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allego et al. [Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Managing flexible products on a net-

work. CORC Technical Report TR-2004-01, Department of Industrial Engineering and Operations Research,
Columbia University, New York.] recently proposed a choice-based deterministic linear programming model
(CDLP) for network revenue management (RM) that parallels the widely used deterministic linear programming
(DLP) model. While they focused on analyzing “flexible products”—a situation in which the provider has the
flexibility of using a collection of products (e.g., different flight times and/or itineraries) to serve the same mar-
ket demand (e.g., an origin-destination connection)—their approach has broader implications for understanding
choice-based RM on a network. In this paper, we explore the implications in detail. Specifically, we characterize
optimal offer sets (sets of available network products) by extending to the network case a notion of “efficiency”
developed by Talluri and van Ryzin [Talluri, K. T., G. J. van Ryzin. 2004. Revenue management under a general
discrete choice model of consumer behavior. Management Sci. 50 15-33.] for the single-leg, choice-based RM
problem. We show that, asymptotically, as demand and capacity are scaled up, only these efficient sets are used
in an optimal policy. This analysis suggests that efficiency is a potentially useful approach for identifying “good”
offer sets on networks, as it is in the case of single-leg problems. Second, we propose a practical decomposition
heuristic for converting the static CDLP solution into a dynamic control policy. The heuristic is quite similar
to the familiar displacement-adjusted virtual nesting (DAVN) approximation used in traditional network RM,
and it significantly improves on the performance of the static LP solution. We illustrate the heuristic on several

numerical examples.
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1. Introduction and Literature Review
Among both practitioners and researchers, there is
growing interest in modeling customer choice behav-
ior in revenue management problems. This interest
stems partly from a long-standing dissatisfaction with
the limitations of the traditional independent demand
model.! Indeed, heuristic corrections to the indepen-
dent demand model to account for “buy-up” and
“buy-down” effects date back to the earliest work

! The independent demand model is one in which demand for
products is assumed to be mutually statistically independent and
also unaffected by the availability controls applied by the seller;
see Talluri and van Ryzin (2004b) for a detailed discussion of the
independent demand model.
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on capacity control problems (see Belobaba 1987a, b).
More-rigorous modeling of such a phenomenon has
been a persistent goal of RM research, and customer
choice models provide a natural solution.

In addition, the emergence of low-cost airlines
offering simplified, undifferentiated fare structures
has rekindled interest in modeling customer choice
behavior. In this new environment, there are few fare
restrictions, and often, fare products differ only in
terms of price. Customers appear to be quite will-
ing to exploit the resulting purchase flexibility; for
example, industry colleagues have commented that
in markets with unrestricted fares, often the only
observed bookings are in the lowest available fare
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class. In such environments, the assumption that
each fare product is purchased exclusively by a dis-
tinct customer segment—an acceptable (if not entirely
satisfying) practical compromise in the past—has now
moved into the realm of pure modeling absurdity.
These industry trends have accelerated interest in cus-
tomer choice modeling as an alternative foundation
on which to base RM models and systems.

Several researchers have looked at approximate
analysis of customer choice behavior for single-leg
RM problems. As mentioned, Belobaba (1987a, b)
proposed a correction to the expected marginal seat
revenue (EMSR) heuristics that introduces a proba-
bility of buying a higher fare when a low fare is
closed. (See also Belobaba and Weatherford 1996.)
Phillips (1994) proposed a state-contingent approach
to revenue management that adjusts controls based
on forecasts that depend on the controls in effect (the
system state) at any point in time. Talluri and van
Ryzin (2004a) provided an exact analysis of the opti-
mal control policy for a single-leg model of RM under
a general discrete choice model of demand. A key
result is that the optimal policy can be characterized
in terms of an ordered sequence of “efficient” offer
sets. These sets are efficient in the sense that they pro-
vide the most favorable trade-off between expected
revenue and expected capacity consumption. One of
the contributions of our work is to generalize this
analysis of efficient offer sets to the network case.

Network RM problems are discussed extensively
in Talluri and van Ryzin (2004b, Chapter 3). Most
work to date on network problems is based on the
independent demand model. However, even in the
independent demand case, the resulting optimization
problems are difficult due to the high dimensional-
ity of the state space. Hence, research in the area
has focused on various approximate methods, mainly
math programming and decomposition approaches.

The most popular math programming approxima-
tion is the DLP model, first introduced by Simpson
(1989) and later investigated by Williamson (1988,
1992), Talluri and van Ryzin (1999a, b), and Bertsimas
and Popescu (2003). In this model, demand for each
product is treated as a deterministic quantity equal
to the mean forecasted demand. A linear program is
then solved to find the optimal mix of demand to
accept given the capacity constraints on each leg of

the network. The primal solution to the DLP model
is typically not used directly; rather, the optimal dual
prices are used to construct bid price controls.” Alter-
natively, the dual prices are used in a displacement-
adjusted virtual nesting (DAVN) scheme or dynamic
programming (DP) decomposition scheme, in which
product revenue values at each leg of the network
are adjusted by subtracting an estimate of the dis-
placement cost on other legs of the network (the dual
prices), and then modified leg-level problems are for-
mulated using these displacement-adjusted revenue
values. This decomposes the complex network prob-
lem into a collection of computationally tractable leg-
level problems. Again, see Talluri and van Ryzin
(2004b, Chapter 3) for an in-depth discussion of such
decomposition approaches.

