On the Characterizations of f-Biharmonic Legendre Curves in Sasakian Space Forms

Şaban Güvençç, Cihan Özgür ${ }^{\text {a }}$
${ }^{a}$ Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, 10145, Balikesir, Turkey

Abstract

We consider f-biharmonic Legendre curves in Sasakian space forms. We find curvature characterizations of these types of curves in four cases.

1. Introduction

Let (M, g) and (N, h) be two Riemannian manifolds and $\phi:(M, g) \rightarrow(N, h)$ a smooth map. The energy functional of ϕ is defined by

$$
E(\phi)=\frac{1}{2} \int_{M}|d \phi|^{2} v_{g}
$$

where v_{g} is the canonical volume form in M. If ϕ is a critical points of the energy functional $E(\phi)$, then it is called harmonic [5]. ϕ is called a biharmonic map if it is a critical point of the bienergy functional

$$
E_{2}(\phi)=\frac{1}{2} \int_{M}|\tau(\phi)|^{2} v_{g}
$$

where $\tau(\phi)$ is the tension field of ϕ which is defined by $\tau(\phi)=$ trace $\nabla d \phi$. The Euler-Lagrange equation of the bienergy functional $E_{2}(\phi)$ gives the biharmonic equation

$$
\tau_{2}(\phi)=-J^{\phi}(\tau(\phi))=-\Delta^{\phi} \tau(\phi)-\operatorname{trace}^{N}(d \phi, \tau(\phi)) d \phi=0
$$

where J^{ϕ} is the Jacobi operator of ϕ and $\tau_{2}(\phi)$ is called the bitension field of ϕ [8].
Now, if $\phi: M \rightarrow N(c)$ is an isometric immersion from m-dimensional Riemannian manifold M to n-dimensional Riemannian space form $N(c)$ of constant sectional curvature c, then

$$
\tau(\phi)=m H
$$

and

$$
\tau_{2}(\phi)=-m \Delta^{\phi} H+c m^{2} H
$$

[^0]Thus, ϕ is biharmonic if and only if

$$
\Delta^{\phi} H=c m H
$$

(see [10]). In a different setting, in [4], B.Y. Chen defined a biharmonic submanifold $M \subset \mathbb{E}^{n}$ of the Euclidean space as its mean curvature vector field H satisfies $\Delta H=0$, where Δ is the Laplacian. Replacing $c=0$ in the above equation, we obtain Chen's definition.
ϕ is called an f-biharmonic map if it is a critical point of the f-bienergy functional

$$
E_{2, f}(\phi)=\frac{1}{2} \int_{M} f|\tau(\phi)|^{2} v_{g}
$$

The Euler-Lagrange equation of this functional gives the f-biharmonic equation

$$
\tau_{2, f}(\phi)=f \tau_{2}(\phi)+(\Delta f) \tau(\phi)+2 \nabla_{g r a d f}^{\phi} \tau(\phi)=0
$$

(see [9]). It is clear that any harmonic map is biharmonic and any biharmonic map is f-biharmonic. If the map is non-harmonic biharmonic map, then it is called proper biharmonic. Likewise, if the map is non-biharmonic f-biharmonic map, then it is called proper f-biharmonic [11].
f-biharmonic maps were introduced in [9]. Ye-Lin Ou studied f-biharmonic curves in real space forms in [11]. D. Fetcu and C. Oniciuc studied biharmonic Legendre curves in Sasakian space forms in [6] and [7]. We studied biharmonic Legendre curves in generalized Sasakian space forms and \mathcal{S}-space forms in [13] and [12], respectively. In the present paper, we consider f-biharmonic Legendre curves in Sasakian space forms. We obtain curvature equations for this kind of curves.

The paper is organized as follows. In Section 2, we give a brief introduction about Sasakian space forms. In Section 3, we obtain our main results. We also give two examples of proper f-biharmonic Legendre curves in $\mathbb{R}^{7}(-3)$.

2. Sasakian Space Forms

Let $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ be a contact metric manifold. If the Nijenhuis tensor of φ equals $-2 d \eta \otimes \xi$, then (M, φ, ξ, η, g) is called Sasakian manifold [2]. For a Sasakian manifold, it is well-known that:

$$
\begin{align*}
& \left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X, \tag{1}\\
& \nabla_{X} \xi=-\varphi X . \tag{2}
\end{align*}
$$

(see [3]).
A plane section in $T_{p} M$ is a φ-section if there exists a vector $X \in T_{p} M$ orthogonal to ξ such that $\{X, \varphi X\}$ span the section. The sectional curvature of a φ-section is called φ-sectional curvature. For a Sasakian manifold of constant φ-sectional curvature (i.e. Sasakian space form), the curvature tensor R of M is given by

$$
\begin{gather*}
R(X, Y) Z=\frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\}+ \\
\frac{c-1}{4}\{g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z \tag{3}\\
+\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\},
\end{gather*}
$$

for all $X, Y, Z \in T M[3]$.
A submanifold of a Sasakian manifold is called an integral submanifold if $\eta(X)=0$, for every tangent vector X. A 1-dimensional integral submanifold of a Sasakian manifold ($M^{2 m+1}, \varphi, \xi, \eta, g$) is called a Legendre curve of M [3]. Hence, a curve $\gamma: I \rightarrow M=\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ is called a Legendre curve if $\eta(T)=0$, where T is the tangent vector field of γ.

