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Abstract

We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the
Mira variable V1 in the metal-rich globular cluster NGC5927. We use high-resolution (R∼ 28,000), high signal-
to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering
simultaneously the wavelength range 0.91–1.35μm. The effective temperature and the surface gravity at the
pulsation phase of the spectroscopic observation were estimated using both optical (V ) and NIR time-series
photometric data. We found that the Mira is metal-rich ([Fe/H]=−0.55± 0.15) and moderately α-enhanced
([α/Fe]=0.15± 0.01, σ=0.2). These values agree quite well with the mean cluster abundances based on
high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H]=− 0.47± 0.06,
[α/Fe]=+ 0.24± 0.05). We also found a Na abundance of +0.35±0.20 that is higher than the mean cluster
abundance based on optical spectra (+0.18± 0.13). However, the lack of similar spectra for cluster red giants and
that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether
the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity
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* Based on spectra collected with the WINERED spectrograph available as a
visitor instrument at the ESO New Technology Telescope (NTT), La Silla,
Chile (ESO Proposal: 098.D-0878(A), PI: G.Bono).
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between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis,
and in the adopted spectroscopic diagnostics.

Key words: globular clusters: individual (NGC 5927) – stars: abundances – stars: variables: general

1. Introduction

Radial variables have several key advantages compared with
static stars, making them good stellar tracers. They can be
easily identified even in crowded stellar fields using differential
photometry. They are typically good distance indicators, and
individual distances can be estimated with an accuracy better
than a few percent. Classical Cepheids and Miras do provide
the unique opportunity to estimate individual ages, since their
periods are anti-correlated with their individual ages. This
implies the opportunity to trace radial gradients across the main
Galactic components (thin disk: Da Silva et al. 2016; bulge:
Kunder et al. 2013; Zoccali & Valenti 2016; halo: Fiorentino
et al. 2015) and in nearby stellar systems (Martínez-Vázquez
et al. 2016).

Miras play a crucial role in this context, since their parent
population covers a broad range in stellar ages: from a few
hundred Myr up to the age of globular clusters (GCs). This
means they are ubiquitous because they are present in
intermediate-age to old stellar environments. We are interested
in cluster Miras, since they allow us to have a priori robust
information concerning the chemical composition, the environ-
ment, and the evolutionary channel where they come from.
Moreover, they allow us to develop a homogeneous metallicity
scale between Miras and other stars in GCs, mainly red giants,
widely investigated (Carretta et al. 2009 and references
therein). We focused our attention on V1 in NGC5927, since
this is a well-known metal-rich GC (Pancino et al. 2010). It
should be noted that V1 is listed as an irregular variable (Lb
class) in Clement et al. (2001), but we identified this object as a
Mira, or an intermediate type between a Mira and a semi-
regular variable, according to its periodic variation with a large
infrared amplitude (Figure1 in Sloan et al. 2010; see also
Section 3.1). Its amplitude, ∼0.4mag, is around the lower end
of the infrared amplitudes of Miras (e.g., Matsunaga
et al. 2009). As illustrated in Figure9 of Sloan et al. (2010),
V1 lies on the period–luminosity relation of Miras (and
relatively large-amplitude semi-regulars). The selection of a
metal-rich GC was mainly driven by the fact that the
occurrence of Miras appears to be correlated with iron
abundance (Frogel & Whitelock 1998). The reasons why we
decided to collect NIR high-resolution, high signal-to-noise
ratio spectra with WINERED are manifold: (a) We are mainly
interested in Miras located in the bulge (field, globulars); this
means stellar environments that are crowded and heavily
reddened. (b) WINERED covers a substantial wavelength
range (0.91–1.35 μm) and is characterized by a high spectral
resolution (R∼ 28,000, WIDE mode). Miras are late-type stars,
which means that they are intrinsically brighter in the quoted
wavelength range. Thus, we have the opportunity to identify
many iron and α-element lines. Moreover, WINERED is also
characterized by a very high sensitivity and impressive
throughputs—from ∼30% in the z band to more than 50% in
the J band—when compared with similar NIR spectrographs
(Ikeda et al. 2016). (c) WINERED can also collect spectra with
very high spectral resolution (R∼ 68,000, HIRES mode;
Otsubo et al. 2016), covering either the Y or the J band.