The earliest work on choice behavior in networks
is the passenger origin and destination simulator
(PODS) studies of Belobaba and Hopperstad (1999).
This work has focused on understanding the revenue
management implications of passenger choice behav-
ior on traditional RM methods (primarily, methods
based on the independent demand model). An inter-
esting body of applied research on choice modeling
in networks is the work of Andersson (1989, 1998),
and Algers and Besser (2001), who report a research
and development effort at SAS to apply logit choice
models to estimate buy-up and recapture factors at
one of SAS’s hubs. Zhang and Cooper (2005) analyze
choice among parallel flights in the same market (e.g.,
different departure times between the same origin-
destination pair). The model assumes that customers
choose among the same fare class on different flights,
but not among fare classes (e.g., customer segments
are still effectively separated by the fare-class restric-
tions). They develop bounds and approximations to
the resulting dynamic program. The shortcoming of
this work is that the approximation approach is spe-
cialized to the parallel flight case. van Ryzin and
Vulcano (2004) apply a simulation-based optimization
approach to compute optimal parameters of a virtual

2 A bid price control sets threshold prices for each leg in the net-
work. A product request is then accepted (i.e., the product is open
for sale) if its revenue exceeds the sum of the bid prices of the legs
required to satisfy the request. See Talluri and van Ryzin (1999a, b),
as well as Talluri and van Ryzin (2004b, Chapter 3), for a discussion
and analysis of bid price controls.
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nesting control policy under a general model of net-
work choice behavior. Although their demand model
is quite general, their approach is restricted to a spe-
cific virtual nesting control scheme.

As mentioned, our work is directly motivated by
the work of Gallego et al. (2004). While nominally
addressing a problem with flexible fare products, their
model is quite general and has important implica-
tions for choice-based network RM. Their model can
be considered to be the natural choice-based analog of
the DLP model of traditional network RM. We make
this connection precise below, but it is important to
recognize. Our objective is to explore the implications
of their work for choice-based RM, relate it to the
existing body of knowledge on network RM prob-
lems, and extend their ideas where possible.

Finally, we note that other models and methods
addressing choice behavior issues are dynamic pric-
ing models such as those studied by Bitran et al.
(1998), Feng and Gallego (1995, 2000), Feng and Xiao
(2000a, b, c), Gallego and van Ryzin (1994, 1997),
and Maglaras and Meissner (2006). However, most
models assume that only one product is sold at one
price at any point in time. Customers then face a
binary choice of whether or not to buy. However, in
the airline case in particular, many fare products are
offered simultaneously, and customers choose among
them based on their preferences for price, and also
nonprice factors such as refundability and whether
they can meet various purchase restrictions (e.g., Sat-
urday night stay). In the network case, customers also
choose among different routings and flight departure
times. The exception is the network models of Gallego
and van Ryzin (1997), which allow for multiple prod-
ucts to be sold at the same time, although again, the
control in their analysis is the price of each prod-
uct rather than its availability. Maglaras and Meissner
(2006) explore a unified framework for the multiprod-
uct dynamic pricing problem and the capacity control
problem by demand aggregation.

2. Overview

The remainder of the paper is organized as follows.
We begin in §3 by formulating a general model of rev-
enue management under customer choice behavior.
The problem is to find the optimal set of products to
offer at any point in time (the optimal offer set) based
on the current remaining capacities and remaining

time. We then give the corresponding CDLP for this
problem as proposed by Gallego et al. (2004), which
can be considered as a deterministic approximation of
the original stochastic problem.

We then establish in §4 that the solution to the
CDLP model is in fact asymptotically optimal for
the stochastic network choice problem because the
demand and capacity are scaled up proportionally
(this scaling is made precise below). This result is
not surprising because it parallels the behavior of the
DLP solution in the independent demand case. (See
Cooper 2002, Gallego and van Ryzin 1997, Talluri and
van Ryzin 1999a.) Still, the result is reassuring and
shows that CDLP shares some of the desirable theo-
retical behavior of the DLP.

More important, the asymptotic optimality of the
CDLP provides useful insights about optimal offer
sets. In particular, in §5 we use the CDLP and our
asymptotic analysis to extend the notion of efficient
sets introduced by Talluri and van Ryzin (2004a).
The notion of efficiency here is an efficient trade-off
between expected revenue and the expected vector
of consumption rates. It is a single-output, multiple-
input notion of efficiency, analogous to notions of effi-
ciency from data envelopment analysis (Cooper et al.
1978).

In §6, we explore practical applications of the CDLP
model. We first briefly review the column-generation
strategy for solving the model proposed by Gallego
et al. (2004), which provides a general framework
for efficiently computing the solution to what is oth-
erwise an exponentially large math program. We
then develop a decomposition heuristic for using
the dual prices of the CDLP analogous to DAVN-
like decomposition schemes developed for the tra-
ditional independent demand model. We specialize
both procedures to the case in which customers are
assumed to be divided into segments, each of which
has a disjoint consideration set of products. We show
that the computation and approximation methods are
quite efficient in this special case. In §7, we test
our decomposition heuristic using some numerical
examples. The results show that the decomposition
heuristic produces significant improvements in aver-
age revenue compared to a direct application of the
CDLP solution. Moreover, its performance is much
less sensitive to the frequency of reoptimizations,
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which is an important property given that solving the
CDLP for large networks can be quite computation-
ally complex. Finally, conclusions are provided in §8.