3. f-Biharmonic Legendre curves in Sasakian Space Forms

Let $\gamma: I \rightarrow M$ be a curve parametrized by arc length in an n-dimensional Riemannian manifold (M, g). If there exist orthonormal vector fields $E_{1}, E_{2}, \ldots, E_{r}$ along γ such that

$$
\begin{align*}
E_{1} & =\gamma^{\prime}=T \\
\nabla_{T} E_{1} & =\kappa_{1} E_{2} \\
\nabla_{T} E_{2} & =-\kappa_{1} E_{1}+\kappa_{2} E_{3} \tag{4}\\
& \cdots \\
\nabla_{T} E_{r} & =-\kappa_{r-1} E_{r-1}
\end{align*}
$$

then γ is called a Frenet curve of osculating order r, where $\kappa_{1}, \ldots, \kappa_{r-1}$ are positive functions on I and $1 \leq r \leq n$.
It is well-known that a Frenet curve of osculating order 1 is a geodesic; a Frenet curve of osculating order 2 is called a circle if κ_{1} is a non-zero positive constant; a Frenet curve of osculating order $r \geq 3$ is called a helix of order r if $\kappa_{1}, \ldots, \kappa_{r-1}$ are non-zero positive constants; a helix of order 3 is shortly called a helix.

An arc-length parametrized curve $\gamma:(a, b) \rightarrow(M, g)$ is called an f-biharmonic curve with a function $f:(a, b) \rightarrow(0, \infty)$ if the following equation is satisfied [11]:

$$
\begin{equation*}
f\left(\nabla_{T} \nabla_{T} \nabla_{T} T-R\left(T, \nabla_{T} T\right) T\right)+2 f^{\prime} \nabla_{T} \nabla_{T} T+f^{\prime \prime} \nabla_{T} T=0 . \tag{5}
\end{equation*}
$$

Now let $M=\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ be a Sasakian space form and $\gamma: I \rightarrow M$ a Legendre Frenet curve of osculating order r. Differentiating

$$
\begin{equation*}
\eta(T)=0 \tag{6}
\end{equation*}
$$

and using (4), we get that

$$
\begin{equation*}
\eta\left(E_{2}\right)=0 \tag{7}
\end{equation*}
$$

Using (3), (4) and (7), it can be seen that

$$
\begin{aligned}
\nabla_{T} \nabla_{T} T=-\kappa_{1}^{2} E_{1}+ & \kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3}, \\
\nabla_{T} \nabla_{T} \nabla_{T} T= & -3 \kappa_{1} \kappa_{1}^{\prime} E_{1}+\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right) E_{2} \\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
R\left(T, \nabla_{T} T\right) T= & -\kappa_{1} \frac{(c+3)}{4} E_{2}-3 \kappa_{1} \frac{(c-1)}{4} g\left(\varphi T, E_{2}\right) \varphi T
\end{aligned}
$$

(see [7]). If we denote the left-hand side of (5) with $f_{.} \tau_{3}$, we find

$$
\begin{align*}
\tau_{3}= & \nabla_{T} \nabla_{T} \nabla_{T} T-R\left(T, \nabla_{T} T\right) T+2 \frac{f^{\prime}}{f} \nabla_{T} \nabla_{T} T+\frac{f^{\prime \prime}}{f} \nabla_{T} T \\
= & \left(-3 \kappa_{1} \kappa_{1}^{\prime}-2 \kappa_{1}^{2} \frac{f^{\prime}}{f}\right) E_{1} \\
& +\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}+\kappa_{1} \frac{(c+3)}{4}+2 \kappa_{1}^{\prime} \frac{f^{\prime}}{f}+\kappa_{1} \frac{f^{\prime \prime}}{f}\right) E_{2} \tag{8}\\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}+2 \kappa_{1} \kappa_{2} \frac{f^{\prime}}{f}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
& +3 \kappa_{1} \frac{(c-1)}{4} g\left(\varphi T, E_{2}\right) \varphi T .
\end{align*}
$$

Let $k=\min \{r, 4\}$. From (8), the curve γ is f-biharmonic if and only if $\tau_{3}=0$, that is,
(1) $c=1$ or $\varphi T \perp E_{2}$ or $\varphi T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) $g\left(\tau_{3}, E_{i}\right)=0$, for all $i=\overline{1, k}$.