We present in this Letter the first spectroscopic characteriza-
tion of a cluster Mira done by using a high-resolution near-
infrared spectrum (z, Y, J bands) and report its abundances for
iron, α-elements, and sodium.

2. Observations and Data Reduction

We observed the Mira V1 in NGC5927 with the WIDE
mode, R∼28,000, of WINERED, a PI instrument attached to
the 3.58 m New Technology Telescope at La Silla observatory,
ESO, Chile. The observation was done at around 08:25 on
2017 February 13 (UT), and the weather condition was fairly
stable. We obtained two integrations for the target of 300 s
each, and the co-added spectrum is expected to give an S/N
higher than 200. The spatial spread function shows an FWHM
of about 1.4 arcsec including the seeing and the tracking
accuracy. Two integrations were done with the target at
different positions within the slit (i.e., AB positions).
The reduction was performed by using the automated pipeline

developed by the WINERED team (see, e.g., Taniguchi
et al. 2018). This pipeline produces continuum-normalized
spectra after standard analysis steps including bad pixel masking,
sky subtraction, flat-fielding, scattered light subtraction, spec-
trum extraction, wavelength calibration, and continuum normal-
ization. We used ThAr lamp data for the wavelength calibration
and the wavelengths were corrected to the standard air scale.

2.1. Tellurics Subtraction

The main spurious features affecting every stellar spectrum
are caused by the Earth’s atmosphere. Molecular absorption
bands are observed at fixed and well-known wavelengths, but
their strength depends on the current atmospheric conditions. In
particular, NIR bands are more affected by tellurics than the
optical bands. These lines are removed from the raw spectrum
before performing any kind of abundance analysis, to avoid
possible mis-identification and systematics in the estimate of
the equivalent widths. The most common approach relies on
the use of telluric standard stars. An early-type star with few
and weak metallic lines is observed, close in time and in
airmass to the target star, and its spectrum is subtracted from
the target (Sameshima 2018 and references therein). This
technique faces three main problems: (a) atmospheric condi-
tions can change rapidly during the night, thus it is not trivial to
observe a telluric standard close in time and in sky position to
the individual targets; (b) it requires a significant investment in
telescope time; and (c) telluric lines and stellar photospheric
lines might be blended, thus limiting the accuracy of the
correction (Sameshima 2018). We decided to adopt a different
approach and to use the synthetic sky modeler TELFIT by
Gullikson et al. (2014) to compute the telluric spectra for
individual target spectra. The synthetic sky was modeled
independently for the 20 spectral orders of WINERED
(Δλ;300Å). This approach allows us to properly trace the
variation in spectral resolution when moving from the blue
(λ;9200Å, R∼ 28,000) to the red (λ;13400Å, R∼
30,000) regime of WINERED (see Figure 5 in Ikeda
et al. 2016). A comparison between TELFIT and the standard
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telluric approach is shown in Figure 1 for the range
12600–12900Å. The subtraction of tellurics based on synthetic
sky spectra and on the standard star agree quite well, and
indeed both the residuals are of the order of 3%. However, note
that the standard star shows a disturbing hydrogen absorption
feature at 12,818Å, which is completely absent with the
synthetic sky approach, compromising the identification of
some useful absorption lines (see Figure 2). The approach
based on synthetic sky spectra appears very promising, since

the spectrum of the telluric standard was collected in ideal
conditions, i.e., 26 minutes after the Mira spectrum and with a
minimal difference in airmass (1.04 versus 1.19).

3. Results and Discussions

3.1. Stellar Atmospheric Parameters

As a first step, we derived the radial velocity (RV) of our target
through cross-correlation with a grid of synthetic spectra in selected

Figure 1. Left column: comparison between the original WINERED spectrum of Mira V1 in NGC5927 (black line) and the synthetic sky modeled with TELFIT (red
line). Residuals are shown in the bottom panel. Right column: as before, but the spectrum of the standard telluric star HD118054 was used instead of TELFIT. Note
that the residuals show intrinsic lines of the target.