3. Model

We begin by formulating a general statement of the
network RM problem under customer choice behav-
ior. The network has m legs and provides n prod-
ucts (a product is defined by an itinerary and fare
class combination). The initial capacities are denoted
c=(c,...,c,). The set of products is denoted by
N ={1,...,n}. Each product j has an associated rev-
enue 7;. Define the incidence matrix A = [a;],., If
leg i is used by product j, a; =1; otherwise, a; = 0.
The jth column vector A; is the incidence vector for
product j, and the ith row vector A’ is the incidence
vector for leg i. With slight abuse of notations for con-
venience, we use the notation i € A]- to denote that
leg i is used by product j, and j € A’ to denote that
product j uses leg i.

We consider discrete periods indexed forward in
time by f. We assume at most one arrival of a cus-
tomer within each period; that is, time is divided suf-
ficiently finely so that the probability of more than
one request is negligible. The probability of an arrival
in each period is denoted by A. While it is not dif-
ficult to allow these arrival probabilities to depend
on time t, to simplify the exposition we assume the
arrival probability is constant over time.

The firm’s control is the set of products it makes
available at each point in time. We call this subset
S C N of open (available) products the firm'’s offer set.
Given an offer set S, an arriving customer chooses
product j in S with probability P;(S), where P;(5) =0
if j ¢ S. Py(S) denotes the no-purchase probability, and
by total probability > s Pi(S) + Py(S) =1. As a prac-
tical matter, these probabilities would most likely be
derived from a parametric discrete choice model of
the type discussed in §6.3, although here we consider
them as generic choice probabilities. Again, one can
easily allow these probabilities to vary over time, but
to simplify the notation and exposition we omit this
generalization in what follows.?

% For the time-inhomogeneous case, the general approach is to break
the planning horizon into subintervals such that the choice proba-
bilities and arrival rates are constant over each interval. Then one
can apply the analysis developed below to each subinterval.

Figure 1 Network and Products for the Running Example

Product ‘ Origin-destination Class Fare
B
1 A—>C H 1,200
10 5 2 A—-B->C H 800
3 A—>B H 600
4 A->C L 800
A s (¢} 5 A—-B->C L 500
6 A—-B L 300
T=30

The state of the network is the available capac-
ity denoted by a vector x = (x4, ..., x,) > 0. We as-
sume the firm is risk neutral and seeks to maximize
expected revenues. The firm’s decision problem, then,
is to find a state-dependent policy for choosing an
offer set S at each time t that maximizes their total
expected revenues.

To illustrate the model and analysis, the following
running example is used throughout the paper.

Running Example. An airline network consists of
three cities and three flights with leg capacities as
shown in Figure 1. Each flight offers high- and low-
fare classes, so a total of six products are offered. The
descriptions of each product are shown in Figure 1
as well. Customers are divided into three segments
according to their fare-class preferences and origin-
destination markets. Specifically, Segment 1 includes
customers who fly from city A to B and are willing to
buy in both fare classes. Segments 2 and 3 consist of
customers who fly from city A to C but differ in terms
of their class preferences; Segment 2 consists of busi-
ness customers who will only buy class H, whereas
Segment 3 is composed of leisure customers who will
only buy class L. Table 1 describes precisely the char-
acteristics of each segment. The second column of
Table 1 gives the probability of an arriving customer
belonging to a given segment; the third column spec-
ifies the consideration set of each segment; the last
column gives the vector of preference “weights” for
each product and no-purchase preference “weight”
(the last component in the vector). The choice prob-
abilities are determined from this vector of weights

Table 1 Segments and Their Characteristics for the Running Example
Segment Probability Consideration set Preference vector
1 0.2 {3, 6} (5,8,2)

2 0.3 {1,2} (10, 5,5)

3 0.5 {4,5) (5,10,10)
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using the multinomial logit (MNL) choice model and
are discussed in §6.3, but, in essence, the probabil-
ity that a customer buys a product is given by the
ratio of its preference weight to the total weight of
all alternatives, which includes all the open products
in the customer’s consideration set together with the
no-purchase alternative.

Six products result in 2° possible offer sets. Table A1
in the appendix lists each offer set and the associated
choice probabilities.

3.1. Dynamic Programming Formulation

This decision problem can be formulated as a DP.
Let the value function, denoted V,(x), be defined as
the optimal expected revenue obtainable from time ¢
through to the terminal time T given that the vector
of remaining capacities at time t is x. The Bellman
equation is then

Vi(0) = max| ARSI+ Vi - 4)

= jes

L AP(S) 1 A)Vm(x)}

— max AR - (Vi = Vi - A}
= jes

+ Vi (%), 1)

where the second equation follows from the fact that
> jes Pi(S) + Py(S) = 1. We do not allow overbooking,
that is, x — A; > 0, for all j € S. The boundary condi-
tions are

Vt(o) =0,
Vra(x) =0,

t=1,...,T,
Vx=>0.

3.2. CDLP Approximation

Unfortunately, the above DP model is not solvable for
most realistic networks because of the large dimen-
sionality of the state space (e.g., typical numbers for
even a modest-sized airline network are capacities on
the order of 100 with m =50 flights, leading to 10'®
states). Hence, as mentioned above, the only practical
approach is to try to approximate the decision prob-
lem. One popular approach is to use a determinis-
tic approximation, in which stochastic quantities are
replaced by their mean (expected) values and capac-
ity and demand are assumed to be continuous. This

reduces the problem to a math program, which is nor-
mally much easier to solve. This is the approach taken
by Gallego et al. (2004).