So we can state the following theorem:

Theorem 3.1. Let γ be a non-geodesic Legendre Frenet curve of osculating order r in a Sasakian space form $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ and $k=\min \{r, 4\}$. Then γ is f-biharmonic if and only if
(1) $c=1$ or $\varphi T \perp E_{2}$ or $\varphi T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) the first k of the following equations are satisfied (replacing $\kappa_{k}=0$):

$$
\begin{gathered}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3}{4}+\frac{3(c-1)}{4}\left[g\left(\varphi T, E_{2}\right)\right]^{2}+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f} \\
\kappa_{2}^{\prime}+\frac{3(c-1)}{4} g\left(\varphi T, E_{2}\right) g\left(\varphi T, E_{3}\right)+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}+\frac{3(c-1)}{4} g\left(\varphi T, E_{2}\right) g\left(\varphi T, E_{4}\right)=0
\end{gathered}
$$

From Theorem 3.1, it can be easily seen that a curve γ with constant geodesic curvature κ_{1} is f-biharmonic if and only if it is biharmonic. Since Fetcu and Oniciuc studied biharmonic Legendre curves in Sasakian space forms in [7], we study curves with non-constant geodesic curvature κ_{1} in this paper. If γ is a non-biharmonic f-biharmonic curve, then we call it proper f-biharmonic.

Now we give the interpretations of Theorem 3.1.

Case I. $c=1$.
In this case γ is proper f-biharmonic if and only if

$$
\begin{gather*}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0 \tag{9}\\
\kappa_{1}^{2}+\kappa_{2}^{2}=1+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f} \\
\kappa_{2}^{\prime}+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}=0
\end{gather*}
$$

Hence, we can state the following theorem:
Theorem 3.2. Let γ be a Legendre Frenet curve in a Sasakian space form $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right), c=1$ and $m>1$. Then γ is proper f-biharmonic if and only if either
(i) γ is of osculating order $r=2$ with $f=c_{1} \kappa_{1}^{-3 / 2}$ and κ_{1} satisfies

$$
\begin{equation*}
t \pm \frac{1}{2} \arctan \left(\frac{2+c_{3} \kappa_{1}}{2 \sqrt{-\kappa_{1}^{2}-c_{3} \kappa_{1}-1}}\right)+c_{4}=0 \tag{10}
\end{equation*}
$$

where $c_{1}>0, c_{3}<-2$ and c_{4} are arbitrary constants, t is the arc-length parameter and

$$
\begin{equation*}
\frac{1}{2}\left(-\sqrt{c_{3}^{2}-4}-c_{3}\right)<\kappa_{1}(t)<\frac{1}{2}\left(\sqrt{c_{3}^{2}-4}-c_{3}\right) ; \text { or } \tag{11}
\end{equation*}
$$

(ii) γ is of osculating order $r=3$ with $f=c_{1} \kappa_{1}^{-3 / 2}, \frac{\kappa_{2}}{\kappa_{1}}=c_{2}$ and κ_{1} satisfies

$$
\begin{equation*}
t \pm \frac{1}{2} \arctan \left(\frac{2+c_{3} \kappa_{1}}{2 \sqrt{-\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-c_{3} \kappa_{1}-1}}\right)+c_{4}=0 \tag{12}
\end{equation*}
$$

where $c_{1}>0, c_{2}>0, c_{3}<-2 \sqrt{\left(1+c_{2}^{2}\right)}$ and c_{4} are arbitrary constants, t is the arc-length parameter and

$$
\begin{equation*}
\frac{1}{2\left(1+c_{2}^{2}\right)}\left(-\sqrt{c_{3}^{2}-4\left(1+c_{2}^{2}\right)}-c_{3}\right)<\kappa_{1}(t)<\frac{1}{2\left(1+c_{2}^{2}\right)}\left(\sqrt{c_{3}^{2}-4\left(1+c_{2}^{2}\right)}-c_{3}\right) . \tag{13}
\end{equation*}
$$

Proof. From the first equation of (9), it is easy to see that $f=c_{1} \kappa_{1}^{-3 / 2}$ for an arbitrary constant $c_{1}>0$. So, we find

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\frac{-3}{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}, \frac{f^{\prime \prime}}{f}=\frac{15}{4}\left(\frac{\kappa_{1}^{\prime}}{\kappa_{1}}\right)^{2}-\frac{3}{2} \frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}} \tag{14}
\end{equation*}
$$

If $\kappa_{2}=0$, then γ is of osculating order $r=2$ and the first two of equations (9) must be satisfied. Hence the second equation and (14) give us the ODE

$$
\begin{equation*}
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left(\kappa_{1}^{2}-1\right) \tag{15}
\end{equation*}
$$

Let $\kappa_{1}=\kappa_{1}(t)$, where t denotes the arc-length parameter. If we solve (15), we find (10). Since (10) must be well-defined, $-\kappa_{1}^{2}-c_{3} \kappa_{1}-1>0$. Since $\kappa_{1}>0$, we have $c_{3}<-2$ and (11).