Figure 2. Example of a spectral window exploited to compare synthetic (solid line) and observed (dotted–dashed line) spectra. Key diagnostics for abundances are
marked (Fe, Ca, and Ti).
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wavelength regions, from 11700 to 13000Å. We determined a
heliocentric velocity of RV=−105.2±2.0 km s−1 (based on 34
spectral lines), which agrees quite well with the cluster average
value given by Harris’s catalog (1996, 2010 update36) of
−107.5±0.9 km s−1 and by Simmerer et al. (2013) of
−104.03±5.03 km s−1. Note that the velocity amplitude of the
Miras minimally affects this finding, since their typical variation is
∼10 km s−1 (Wood 1979). Since our spectral coverage does not
grant the inclusion of a sufficient number of FeI and (most
crucially) FeII lines, the atmospheric parameters were adopted
from photometric properties. More specifically, effective temper-
ature (Teff) was obtained using J−Ks colors and the calibration by
Alonso et al. (1999), assuming the reddening value from Harris
(1996) of E(B−V )=0.45, which corresponds to E(J−Ks)=
0.23 based on the extinction law of Cardelli et al. (1989). In order
to estimate the pulsation phase, we used the ASAS-SN light curve
(Shappee et al. 2014; Kochanek et al. 2017), which covers the
epoch of our spectroscopic observation well (330 phase points
from 2016 March to 2017 July; period of the Mira P=202 days
from Sloan et al. 2010). Although the angular resolution of the
ASAS-SN is low (15 arcsec) for our target in the GC, its light curve
clearly indicates that the target was near a minimum and the
V-band magnitude is estimated at 15.3±0.1mag. Unfortunately,
we have no recent infrared photometry for the target, and thus we
used a light curve obtained at 1.4m Infrared Survey Facility about
10 years ago. Matsunaga (2006) obtained 49 photometric points
which show periodic variation from 2002 March to 2005 August
with an amplitude of ∼0.4mag in Ks. Assuming that the phase lag
between V-band and K-band light curves is 0.0–0.2 (with V
preceding; see, e.g., Smith et al. 2006), the K-band phase for the
spectroscopic data is 0.3–0.1cycles before the minimum leading to
J−Ks=1.3±0.05 mag and Ks=8.9±0.15 mag from the
IRSF light curve. V−Ks is then 6.4±0.2mag, which
corresponds to (V−Ks)0=5.1±0.4mag, while (J−Ks)0=
1.05±0.05mag, with the reddening corrected.

We obtained a Teff=3600 K using the J−Ks colors and
3500 K using the V−Ks colors and the calibration by Bessell
et al. (1998). We adopted the former one, since the NIR
photometry was collected simultaneously. The J−Ks is also
less prone to reddening uncertainties when compared with
V−Ks color, since E J K E V K 0.19 mag- - =( ) ( )
(Cardelli et al. 1989). An error of 100 K is thus a plausible
uncertainty. We also applied the temperature scale based on the
reddening-free method of line-depth ratios constructed by
Taniguchi et al. (2018). Some lines of their 81 line pairs cannot
be measured in the crowded spectrum of V1 in NGC5927;
however, we estimated Teff=3665±63 K. The current value
is consistent with the estimate based on the color–temperature
transformations, thus suggesting that they are minimally
affected by a possible reddening variation and/or dust
formation in warm Miras. Note that this temperature estimate
was slightly extrapolated, since the temperatures of the
calibrating stars used by Taniguchi et al. (2018) range from
3780 to 5400 K.

From the photometric Teff, assuming a mass of M=0.6Me,
a true distance modulus of μ=14.44 mag (Harris 1996), and
the bolometric correction for K magnitudes by Buzzoni et al.
(2010), we estimated the surface gravity of log g=0.0±0.2,
where the error comprises contributions from all of the different
sources of uncertainty (i.e., temperature, luminosity). A

microturbulence of ξ=2.0 km s−1 was set, following pre-
scriptions from the literature for this kind of cool, giant star
(e.g., Origlia et al. 2013); note also that Nowotny et al. (2010)
and Lebzelter et al. (2014) imposed a value of ξ=2.5 km s−1

for Miras, in agreement, within the errors, with our value (see
Table 1).