Specifically, their CDLP is formulated as follows:
Let S denote the firm’s offer set as before. If set S is
offered and a customer arrives, a deterministic quan-
tity P;(S) of product j is sold. (This is simply the mean
value of demand for product j when S is offered.) Let
R(S) denote the expected revenue generated from an
arriving customer when S is offered. That is,

R(S) = Y. 1;P,(9).

jes

We will treat R(S) as a deterministic revenue in
the CDLP. Similarly, let Q;(S) denote the probabil-
ity of using a unit of capacity on leg i, i=1,...,
m, given that we offer set S, and denote the vector
of capacity consumption probabilities Q(S) = (Q,(S),
o, Q,,(8)T. Then

Q(S)=AP(S),

where P(S) = (P,(S), ..., P,(S))" is the vector of pur-
chase probabilities. Again, for the CDLP, we will treat
Q(S) as a deterministic consumption rate vector. Like-
wise, the arrival probability A is treated as determin-
istic, measuring the rate of customers arriving in each
period.

Suppose the sequence of offer sets is {S(1),...,
S(T)}. Let the number of periods during which the
subset S is offered be denoted by #(S). Since demand
is deterministic and the choice probabilities are time
homogeneous, it is irrelevant during which periods
we offer set S; rather, only the total number of peri-
ods in which S is offered matters. Indeed, any per-
mutation of a given sequence of sets will produce the
same revenue and consume the same vector of capac-
ities. Hence, it is sufficient to view ¢(S) as the firm’s
decision variables. We make one further relaxation
and allow the variables #(S) to be continuous as well.
Effectively, this amounts to assuming we can use a set
S for some fraction of a period (e.g., a value £(S) =2.1
would say that we offer S for two whole periods and
1/10 of another period). The objective is to find the
total time #(S) to offer each set S such that we max-
imize the firm’s revenue. This leads to the following
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linear program:*

VP —max Y AR(S)(S)

SN
st. Y AQ(S)t(S) <c

SN

Y HS) =T

SN

£S)>=0, VSCN. )

A few features of this LP are worth noting. First,
it has an exponential number of variables, since with
n products there are 2" possible offer sets S and,
hence, 2" corresponding variables ¢(S). Enumerat-
ing all these variables is not feasible for practical
problems. Nevertheless, as shown by Gallego et al.
(2004) and as discussed further in §6 below, column-
generation techniques can be used to try to solve this
LP efficiently. Also, as mentioned, an optimal solu-
tion to the CDLP specifies the total time (but not
sequence in which) each set should be offered. This
ambiguity about the order in which sets are offered
creates problems when applying the CDLP primal
solution to the original stochastic problem. Again,
we discuss this issue further in §§6 and 7. Finally,
since there are m + 1 constraints in the LP, there are
at most m+ 1 basic variables with positive time val-
ues. Hence, even though the number of variables is
astronomically large, only at most m + 1 sets end
up being used in the optimal solution. This obser-
vation again motivates the use of column-generation
techniques.

For reference, the dual of the CDLP is

min 7' c+ To

st. AmTQ(S)+ 0 >AR(S), VSCN

7>0

>0, (©)

where 7 is the vector of dual prices associated with
the leg capacity constraints (the first constraint in (2)),

* This LP is formulated for the initial capacity ¢ and the entire hori-
zon T. When the CDLP is resolved periodically, however, the right-
hand side capacity becomes the remaining capacity vector, x, and
the right-hand side time becomes the remaining time f.

and o is the dual price associated with the time con-
straint (the second constraint in (2)). Intuitively, the
optimal dual prices 7 provide an estimate of the
marginal value of capacity on each leg of the network,
and the optimal dual value o provides an estimate of
the marginal value (i.e., opportunity cost) of time.

Returning to our running example, there are 64 pos-
sible offer sets, and since there are only three legs,
at most four sets are offered with positive time val-
ues. The capacity on legs AB, AC, and BC is (10, 5, 5).
The number of periods is 30. The CDLP solution is
then t(S ={1,2,3}) =16.35, t(S={1,2,3,4}) =248,
t(s =1{1,2,3,5}) =10.30, and #(S=1{1,2,3,4,5}) =
0.87. That is, products 1, 2, and 3 are offered for
the entire time; products 4 and 5 are offered for 3.35
and 11.17 periods, respectively; and product 6 should
never be offered.

4. Asymptotic Optimality of the CDLP
One well-known property of the traditional DLP is
that its solution is asymptotically optimal for the orig-
inal stochastic RM problem. (See, for example, Cooper
2002.) Here, we show that this same property holds
for the CDLP.

To do so, we restate the stochastic RM problem as
follows: At the beginning of the selling horizon, the
firm has the initial set of capacities c = (cy, ..., c,)-
It controls the availability of products through a con-
trol policy u, which maps states of the system to con-
trol actions (offer sets). The offer set chosen under
policy u at time t is denoted by S,(t | 7;), where F,
denotes the history of the system up to time t. For
simplicity, we abbreviate S, (¢ | 7;) as S, (t) (the depen-
dence on 7, being implicit from here on). The quan-
tities of product sold during time ¢ when policy u is
used are denoted by the n-dimensional random vector
N(S,(t)), where N;(S,(t)) =1 indicates a sale of prod-
uct j and N;(S,(t)) =0 indicates no sale of product j.