If $\kappa_{2}=$ constant $\neq 0$, we find f is a constant. Hence γ is not proper f-biharmonic in this case. Let $\kappa_{2} \neq$ constant. From the fourth equation of (9), we have $\kappa_{3}=0$. So, γ is of osculating order $r=3$. The third equation of (9) gives us $\frac{\kappa_{2}}{\kappa_{1}}=c_{2}$, where $c_{2}>0$ is a constant. Replacing in the second equation of (9), we have the ODE

$$
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-1\right]
$$

which has the general solution (12) under the condition $c_{3}<-2 \sqrt{\left(1+c_{2}^{2}\right)}$. (13) must be also satisfied.
Remark 3.3. If $m=1$, then M is a 3-dimensional Sasakian space form. Since a Legendre curve in a Sasakian 3-manifold has torsion 1 (see [1]), we can write $\kappa_{1}>0$ and $\kappa_{2}=1$. The first and the third equations of (9) give us f is a constant. Hence γ cannot be proper f-biharmonic.

Case II. $c \neq 1, \varphi T \perp E_{2}$.
In this case, $g\left(\varphi T, E_{2}\right)=0$. From Theorem 3.1, we obtain

$$
\begin{gather*}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0, \tag{16}\\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3}{4}+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f}, \\
\kappa_{2}^{\prime}+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}=0 .
\end{gather*}
$$

Firstly, we need the following proposition from [7]:
Proposition 3.4. [7] Let γ be a Legendre Frenet curve of osculating order 3 in a Sasakian space form $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ and $\varphi T \perp E_{2}$. Then $\left\{T=E_{1}, E_{2}, E_{3}, \varphi T, \nabla_{T} \varphi T, \xi\right\}$ is linearly independent at any point of γ. Therefore $m \geq 3$.

Now we can state the following Theorem:
Theorem 3.5. Let γ be a Legendre Frenet curve in a Sasakian space form $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right), c \neq 1$ and $\varphi T \perp E_{2}$. Then γ is proper biharmonic if and only if
(1) γ is of osculating order $r=2$ with $f=c_{1} \kappa_{1}^{-3 / 2}, m \geq 2,\left\{T=E_{1}, E_{2}, \varphi T, \nabla_{T} \varphi T, \xi\right\}$ is linearly independent and (a) if $c>-3$, then κ_{1} satisfies
$t \pm \frac{1}{\sqrt{c+3}} \arctan \left(\frac{c+3+2 c_{3} \kappa_{1}}{\sqrt{c+3} \sqrt{-4 \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3}}\right)+c_{4}=0$,
(b) if $c=-3$, then κ_{1} satisfies
$t \pm \frac{\sqrt{-\kappa_{1}\left(\kappa_{1}+c_{3}\right)}}{c_{3} \kappa_{1}}+c_{4}=0$,
(c) if $c<-3$, then κ_{1} satisfies

$$
t \pm \frac{1}{\sqrt{-c-3}} \ln \left(\frac{c+3+2 c_{3} \kappa_{1}-\sqrt{-c-3} \sqrt{-4 \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3}}{(c+3) \kappa_{1}}\right)+c_{4}=0 ; \text { or }
$$

(2) γ is of osculating order $r=3$ with $f=c_{1} \kappa_{1}^{-3 / 2}, \frac{\kappa_{2}}{\kappa_{1}}=c_{2}=$ constant $>0, m \geq 3,\left\{T=E_{1}, E_{2}, E_{3}, \varphi T, \nabla_{T} \varphi T, \xi\right\}$ is linearly independent and
(a) if $c>-3$, then κ_{1} satisfies
$t \pm \frac{1}{\sqrt{c+3}} \arctan \left(\frac{c+3+2 c_{3} \kappa_{1}}{\sqrt{c+3} \sqrt{-4\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3}}\right)+c_{4}=0$,
(b) if $c=-3$, then κ_{1} satisfies

$$
t \pm \frac{\sqrt{-\kappa_{1}\left[\left(1+c_{2}^{2}\right) \kappa_{1}+c_{3}\right]}}{c_{3} \kappa_{1}}+c_{4}=0
$$

(c) if $c<-3$, then κ_{1} satisfies

$$
t \pm \frac{1}{\sqrt{-c-3}} \ln \left(\frac{c+3+2 c_{3} \kappa_{1}-\sqrt{-c-3} \sqrt{-4\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3}}{(c+3) \kappa_{1}}\right)+c_{4}=0
$$

where $c_{1}>0, c_{2}>0, c_{3}$ and c_{4} are convenient arbitrary constants, t is the arc-length parameter and $\kappa_{1}(t)$ is in convenient open interval.