3.2. Abundance Analysis

The determination of elemental abundances was carried out
via spectral synthesis calculations using the driver synth in
MOOG by C.Sneden (1973, 2017 version) and the MARCS
grid of spherical model atmospheres (Gustafsson et al. 2008),
with α enhancements. The above mentioned atmospheric
parameters were adopted, along with a global metallicity in
the model atmosphere of [M/H]=−0.537 (see Harris’s
catalog). The following crucial step includes the building of
the line list. We carefully selected only atomic lines that are
proven to be relatively isolated, unblended, and not affected by
departures from local thermodynamical equilibrium (LTE). Our
spectrum encompasses several KI lines, but we discarded this
species since non-LTE corrections are not available for
the lines under scrutiny (i.e., λ= 11772.838, 12432.27,
and 12522.134Å). Moreover, we only kept lines that
provide abundances for the Sun (Teff=5770 K, log g=
4.44, ξ=0.9 km s−1, [M/H]=0; D’Orazi et al. 2017) and
Arcturus (Teff=4286 K, log g=1.66, ξ=1.74 km s−1,
[M/H]=−0.52; Ramírez & Allende Prieto 2011) in com-
pliance with literature values: all our measurements are in
agreement within 0.1 dex with Asplund et al. (2009) and
Ramírez & Allende Prieto (2011), respectively. Our choice,
though limiting the number of lines and species that can be
measured, allows us to infer reliable abundance measurements,
with no major systematics affecting our values. Our final line
list includes NaI, FeI, SiI, CaI, and TiI lines and is given in
Table 2, where we report for each line the atomic parameters,

Table 1
Stellar Parameters (T g, logeff , and ξ) and Abundances for Our Target Star

Mira V1 Cluster Average

α 15h28m15 2 L
δ −50°38′09 0 L
Ks

a (mag) 8.9±0.15 L
A Ks

a (mag) ∼0.4 L
Pb (days) 202 L
Teff (K) 3600±100 L

glog (cgs) 0.00±0.20 L
ξ (km s−1) 2.0±0.5 L
[Fe/H] −0.55±0.15 −0.47±0.06
[Na/Fe]c +0.35±0.20 +0.18±0.13
[Si/Fe] +0.14±0.15 +0.24±0.08
[Ca/Fe] +0.13±0.20 +0.15±0.04
[Ti/Fe] +0.17±0.13 +0.32±0.06

Notes.The corresponding uncertainties are given (see the text for details). The
last column gives the cluster average abundances along with the standard
deviation by Mura-Guzmán et al. (2018).
a Mean Ks-band magnitude and amplitude (Matsunaga 2006).
b Sloan et al. (2010).
c Element affected by p-capture reactions.

36 http://physwww.mcmaster.ca/~harris/mwgc.dat

37 We adopt the standard notation for abundances, whereby [X/H]=A(X)−
A(X)e and A N NX log 12X H= +( ) ( ) .
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i.e., excitation potential and gflog . The latter comes from
different literature sources, including values by Kurucz38 and
the most recent computations for TiI lines by Lawler et al.
(2013). In order to perform the comparison between observed
and synthetic spectrum, we have selected six wavelength
regions with each interval covering ∼200Å: this means
synthetic calculations for more than 1000Å, by covering all
the spectral lines of interest. An example of a spectral region
that we have selected for our chemical analysis is shown in
Figure 2, whereas a zoom on the Ti line at 12,671Å is
displayed in Figure 3. Our target has a low effective
temperature and to properly locate the continuum we included
molecular line lists for CH, CN, CO, and OH from B.Plez
(private communication). The determination of C, N, O
abundances is a tricky task because of their inter-dependency
and because they are changing during the star’s evolution. To
add further complications, since our star is a GC member, all
the three elements under discussion are involved in the hot
hydrogen burning that is commonly accepted to happen in a
fraction of the cluster of first-generation stars (the so-called
multiple population scenario; see Gratton et al. 2012 for an
extensive review). Moreover, the WINERED spectral coverage
does not grant the inclusion of the CO bandhead and/or OH
features located in the H and K bands, which are commonly
used to derive abundances for carbon and oxygen. Conversely,
our spectra are populated with a large number of CN features.
Thus, it is not straightforward to get insights on the initial
content for C, N, O and on the amount of depletion/
enhancement that has occurred as the star gets evolved. For
current purposes, we computed a grid of different synthetic
spectra assuming different CNO abundances and finding the