We denote by J the class of all admissible policies.
That is, those policies are nonanticipating (i.e., the
control at time ¢ depends only on the history of the
process up to time t, 7;) and satisfy

iAN(S#(f)) <c (as.),

t=1
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so they do not sell more capacity than is available.
With this setup, the DP formulation (1) can be writ-
ten more abstractly as the following stochastic control
problem:

el

V*=max E |:i rTN(Sﬂ(t)):|

s.t. iAN(SM(t)) <c (as.)

t=1
S.H)cN, Vvt=1,...,T, 4)
where V* denotes the optimal expected revenue over
the entire time horizon when applying the optimal
policy w*.

We first show that the optimal objective function
value of the CDLP (2) provides an upper bound on
the optimal expected revenue in the stochastic prob-
lem (4); that is,

ProPOSITION 1. V* < VEPLP,

Proor. Let S,.(t), t=1,..., T denote the sequence
of optimal controls to the stochastic control prob-
lem (4). Then, because u* is an admissible policy,
pathwise we must have

iAN(sm(t)) <c.

t=1

Therefore, in expectation,

XT:AE[N(SM*(t))] <c.

t=1

Next, note that

ji=1,...,n,

;E[Z\[j(s,u.*(t))] =D AP(S)t,.(5),

SCN

where .
t,-(S)= E[Z 1{S,.(t, w) = S}},
t=1

is the expected time we offer set S under policy u*.
(The argument w emphasizes that the control actions
depend on the sample path realization of demand.)
That is, the expected quantity of sales of product j is
simply the expected rate of sales of j given offer set S
multiplied by the expected time each set S is used,

summed over all sets S. (This follows from Wald'’s
equation.) Thus, we have

3 AAP(S),.(5) = 3 AQO),. () <c,
ScN SCN
where Q(S) = AP(S) as before. Hence, t,.(S), SC N is
a feasible solution to CDLP (2). Further, note that the
expected revenue earned from the offer sets S,.(t) in
the stochastic control problem (4) is

V= i FTEIN(S,-())] = Y. ArTP(S)t,.(S),

SEN

which is exactly the objective function value of the
feasible solution ¢,.(S), S € N to the CDLP (2). Since
the objective function from this feasible solution is no
more than the optimal CDLP revenue, we therefore
have V* < VPP a5 claimed. O

We next show that this upper bound from the
CDLP is asymptotically tight as both capacity and
demand are scaled up proportionately. Specifically,
consider a sequence of problems, both stochastic and
deterministic, indexed by 6, in which the initial capac-
ities and the number of periods are increased by a
factor of 0 to 6c and 0T, respectively. We call these
the 0-scaled problems. The case § =1 corresponds to the
original (unscaled) problems (4) and (2) above. Let V'
denote the optimal expected revenue in the §-scaled
stochastic problem and V,P'F denote the optimal rev-
enue in the #-scaled CDLP problem. We will show:

ProrosiTioN 2.

lim lVg* = lim lV‘fDLP = VP,
6—o00 0 60— o0

Proor. Let t*(S), S € N denote the optimal solution
to the unscaled CDLP problem (2). Then, it is not hard
to see that t*(S), S N is an optimal solution for the
6-scaled CDLP with optimal value V<P Hence, the
second limit above is straightforward.

To show the first limit, we construct an admissi-
ble policy w for the §-scaled stochastic problem as
follows: Offer each set S a deterministic amount of
time 6t*(S). The order in which the sets are offered
is arbitrary. Let D(S,t) denote the random vector
of product demand given that set S is offered for
t units of time, so the vector of demand generated
by offering S for t*(S) units of time is D(S, 6t*(S)).
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Under our policy u, however, we will not accept all
demand generated by offering S. Rather, we limit the
demand accepted to the mean demand 6t*(S)AP(S).
That is, the amount of demand accepted when S
is offered is N,(S) = min{D(S, 0t*(S)), 6t*(S)AP(S)}.
Since 6t*(S),S € N is a feasible solution for the
0-scaled CDLP, we know that

3" 6t (S)AAP(S) < fc

SCN

and, hence, it follows that

S AN,(S) = 3 Amin{D(S, 6t(S)), 6t*(S)AP(S)}

SCN ScN

< fc

(as.)

as well. Therefore, u is an admissible policy. More-
over, the sample path revenue from policy u is

Y r'N,(S)= )" r'min{D(S, 6t*(S)), 0t*(S)AP(S)}.
ScN SCN
Dividing both sides above by 6 and letting 8 — oo, we
find
1
lim — > r"N,(S)

00— o0 0 SCN

_lim * 3 +Tmin{D(S, 6t*(S)), 6t*(S)AP(S)}

60— o0 0 ScN

=lim 3" ' min{%D(S, ot°(S)), t*(S))\P(S)}

SCN

= Y ' min{t*(S)AP(S), t*(S)AP(S)}
=

= 3 (S)ArTP(S)
SCN

_ yeoLe.

where the third equality above follows from the law
of large numbers and the continuity of the minimum
function. Thus, the scaled revenue of the policy u
converges almost surely to the upper bound V<PF.
That the expected revenue of the policy u also con-
verges follows from the dominated convergence the-
orem, since the demand for each product j is trivially
bounded above by 0T (the total number of possible
customer arrivals). This proves the result. O

This result suggests that offering sets for a deter-
ministic amount of time as directed by the CDLP pri-
mal solution should be a good approximate policy for

the stochastic choice-based RM problem when capaci-
ties and demand volumes are large. Still, such asymp-
totic analyses are known to be quite crude, and given
that small percentage differences in performance in
RM problems are economically quite significant, one
must treat such performance guarantees with a fair
degree of caution. In §7 below, we test the quality of
the static CDLP solution and the corresponding upper
bound on some numerical examples to give a more
practical sense of their performance.