Proof. The proof is similar to the proof of Theorem 3.2.
Case III. $c \neq 1, \varphi T \| E_{2}$.
In this case, $\varphi T= \pm E_{2}, g\left(\varphi T, E_{2}\right)= \pm 1, g\left(\varphi T, E_{3}\right)=g\left(\pm E_{2}, E_{3}\right)=0$ and $g\left(\varphi T, E_{4}\right)=g\left(\pm E_{2}, E_{4}\right)=0$. From Theorem 3.1, γ is biharmonic if and only if

$$
\begin{gather*}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0, \tag{17}\\
\kappa_{1}^{2}+\kappa_{2}^{2}=c+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f} \\
\kappa_{2}^{\prime}+2 \kappa_{2} \frac{\kappa^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}=0 .
\end{gather*}
$$

Since $\varphi T \| E_{2}$, it is easily proved that $\kappa_{2}=1$. Then, the first and the third equations of (17) give us f is a constant. Thus, we give the following Theorem:
Theorem 3.6. There does not exist any proper f-biharmonic Legendre curve in a Sasakian space form $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ with $c \neq 1$ and $\varphi T \| E_{2}$.

Case IV. $c \neq 1$ and $g\left(\varphi T, E_{2}\right)$ is not constant 0,1 or -1 .
Now, let $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ be a Sasakian space form and $\gamma: I \rightarrow M$ a Legendre curve of osculating order r, where $4 \leq r \leq 2 m+1$ and $m \geq 2$. If γ is f-biharmonic, then $\varphi T \in \operatorname{span}\left\{E_{2}, E_{3}, E_{4}\right\}$. Let $\theta(t)$ denote the angle function between φT and E_{2}, that is, $g\left(\varphi T, E_{2}\right)=\cos \theta(t)$. Differentiating $g\left(\varphi T, E_{2}\right)$ along γ and using (1) and (4), we find

$$
\begin{align*}
-\theta^{\prime}(t) \sin \theta(t) & =\nabla_{T} g\left(\varphi T, E_{2}\right)=g\left(\nabla_{T} \varphi T, E_{2}\right)+g\left(\varphi T, \nabla_{T} E_{2}\right) \\
& =g\left(\xi+\kappa_{1} \varphi E_{2}, E_{2}\right)+g\left(\varphi T,-\kappa_{1} T+\kappa_{2} E_{3}\right) \tag{18}\\
& =\kappa_{2} g\left(\varphi T, E_{3}\right) .
\end{align*}
$$

If we write $\varphi T=g\left(\varphi T, E_{2}\right) E_{2}+g\left(\varphi T, E_{3}\right) E_{3}+g\left(\varphi T, E_{4}\right) E_{4}$, Theorem 3.1 gives us

$$
\begin{align*}
& 3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0 \tag{19}\\
& \kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3}{4}+\frac{3(c-1)}{4} \cos ^{2} \theta+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f^{\prime}} \tag{20}\\
& \kappa_{2}^{\prime}+\frac{3(c-1)}{4} \cos \theta g\left(\varphi T, E_{3}\right)+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0 \tag{21}\\
& \kappa_{2} \kappa_{3}+\frac{3(c-1)}{4} \cos \theta g\left(\varphi T, E_{4}\right)=0 \tag{22}
\end{align*}
$$

If we put (14) in (20) and (21) respectively, we obtain

$$
\begin{align*}
& \kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3}{4}+\frac{3(c-1)}{4} \cos ^{2} \theta-\frac{\kappa_{1}^{\prime \prime}}{2 \kappa_{1}}+\frac{3}{4}\left(\frac{\kappa_{1}^{\prime}}{\kappa_{1}}\right)^{2} \tag{23}\\
& \kappa_{2}^{\prime}-\frac{\kappa_{1}^{\prime}}{\kappa_{1}} \kappa_{2}+\frac{3(c-1)}{4} \cos \theta g\left(\varphi T, E_{3}\right)=0 \tag{24}
\end{align*}
$$

If we multiply (24) with $2 \kappa_{2}$, using (18), we find

$$
\begin{equation*}
2 \kappa_{2} \kappa_{2}^{\prime}-2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \kappa_{2}^{2}+\frac{3(c-1)}{4}\left(-2 \theta^{\prime} \cos \theta \sin \theta\right)=0 \tag{25}
\end{equation*}
$$

