
C. The function $\phi(q)=\frac{2}{\pi} \int_{q}^{1} \frac{X(p) d p}{\sqrt{ }\left(p^{2}-q^{2}\right)}$
(1) does not increase for $q \in(0,1)$,
(2) strictly decreases for $q \in\left(0, p_{1}\right)$,
(3) $\phi(+0)=+\infty$,
(4) there exists a $C>0$, for which $\phi^{\prime}(q)<-C q / \sqrt{ }\left(p_{i}^{2}-q^{2}\right)$ at any $q \in\left(p_{i+1}, p_{i}\right)$, where $\phi^{\prime}(q)$ is finite, $1 \leqslant i \leqslant n$.
(5) function $g(y)$, the inverse function for $\phi(q)$, is a piecewise doubly smooth one.
D. The function $\tau(p)+\int_{p}^{1} \sqrt{ }\left(z^{2}-p^{2}\right) d \phi(z)$ has a continuous derivative for $p \neq p_{i}$, $i=1,2,3, \ldots, n$.

Some specific features of the conditions A, B, C and D are to be noted.
The function $\tau(p)=T(p)-p X(p)$ is determined only on the set of p where $X(p)$ and $T(p)$ are finite. But this set is dense in $(0,1)$, and $\tau(p)$ is continuous everywhere, except at a finite number of points, at which it has jumps. Hence $\tau(p)$ is given everywhere in $(0,1)$. The number of jumps is equal to the number of waveguides.

If a waveguide begins at the surface, then $p_{1}=1$. In this case condition B. 2 is replaced by
B. 2^{\prime}.

$$
\tau(1-0)=\sigma_{1}>0
$$

and condition C. 1 becomes useless.
It is difficult to verify the condition D ; let us introduce instead of it the condition D^{\prime}.
$\mathrm{D}^{\prime} . X(p)=\infty$ on not more than a numerable set of $p \in(0,1)$. This condition is not the necessary one, but conditions $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D^{\prime} together are sufficient for Γ to be a travel-time curve.

The condition C implies a corollary:

$$
\overline{\lim }_{p \rightarrow p^{0}-0} X(p) \geqslant \lim _{p \rightarrow p^{0}+0} X(p) \text { at any } p^{0} \in(0,1)
$$

Therefore the curve in Fig. 4 is not a travel-time curve.

3. The case of a deep source

Now we shall consider the travel-time curve from a deep source. Using the transformation (1.1) we can again reduce the problem to that of the half-plane. Let the depth of source be $y=d$.

Let

$$
f(y)=\left(\sup \left\{u\left(y^{0}\right), 0 \leqslant y^{0} \leqslant y\right\}\right)^{-1}, \quad f(d-0)=P, \quad f(d+0)=Q .
$$

It is clear that $P \geqslant Q$. The rays which go up from the source give the part of traveltime curve $\Gamma_{1}\left\{X_{1}(p), T_{1}(p)\right\}$, where

$$
\begin{equation*}
X_{1}(p)=\int_{0}^{d} \frac{p u(y) d y}{\sqrt{ }\left[1-p^{2} u^{2}(y)\right]}, \quad T_{1}(p)=\int_{0}^{d} \frac{d y}{u(y) \sqrt{ }\left[1-p^{2} u^{2}(y)\right]}, \quad p \in[0, P) . \tag{3.1}
\end{equation*}
$$

If $X_{1}(Q)<\infty$, then Γ_{1} is an $\operatorname{arc} 0 I$ for $Q=P$ or an $\operatorname{arc} 0 J$ for $Q<P$ (see Fig. 5).

Fig. 4

Fig. 5

Introducing the function $H(r)=m e s\{y, y \leqslant d, u(y) \leqslant r\}$ we have:

$$
\begin{equation*}
X_{1}(p)=\int_{0}^{p-1} \frac{p r d H(r)}{\sqrt{ }\left(1-p^{2} r^{2}\right)}, \quad T_{1}(p)=\int_{0}^{p-1} \frac{d H(r)}{r \sqrt{ }\left(1-p^{2} r^{2}\right)}, p \in[0, P) \tag{3.2}
\end{equation*}
$$

The equations (3.2) can be treated as a system with unknown $H(r)$. It is evident that $H(r)$ is a monotonically non-decreasing function and $H(0)=0$. The uniqueness of solution of (3.2) is proved by Gerver \& Markushevich (1967). But this solution will be non-decreasing if some restrictions are imposed on $X_{1}(p)$ and $T_{1}(p)$. Our purpose is to find these restrictions. Evidently, it is equivalent to determining such properties of Γ_{1} which are necessary for Γ_{1} to be a part of travel-time curve from a deep source. The restrictions on $u(y)$ in this case will be much less severe than in Section 2: the function $u(y), y \in[0, D] \supset[0, d]$ is assumed to be positive, bounded and measurable.