5. Efficient Sets

A key concept in the exact analysis of the choice-
based single-leg RM model in Talluri and van Ryzin
(2004a) is that of an “efficient” offer set. Intuitively,
efficient sets are those offering the most favorable
trade-off between expected revenue and expected
capacity consumption. Specifically, as above, let R(S)
denote the expected revenue and Q(S) (a scalar in the
single-leg case) denote the probability of selling a unit
(the consumption rate) using offer set S. A set T is
said to be inefficient if a mixture of other offer sets
can be used to generate more revenue for the same
(or lower) consumption rate. That is, there exists a set
of convex weights a(S), S € N satisfying > sa(5) =1
and «(S)>0,VS C N such that

R(T) < 2 a(S)R(S) ®)

S

Q(T) = 3 a(5)Q(S). (6)
S
If no such mixture exists, set T is said to be efficient.
When R(S) and Q(S) are plotted on a scatter plot,
efficient sets are those that lie on the efficient frontier
in (Q(S), R(S)) space (refer to in Talluri and van Ryzin
2004a, Figure 1, p. 19).

As shown by Talluri and van Ryzin (2004a), efficient
sets are important because they are the only ones used
in the optimal solution to the single-led RM problem.
Eliminating inefficient sets can reduce the complexity
of the problem. Moreover, how these efficient sets are
used provides interesting insights. Specifically, they
can be ordered such that both R(S) and Q(S) are
increasing, and sets are used in this order as a func-
tion of capacity and time. That is, at any point in
time, with more capacity remaining, higher sets in the
ordering are used; and for any given capacity, with
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more time remaining, lower sets in the ordering are
used. This monotonicity has important implications
for the optimality of nested booking limit/protection-
level policies as well.

Is there an analogous notion for networks? The
answer is somewhat mixed. While there is a natu-
ral extension of the definition of efficient sets to net-
works, it cannot be used to eliminate sets for the
exact stochastic network DP in general. Still, we show
next that efficient sets are the only sets used in an
optimal solution to CDLP and, by our asymptotic
analysis above, this can be used to argue that, asymp-
totically, they are the only ones used in the stochastic
DP as well. This provides some evidence (albeit not
irrefutable proof) that efficient sets are good ones to
use. Moreover, in some special cases, like the paral-
lel flight leg problem studied by Zhang and Cooper
(2005), one can show that efficient sets are the only
optimal ones to use for the exact stochastic DP.

5.1. Characterization of the Efficient Sets

We begin with a precise definition of efficient offer
sets in networks, which is the natural extension of the
single-leg definition. Specifically, a set T is said to be
inefficient if there exists a set of convex weights «(S),
Ysa(S) =1, a(S) >0,VS € N such that (5) and (6)
hold, where Q(T) is now a vector of consumption
rates. That is, a set T is inefficient if a mixture of other
sets produces strictly greater expected revenue and
consumes no more capacity (in expectation) on each
of the m legs of the network. If no such weights exist,
T is said to be efficient. Alternatively, efficient sets can
be characterized as follows (See the appendix for a
proof.)

ProrosITION 3. A set T is efficient if and only if, for
some = (my,...,m,) >0, T is the optimal solution to

max{R($) = 7" Q(S)}. ?)

In other words, to generate all efficient sets, let 7
range over all the nonnegative m-vectors and collect
the solutions to the above problem; the union of all
such solutions are the efficient sets. This result is anal-
ogous in Talluri and van Ryzin (2004a, Proposition 1).

To illustrate, for our running example the third and
fourth columns of Table Al in the appendix describe
expected revenues and consumption rates on each leg;

the last column in the table shows which sets are effi-
cient. Among all 64 possible offer sets, there are 16
efficient sets.

5.2. The Optimality of Efficient Sets

What's significant about efficient sets in the network
case? One important fact is that only efficient sets are
used in the solution to the CDLP. Specifically,

ProrosiTiON 4. If t*(T) > 0 is the optimal solution to
the CDLP (2), then T is an efficient set.

Proor. Note that the reduced cost of a column S in
the CDLP (2) is

AR(S) = Am"Q(S) — o,

where 7 and o are the dual variables from (3). If
t*(T) > 0, then set T is part of the optimal basis and
has a reduced cost of zero at the optimal solution, 7*
and o*. However, since 7* and o* are dual feasible,
by (3) they must satisfy

AR(S) —A7*"Q(S)—0* <0, VSCN.