Let us denote $v(t)=\kappa_{2}^{2}(t)$, where t is the arc-length parameter. Then (25) becomes

$$
\begin{equation*}
v^{\prime}-2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} v=-\frac{3(c-1)}{4}\left(-2 \theta^{\prime} \cos \theta \sin \theta\right) \tag{26}
\end{equation*}
$$

which is a linear ODE. If we solve (26), we obtain the following results:
i) If θ is a constant, then

$$
\begin{equation*}
\frac{\kappa_{2}}{\kappa_{1}}=c_{2} \tag{27}
\end{equation*}
$$

where $c_{2}>0$ is an arbitrary constant. From (18), we find $g\left(\varphi T, E_{3}\right)=0$. Since $\|\varphi T\|=1$ and $\varphi T=$ $\cos \theta E_{2}+g\left(\varphi T, E_{4}\right) E_{4}$, we get $g\left(\varphi T, E_{4}\right)= \pm \sin \theta$. By the use of (20) and (27), we find

$$
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-\frac{c+3+3(c-1) \cos ^{2} \theta}{4}\right] .
$$

ii) If $\theta=\theta(t)$ is a non-constant function, then

$$
\begin{equation*}
\kappa_{2}^{2}=-\frac{3(c-1)}{4} \cos ^{2} \theta+\lambda(t) \cdot \kappa_{1}^{2} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda(t)=-\frac{3(c-1)}{2} \int \frac{\cos ^{2} \theta \kappa_{1}^{\prime}}{\kappa_{1}^{3}} d t \tag{29}
\end{equation*}
$$

If we write (28) in (23), we have

$$
[1+\lambda(t)] \cdot \kappa_{1}^{2}=\frac{c+3+6(c-1) \cos ^{2} \theta}{4}-\frac{\kappa_{1}^{\prime \prime}}{2 \kappa_{1}}+\frac{3}{4}\left(\frac{\kappa_{1}^{\prime}}{\kappa_{1}}\right)^{2} .
$$

Now we can state the following Theorem:

Theorem 3.7. Let $\gamma: I \rightarrow M$ be a Legendre curve of osculating order r in a Sasakian space form $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$, where $r \geq 4, m \geq 2, c \neq 1, g\left(\varphi T, E_{2}\right)=\cos \theta(t)$ is not constant 0,1 or -1 . Then γ is proper f-biharmonic if and only if $f=c_{1} \kappa_{1}^{-3 / 2}$ and
(i) if θ is a constant,

$$
\begin{aligned}
& \frac{\kappa_{2}}{\kappa_{1}}=c_{2} \\
& 3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-\frac{c+3+3(c-1) \cos ^{2} \theta}{4}\right] \\
& \kappa_{2} \kappa_{3}= \pm \frac{3(c-1) \sin 2 \theta}{8}
\end{aligned}
$$

(ii) if θ is a non-constant function,

$$
\begin{aligned}
& \kappa_{2}^{2}=-\frac{3(c-1)}{4} \cos ^{2} \theta+\lambda(t) \cdot \kappa_{1}^{2} \\
& 3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[(1+\lambda(t)) \kappa_{1}^{2}-\frac{c+3+6(c-1) \cos ^{2} \theta}{4}\right] \\
& \kappa_{2} \kappa_{3}= \pm \frac{3(c-1) \sin 2 \theta \sin w}{8}
\end{aligned}
$$

where c_{1} and c_{2} are positive constants, $\varphi T=\cos \theta E_{2} \pm \sin \theta \cos w E_{3} \pm \sin \theta \sin w E_{4}$, w is the angle function between E_{3} and the orthogonal projection of φ T onto span $\left\{E_{3}, E_{4}\right\}$. w is related to θ by $\cos w=\frac{-\theta^{\prime}}{k_{2}}$ and $\lambda(t)$ is given by

$$
\lambda(t)=-\frac{3(c-1)}{2} \int \frac{\cos ^{2} \theta \kappa_{1}^{\prime}}{\kappa_{1}^{3}} d t
$$

We can give the following direct corollary of Theorem 3.7:
Corollary 3.8. Let $\gamma: I \rightarrow M$ be a Legendre curve of osculating order r in a Sasakian space form $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$, where $r \geq 4, m \geq 2, c \neq 1, g\left(\varphi T, E_{2}\right)=\cos \theta$ is a constant and $\theta \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$. Then γ is proper f-biharmonic if and only if $f=c_{1} \kappa_{1}^{-3 / 2}, \frac{\kappa_{2}}{\kappa_{1}}=c_{2}=$ constant >0,

$$
\begin{aligned}
& \kappa_{2} \kappa_{3}= \pm \frac{3(c-1) \sin 2 \theta}{8} \\
& \kappa_{4}= \pm \frac{\eta\left(E_{5}\right)+g\left(\varphi E_{2}, E_{5}\right) \kappa_{1}}{\sin \theta}(\text { if } r>4) ; \text { and }
\end{aligned}
$$

(i) if $a>0$, then κ_{1} satisfies

$$
t \pm \frac{1}{2 \sqrt{a}} \arctan \left(\frac{1}{2 \sqrt{a}} \frac{2 a+c_{3} \kappa_{1}}{\sqrt{-\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-c_{3} \kappa_{1}-a}}\right)+c_{4}=0
$$

(ii) if $a=0$, then κ_{1} satisfies

$$
t \pm \frac{\sqrt{-\kappa_{1}\left[\left(1+c_{2}^{2}\right) \kappa_{1}+c_{3}\right]}}{c_{3} \kappa_{1}}+c_{4}=0
$$