best fit that minimizes the χ2. Note that this approach does not
allow us to derive C, N, and O abundances, since different
combinations can provide similar χ2 values. We are taking into
account these molecular features to improve the continuum
determination.
Chemical abundances are affected by internal uncertainties

due to two main sources of error: (1) uncertainties on the best-
fit determination (that takes into account continuum displace-
ment and line measurements) and (2) errors related to the
adopted set of stellar parameters. For the first kind of error we
adopted the standard deviation (rms) from the mean abun-
dances as given from different spectral lines: typical values are
in the range 0.07–0.10 dex. To estimate errors due to stellar
parameters (Teff, glog , ξ, and [M/H]) we have proceeded in the
standard way, that is changing each parameter one by one and
evaluating the corresponding variation on the resulting
abundances. Thus, temperature, gravity, microturbulence, and
global metallicity were changed by ±100 K, ±0.2 dex,
±0.5 km s−1, and ±0.1 dex; we found errors on the [X/Fe]
ratios of 0.10–0.12 dex. We then added in quadrature the four
different error contributions and calculated the final error
related to best fit and stellar parameters as

; 1T gbest
2 2

log
2 2

M H
2

eff
s s s s s s= + + + +x ( )[ ]

see the result given in Table 1. We note that, given the very
good agreement for benchmark stars such as the Sun and
Arcturus, major systematic uncertainties should not affect our
abundance values at a level larger than ∼0.1 dex.

3.3. Results and Concluding Remarks

Our results are given in Table 1, along with the corresp-
onding total uncertainty (best-fit procedure and errors due to
stellar parameters). The metallicity, [Fe/H]=−0.55±0.15,
is in good agreement, within the observational uncertainties,
with previous determinations from optical spectroscopy of GC
giant members. Harris (1996) gives for NGC 5927 a value of
[Fe/H]=−0.49, whereas Pancino et al. (2017) found a
slightly larger metal content, [Fe/H]=−0.39±0.04. Very
recently, Mura-Guzmán et al. (2018) have presented high-
resolution, FLAMES/UVES observations for a sample of
seven red giants in this cluster, reporting a mean metallicity of

Table 2
Atomic Line List for NaI (Species=11.0), SiI (14.0), CaI (20.0), TiI (22.0),

and FeI (26.0) Lines that We Used for the Abundance Analysis

Wavelength Species E.P. gflog [X/H]
(Å) (eV)

12,679.144 11.0 3.614 −0.04 −0.20
12,679.144 11.0 3.614 −1.34 L
12,679.224 11.0 3.614 −2.65 L
11,984.198 14.0 4.926 +0.19 −0.55
11,991.568 14.0 4.916 −0.16 −0.35
12,816.046 20.0 3.907 −0.63 −0.40
12,823.868 20.0 3.907 −0.85 −0.45
11,780.542 22.0 1.442 −2.17 −0.55
11,797.186 22.0 1.429 −2.28 −0.15
11,892.768 22.0 4.175 −2.17 −0.15
11,949.547 22.0 1.442 −1.57 −0.55
12,569.571 22.0 2.173 −2.05 −0.45
12,671.092 22.0 1.429 −2.52 −0.55
12,738.370 22.0 4.803 −2.35 −0.25
12,738.477 22.0 4.728 −1.25 L
12,811.480 22.0 2.159 −1.39 −0.55
12,821.672 22.0 1.459 −1.19 −0.40
12,831.442 22.0 1.429 −1.49 −0.55
12,840.607 22.0 4.660 −2.85 −0.25
12,847.033 22.0 1.442 −1.55 −0.35
11,882.846 26.0 2.196 −2.17 −0.51
12,190.100 26.0 3.632 −2.73 −0.60
12,648.943 26.0 6.395 −2.69 −0.54

Note.The [X/H] ratios are given in the last column.