Therefore, we have
R(S)—7*"Q(S) <R(T)—w*"Q(T) VSCN,

so T maximizes R(S) — 7*' Q(S). Hence, by Proposi-
tion 3, T must be efficient. [

Thus, efficiency is a defining characteristic of the
optimal sets produced by the CDLP. Unfortunately,
one cannot make the same claim for the exact DP (1).
The essential reason is that the displacement costs
Vi_1(x) = Vi1 (x — A)) in the inner optimization of (1)
are not generally additive in the components of A;.
To see why this matters, suppose the value function
was additive in the sense that for each product j, we
could express the displacement cost as

Via(0) = Vi (x = A) = AV, ()4, ®)

where AV,” (x) is an m-dimensional vector. Heuristi-
cally, one can think of this vector as being a gradient
of the value function. Were this true, the inner opti-
mization of (1) could be written

max{A(R(S) - AV.L (x)Q(S))}-

In this case, Proposition 3 would imply that only effi-
cient sets would be chosen. However, in general this



Liu and van Ryzin: On the Choice-Based Linear Programming Model

Manufacturing & Service Operations Management 10(2), pp. 288-310, ©2008 INFORMS 297

decomposition of the value function is not possible,
and hence we cannot guarantee that only efficient sets
are optimal. This phenomenon is essentially a gener-
alization of that investigated in Talluri and van Ryzin
(1999a), who showed that bid-price policies in general
are not optimal under the standard linear program-
ming model because of a similar nonadditivity of the
value function.

One special case in which this additivity property
holds, however, is when each product uses only a sin-
gle leg, such as the parallel flight problem studied by
Zhang and Cooper (2005). In this case, we can define
AV} () =V,_;(x) = V,_;(x — ¢;), where ¢; denotes the
ith unit vector (the vector with a one in the ith com-
ponent and zeros elsewhere). If each product j uses
only a single leg, then each A, is a unit vector as well
and (8) always holds. Therefore, for problems like the
parallel flight choice problem, one can indeed assert
that only efficient sets are optimal for the exact DP.

Another fact about efficient sets is that in the same
asymptotic scaling used in Proposition 2, there is no
loss in optimality from restricting a policy to using
only efficient sets. This is immediate from the proof
of Proposition 2, where we constructed an asymptot-
ically optimal policy that used only the optimal sets
from the CDLP, which by Proposition 4 are always
efficient. Hence, in this sense, it is asymptotically opti-
mal to always use efficient sets. This provides another
piece of theoretical evidence that efficient sets are
good to use and again parallels the results of Talluri
and van Ryzin (1999a), who showed that bid-price
policies, while not optimal in general, are asymptot-
ically optimal in the same sense under the standard
independent demand model.

5.3. Partial Ordering of Efficient Sets

As we saw above, in the single-leg case there is an
ordering of the efficient sets such that an efficient set
with higher purchase probability has higher expected
revenue. For the network choice model, however, sets
are only partially ordered.

ProOPOSITION 5. Suppose S; and S, are two efficient
sets. If Q(S,) = Q(S;), then R(S,) = R(S,) as well.

Proor. Since S, is an efficient set, it is the opti-
mal solutions to (7) for some nonnegative vectors .
That is,

R(S) = 7"Q(S$,) = R(S) —7"Q(S), YSCSN.

In particular, taking S =S,, this implies

R(Sy) = R(S) = 77 (Q(S,) — Q(S)))-

Now, if R(S,) < R(S,), then the above implies

7'(Q(S) — Q(Sy)) <0.

However, since 7 > 0, this contradicts the fact that
Q(S,) — Q(S5)) = 0, so we must have R(S,) > R(S,) as
claimed. O

This says that the efficient sets are partially ordered,
in the sense that a set S, that produces a vector of
purchase probabilities higher than a given set S; in
all components also must have higher expected rev-
enues. Although this ordering is essential to under-
standing the way in which optimal sets are used in
the single-leg model, the partial ordering in the net-
work case appears (so far, to us) to be considerably
less useful. Still, the generalization is worth noting.

6. Computation and Decomposition

Approximations
In this section we look at how to solve the CDLP effi-
ciently and how to use its outputs to construct a more
accurate decomposition approximation of the stochas-
tic DP (1). Both are important steps in making the
CDLP a viable model in practice.

6.1. Solving CDLP by Column Generation

As already noted, the CDLP (2) is exponentially large;
it has 2" primal variables, corresponding to all pos-
sible subsets of the set of network products N. For
even modest-sized networks, this makes direct appli-
cation of the model impractical. However, as Gallego
et al. (2004) point out, one can use column-generation
techniques to attempt to overcome this complexity.
Roughly speaking, we start with a limited number
of columns (subsets) and solve a reduced LP using
only these columns. Using the resulting dual solution,
we then check to see if any columns left out of the
problem have a positive reduced cost relative to these
dual prices. If so, a positive reduced-cost column is
added and the LP is resolved. If there are no such pos-
itive reduced-cost columns, then the current solution
is optimal. In this manner, columns are generated as
needed as the problem is solved; the hope is that only
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a modest number of columns needs to be generated
before we reach optimality.

Consider the primal LP (2). The reduced primal
problem is identical except that we initially consider
only a limited number of subsets (columns), denoted
N={5,,5,,..., 5]} Therefore, the reduced problem is

VPP () =max Y AR(S)(S)
SeN

st. D AQ(S)H(S) <c

SenN
Y HS)<T
SenN

HS) =0, VSe.. 9)

Let 7 and o be the dual prices for the first and sec-
ond constraints, respectively, of this reduced problem.
We want to check to see if these values are feasible
for the problem (3). To do so, we must determine if
any sets S not contained in our collection & have a
positive reduced cost. This is achieved by solving the
following column-generation subproblem:

max{AR(S) — A7 Q(S) - o}
= Amax(R(S) — 7' Q) —o.  (10)

If the optimal value for this problem is nonposi-
tive, then 7 and o are dual feasible, and our current
solution to the reduced problem is in fact optimal for
the original problem (2). Otherwise, the optimal solu-
tion S* corresponds to a subset with positive reduced
cost, i.e., AR(S*) — AmTQ(S*) — o > 0. Therefore, if we
add S* to the collection of columns N and resolve (9),
the optimal objective function value will increase.
Along with the new solution, we get a new set of dual
prices, which we then use to check again for another
positive reduced-cost column, etc. Again, the hope
here is that a relatively modest number of columns
are generated before an optimal solution is reached,
although in the worst case it is possible that an expo-
nential number of columns are required.