(iii) if a <0, then κ_{1} satisfies

$$
t \pm \frac{1}{2 \sqrt{-a}} \ln \left(\frac{2 a+c_{3} \kappa_{1}-2 \sqrt{-a} \sqrt{-\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-c_{3} \kappa_{1}-a}}{2 a \kappa_{1}}\right)+c_{4}=0
$$

where $a=\left[c+3+3(c-1) \cos ^{2} \theta\right] / 4, \varphi T=\cos \theta E_{2} \pm \sin \theta E_{4}, c_{1}>0, c_{2}>0, c_{3}$ and c_{4} are convenient arbitrary constants, t is the arc-length parameter and $\kappa_{1}(t)$ is in convenient open interval.

In order to obtain explicit examples, we will first need to recall some notions about the Sasakian space form $\mathbb{R}^{2 m+1}(-3)$ [3]:

Let us consider $M=\mathbb{R}^{2 m+1}$ with the standard coordinate functions $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z\right)$, the contact structure $\eta=\frac{1}{2}\left(d z-\sum_{i=1}^{m} y_{i} d x_{i}\right)$, the characteristic vector field $\xi=2 \frac{\partial}{\partial z}$ and the tensor field φ given by

$$
\varphi=\left[\begin{array}{ccc}
0 & \delta_{i j} & 0 \\
-\delta_{i j} & 0 & 0 \\
0 & y_{j} & 0
\end{array}\right]
$$

The associated Riemannian metric is $g=\eta \otimes \eta+\frac{1}{4} \sum_{i=1}^{m}\left(\left(d x_{i}\right)^{2}+\left(d y_{i}\right)^{2}\right)$. Then $(M, \varphi, \xi, \eta, g)$ is a Sasakian space form with constant φ-sectional curvature $c=-3$ and it is denoted by $\mathbb{R}^{2 m+1}(-3)$. The vector fields

$$
\begin{equation*}
X_{i}=2 \frac{\partial}{\partial y_{i}}, X_{m+i}=\varphi X_{i}=2\left(\frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial z}\right), i=\overline{1, m}, \xi=2 \frac{\partial}{\partial z} \tag{30}
\end{equation*}
$$

form a g-orthonormal basis and the Levi-Civita connection is calculated as

$$
\begin{aligned}
& \nabla_{X_{i}} X_{j}=\nabla_{X_{m+i}} X_{m+j}=0, \nabla_{X_{i}} X_{m+j}=\delta_{i j} \xi, \nabla_{X_{m+i}} X_{j}=-\delta_{i j} \xi, \\
& \nabla_{X_{i}} \xi=\nabla_{\xi} X_{i}=-X_{m+i}, \nabla_{X_{m+i}} \xi=\nabla_{\xi} X_{m+i}=X_{i},
\end{aligned}
$$

(see [3]).
Now, let us produce examples of proper f-biharmonic Legendre curves in $\mathbb{R}^{7}(-3)$:
Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{7}\right)$ be a unit speed curve in $\mathbb{R}^{7}(-3)$. The tangent vector field of γ is

$$
T=\frac{1}{2}\left[\gamma_{4}^{\prime} X_{1}+\gamma_{5}^{\prime} X_{2}+\gamma_{6}^{\prime} X_{3}+\gamma_{1}^{\prime} X_{4}+\gamma_{2}^{\prime} X_{5}+\gamma_{3}^{\prime} X_{6}+\left(\gamma_{7}^{\prime}-\gamma_{1}^{\prime} \gamma_{4}-\gamma_{2}^{\prime} \gamma_{5}-\gamma_{3}^{\prime} \gamma_{6}\right) \xi\right]
$$

Thus, γ is a unit speed Legendre curve if and only if $\eta(T)=0$ and $g(T, T)=1$, that is,

$$
\gamma_{7}^{\prime}=\gamma_{1}^{\prime} \gamma_{4}+\gamma_{2}^{\prime} \gamma_{5}+\gamma_{3}^{\prime} \gamma_{6}
$$

and

$$
\left(\gamma_{1}^{\prime}\right)^{2}+\ldots+\left(\gamma_{6}^{\prime}\right)^{2}=4
$$

For a Legendre curve, we can use the Levi-Civita connection and (30) to write

$$
\begin{align*}
& \nabla_{T} T=\frac{1}{2}\left(\gamma_{4}^{\prime \prime} X_{1}+\gamma_{5}^{\prime \prime} X_{2}+\gamma_{6}^{\prime \prime} X_{3}+\gamma_{1}^{\prime \prime} X_{4}+\gamma_{2}^{\prime \prime} X_{5}+\gamma_{3}^{\prime \prime} X_{6}\right) \tag{31}\\
& \varphi T=\frac{1}{2}\left(-\gamma_{1}^{\prime} X_{1}-\gamma_{2}^{\prime} X_{2}-\gamma_{3}^{\prime} X_{3}+\gamma_{4}^{\prime} X_{4}+\gamma_{5}^{\prime} X_{5}+\gamma_{6}^{\prime} X_{6}\right) \tag{32}
\end{align*}
$$