Let us introduce the values $\beta_{i}=\int_{0}^{1} v^{i} T_{1}(v P) d v, i=1,2, \ldots$.
Further $C_{i}, i=1,2, \ldots$, are to be determined from the triangular system of equations:

$$
\beta_{2 k+1}=\frac{k!}{(2 k+1)!} \sum_{i=1}^{k} \frac{(2 k-i+1)!}{(k-i+1)!} C_{i}, \quad k=0,1, \ldots .
$$

Let $C_{0}=\frac{1}{2} T_{1}(0)$.
Lemma. The equation

$$
T_{1}(p)=\int_{0}^{P-1} \frac{d H(i)}{2 \sqrt{ }\left(1-p^{2} i^{2}\right)}, \quad p \in[0, P)
$$

with nondecreasing $H(v)$ is satisfied if and only if the values C_{i} are moments of the function

$$
H_{1}(z)=\int_{1}^{z} \frac{P t}{4 \sqrt{ }(t-1)} d H\left(\frac{2 \sqrt{ }(t-1)}{P t}\right), \quad 1 \leqslant z \leqslant 2
$$

that is if

$$
\begin{equation*}
C_{i}=\int_{1}^{2} z^{i} d H_{1}(z) \tag{3.3}
\end{equation*}
$$

Theorem 2. The curve $\Gamma_{1}\left\{X_{1}(p), T_{1}(p)\right\}, p \in[0, P)$ is part of the travel-time curve from a deep source if the following necessary and sufficient conditions are satisfied:
A. The quadratic forms

$$
\sum_{0}^{m} C_{i+j} x_{i} x_{j} ; \sum_{0}^{m}\left(3 C_{i+j+1}-2 C_{i+j}-C_{i+j+2}\right) x_{i} x_{j}
$$

are not negative for any m.
B. The functions $X_{1}(p)$ and $T_{1}(p)$ are differentiable at $p \in[0, P)$.
C. $T_{1}{ }^{\prime}(p)-p X_{1}{ }^{\prime}(p)=0$,
D. $X_{1}(0)=0$.

The condition A is equivalent to condition A^{\prime} of non-negativity of the forms

$$
\sum_{0}^{m}\left(C_{i+j+1}-C_{i+j}\right) x_{i} x_{j} ; \sum_{0}^{m}\left(2 C_{i+j}-C_{i+j+1}\right) x_{i} x_{j}
$$

for any m. It means (Krein 1951) that C_{i} are the moments (3.3).
The above two theorems also give us necessary and sufficient conditions
(a) for a curve on the x, t plane to be a travel-time curve of a wave reflected from a deep interface,
(b) for a velocity cross-section to correspond to the part Γ_{2} of a travel-time curve from a deep source.

It is easy to see this from the following. A travel-time curve of reflected waves is a twice magnified curve Γ_{1} from the source placed at the same depth as the reflected boundary. As to the curve $\Gamma_{2}\left\{X_{2}(p), T_{2}(p)\right\}, p \in(0, P)$, it is shown by Gerver \& Markushevich (1967) that functions

$$
X_{d}(p)=\frac{X_{2}(p)-X_{1}(p)}{2} \text { and } T_{d}(p)=\frac{T_{2}(p)-T_{1}(p)}{2}
$$

are analogous to $X(p)$ and $T(p)$, if the surface is moved to the depth $y=d$. Consequently, they must satisfy the conditions of Theorem 1 with some modifications because $p \in(0, P)$, but not $(0,1)$.

Institute of Earth Physics, 10, Bolshaja Gruzinskaja, Moscow, U.S.S.R.

References

Gerver, M. L. \& Markushevich, V. M., 1966. Determination of seismic wave velocity from the travel-time curve, Geophys. J. R. astr. Soc., 11, 165-173.
Gerver, M. L. \& Markushevich, V. M., 1967. Vȳchislitelnaya seismologiya, III Trudy \bar{y} Instituta Fisiki Zemli, in press.
Krein, M. G., 1951. Uspehi mat. nauk, 6, 4.