Figure 3. Zoom on the TiI line at 12671Å. Different spectral syntheses (solid
lines) are for [Ti/Fe]=0.00±0.2, compared with the observed spectrum
(dotted–dashed line).
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[Fe/H]=−0.47±0.02 (error of the mean, with
rms=0.06 dex). Concerning the other chemical species, the
cluster is included in the Gaia ESO survey, but Pancino et al.
(2017) have published abundances only for Mg and Al (see
their Table2).

On the other hand, Mura-Guzmán et al. (2018) have derived
abundances for iron-peak, α, and heavy elements (e.g., Ba and
Eu). In the last column of Table 1 we show their values of
[X/Fe] ratios for the species in common with the present study.
The two sets of elemental abundances agree quite well.
Titanium and silicon abundances are slightly higher in Mura-
Guzmán et al. (2018), but are still compatible within the
uncertainties, whereas there is an excellent agreement between
the two Ca measurements. The current findings suggest a
modest α-enhancement, less than ∼0.2 dex. Red giant branch
stars in the Bulge display a steady decrease in α-enhancement
as a function of the iron content (Gonzalez et al. 2011)
approaching solar abundances ([α/Fe]∼0) in the metal-rich
regime ([Fe/H]�0). The trend for GCs—targets that are old
(t� 10 Gyr) and almost coeval—for iron abundances higher
than −0.7 dex is not well established, due to their paucity and
the limited number that has been spectroscopically investigated
(Zoccali & Valenti 2016). However, the current estimate
suggests that NGC5927 is located in the lower envelope of the
α-enhancements typical of GCs (Pritzl et al. 2005; Mura-
Guzmán et al. 2018).

As for Na, we obtained [Na/Fe]=0.35±0.20, to be
compared with 0.18±0.13 of the cluster average. The sodium
content deserves a specific discussion. There is a debate in the
literature as to whether second-generation (i.e., Na-rich) asymp-
totic giant branch stars do exist (see, e.g., Campbell et al. 2013;
Lapenna et al. 2015; MacLean et al. 2016; Wang et al.
2016). The Na abundances reported by Mura-Guzmán et al.
(2018) are corrected for departures from LTE following
prescriptions given in the INSPECT database39 that are not
available for our NaI line at 12,679Å. Thus, this could in
principle explain part of the discrepancy with our value; however,
there is another critical point that has to be considered. Na is one
of the species involved in proton-capture reaction processes that
occur in GCs. All the GCs with a sufficient number of stars
analyzed display internal variation in Na (e.g., Gratton
et al. 2012). In particular, while the first-generation stars have
Na in agreement with field stars (at the corresponding metallicity),
the second-generation GC stars exhibit a significant Na
enhancement. At the current stage, we cannot confirm (or
disprove) that Mira V1 in NGC 5927 belongs to the second-
generation cluster because we lack a control sample of red giants
acquired with the same instrument.

The abundance analysis of Mira stars has been affected by a
number of long-standing problems: incompleteness of atomic
and molecular line list (Uttenthaler et al. 2015), inhomoge-
neous atmospheres and complex circumstellar envelops (Hron
et al. 2015), together with nonlinear phenomena in the cool
molecular region located between the photosphere and the
expanding molecular shell. These issues and the impact of both
hydrostatic and dynamical models have been addressed in
detail by Lebzelter et al. (2015). These difficulties are at least
partly reduced because we are dealing with a Mira that is on
average warmer than typical Miras. The interesting finding in
the current approach is the similarity between optical and NIR

abundance scale in spite of the difference in the adopted
spectroscopic diagnostics. However, a more quantitative
analysis of the impact of 1D versus 3D and static versus
dynamical atmosphere models (Chiavassa et al. 2018) would be
highly desirable in view of the unprecedented opportunity to
observe Mira stars in Local Volume galaxies with the next
generation of ELTs (Bono et al. 2017).
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