From (31) and (32), $\varphi T \perp E_{2}$ if and only if

$$
\gamma_{1}^{\prime \prime} \gamma_{4}^{\prime}+\gamma_{2}^{\prime \prime} \gamma_{5}^{\prime}+\gamma_{3}^{\prime \prime} \gamma_{6}^{\prime}=\gamma_{1}^{\prime} \gamma_{4}^{\prime \prime}+\gamma_{2}^{\prime} \gamma_{5}^{\prime \prime}+\gamma_{3}^{\prime} \gamma_{6}^{\prime \prime}
$$

Finally, we can give the following explicit examples:

Example 3.9. Let us take $\gamma(t)=\left(2 \sinh ^{-1}(t), \sqrt{1+t^{2}}, \sqrt{3} \sqrt{1+t^{2}}, 0,0,0,1\right)$ in $\mathbb{R}^{7}(-3)$. Using the above equations and Theorem 3.5, γ is a proper f-biharmonic Legendre curve with osculating order $r=2, \kappa_{1}=\frac{1}{1+t^{2}}, f=c_{1}\left(1+t^{2}\right)^{3 / 2}$ where $c_{1}>0$ is a constant. We can easily check that the conditions of Theorem 3.5 (i.e. $c \neq 1, \varphi T \perp E_{2}$) are verified, where $c_{3}=-1$ and $c_{4}=0$.

Example 3.10. Let $\gamma(t)=\left(a_{1}, a_{2}, a_{3}, \sqrt{2} t, 2 \sinh ^{-1}\left(\frac{t}{\sqrt{2}}\right), \sqrt{2} \sqrt{2+t^{2}}, a_{4}\right)$ be a curve in $\mathbb{R}^{7}(-3)$, where $a_{i} \in \mathbb{R}, i=\overline{1,4}$. Then we calculate

$$
\begin{aligned}
& T=\frac{\sqrt{2}}{2} X_{1}+\frac{1}{\sqrt{2+t^{2}}} X_{2}+\frac{\sqrt{2} t}{2 \sqrt{2+t^{2}}} X_{3}, \\
& E_{2}=\frac{-t}{\sqrt{2+t^{2}}} X_{2}+\frac{\sqrt{2}}{\sqrt{2+t^{2}}} X_{3}, \\
& E_{3}=\frac{\sqrt{2}}{2} X_{1}-\frac{1}{\sqrt{2+t^{2}}} X_{2}-\frac{\sqrt{2} t}{2 \sqrt{2+t^{2}}} X_{3}, \\
& \kappa_{1}=\kappa_{2}=\frac{1}{2+t^{2}}, r=3 .
\end{aligned}
$$

From Theorem 3.5, it follows that γ is proper f-biharmonic with $f=c_{1}\left(2+t^{2}\right)^{3 / 2}$, where $c_{1}>0, c_{2}=1, c_{3}=-1$ and $c_{4}=0$.

References

[1] C. Baikoussis, D. E. Blair, On Legendre curves in contact 3-manifolds, Geom. Dedicata 49 (1994) 135-142.
[2] D. E. Blair, Geometry of manifolds with structural group $\mathcal{U}(n) \times O(s)$, J. Differential Geometry 4 (1970) 155-167.
[3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, 2002.
[4] B.Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996) 117-337.
[5] Jr. J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109-160.
[6] D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, J. Korean Math. Soc. 45 (2008) 393-404.
[7] D. Fetcu, C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific J. Math. 240 (2009) 85-107.
[8] G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986) 389-402.
[9] W. J. Lu, On f-biharmonic maps between Riemannian manifolds, arXiv:1305.5478.
[10] S. Montaldo, C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006) no. 2 1-22.
[11] Y. L. Ou, On f-biharmonic maps and f-biharmonic submanifolds, arXiv:1306.3549v1.
[12] C. Özgür, Ş. Güvenç, On biharmonic Legendre curves in S-space forms, Turkish J. Math. 38 (2014) no. 3454-461.
[13] C. Özgür, Ş. Güvenç, On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collect. Math. 65 (2014) no. 2 203-218.

[^0]: 2010 Mathematics Subject Classification. Primary 53C25; Secondary 53C40, 53A04.
 Keywords. Legendre curve; Sasakian space form; f-biharmonic curve.
 Received: 16 December 2014; Accepted: 23 July 2015
 Communicated by Ljubica Velimirović
 Email addresses: sguvenc@balikesir.edu.tr (Şaban Güvenç), cozgur@balikesir.edu.tr (Cihan Özgür)