The main practical difficulty in this approach is
solving the column-generation subproblem (10). In
general, this could be an NP-hard problem (see Bront
et al. 2006 for detailed discussion), although as we
show in the following, some special cases can be
solved quite efficiently. Even if it is an NP-hard prob-
lem, one can attempt to solve it approximately to

identify a positive reduced-cost column (if not the
most positive reduced-cost column). Still, determin-
ing which classes of choice models lead to efficient
column-generation procedures and how to approxi-
mately solve the subproblem in complex cases are
largely open questions worthy of additional research.
(See, for example, Bront et al. 2006.)

6.2. Decomposition Approximation Method

How should one use the output of the CDLP model
in actual applications? One approach, of course, is to
apply the primal solution directly. This would involve
offering a collection of (at most) m 4 1 subsets, each
for a fixed amount of time, as given by the solu-
tion t*(S), S € N. However, this approach has a few
problems. First, as mentioned, the order in which the
sets are offered is not specified, although one can
try various heuristic approaches to ordering the offer
sets. The main difficulty, though, is that the solution
is static and does not adjust to changes in demand
and remaining time and capacity. One can of course
attempt to resolve the model frequently, but, as pre-
viously suggested, this is likely to be quite compu-
tationally complex. Also, one is still left with the
problem of deciding which of the m 41 subsets from
the basic solution to use at each point in time once
the model is resolved.

In this section, we develop an alternative approach
for using the CDLP solution that overcomes these
problems. It produces a dynamic policy that pre-
scribes a unique offer set to use as a function of the
vector of remaining capacities and remaining time.
In this way, the policy dynamically adjusts the offer
set to changing network conditions. Moreover, the
approach does not rely on frequently reoptimizing
the CDLP and can even be applied by only solving the
CDLP once up-front. The approach is motivated by
the decomposition ideas used in traditional network
RM and can be viewed as the choice-based equivalent
of methods such as DAVN and DP decomposition
(see Talluri and van Ryzin 2004b, Chapter 3, for a dis-
cussion of DAVN and DP decomposition).

The main idea of the approach is to decompose
the network DP (1) into a collection of leg-level DPs,
each of which is only one dimensional and there-
fore easy to solve exactly. To do this, the decomposi-
tion uses the optimal solution to (3) to approximate



Liu and van Ryzin: On the Choice-Based Linear Programming Model

Manufacturing & Service Operations Management 10(2), pp. 288-310, ©2008 INFORMS 299

the marginal value of capacity elsewhere in the net-
work. Again, this idea is exactly analogous to using
dual prices from the DLP to compute displacement-
adjusted revenues in the traditional network RM case.

Specifically, let 7* = (7}, ..., )" denote the opti-
mal dual prices from (3) corresponding to the m leg
capacity constraints. Consider approximating the
problem at a given leg i. We approximate the network
value function at this leg by

Vi)~ Vi(x) + Yo mx, (11)
i

where V/(x;) is a dynamic (time-dependent) and non-
linear approximation of the value of the capacity
on leg i and /x; are static (time-independent) and
linear approximations of the value of capacity else-
where in the network. For a given product j that uses
leg i (i€ A)), (11) yields the following estimate of the
opportunity cost of selling product j:

Vi(x) = Vi(x — A]-) ~ A‘/ti(xi) + Z ',
leA; I#i

where AVi(x;) = V/(x;) — Vi(x; — 1). Then, using the

approximation (11) in the DP recursion (1) we obtain

Vi) =ma{ SR (1 T sV}

leA/ 11
+ Vi (x), (12)
with boundary conditions
V%H (xi) =0,
Vi(0)=0, Vt=1,...,T.

Vx; >0,

This is now a one-dimensional DP. It can be solved
efficiently, provided that the inner problem of opti-
mizing over subsets at each stage is not too com-
putationally complex. Note that this approximation
effectively accounts for the network effects by replac-
ing each product revenue r; by the pseudorevenue (also
called the displacement-adjusted revenue 1;—3 jca 14 7).
This is precisely how DAVN and DP approximations
are formed in traditional RM. Also note that the inner
optimization problem is of exactly the same form as

® Here, by one-dimensional, we are referring to the capacity dimen-
sion only; time is always an implicit dimension of the DP.

the column-generation problem (10), and so again its
complexity will depend on the choice model. (This is
discussed further below.)

We repeat this approximation at each leg i of the
network, yielding a set of one-dimensional value
functions Vi(x;),i =1,...,m. These leg-level value
functions can then be combined to form a dynamic
approximation of the network value function, de-
noted ﬁ(x); that is,

V() 2 V,(x) = Y. Vi (x).
i=1

Given this additive approximation, we then select a
set dynamically at each time by solving

I?cawx{z"P 1(S)(r; = A‘ZL(x)A,-)}, (13)
- jes

where AV, (x) = (AVL,(x1), ..., AV/L(x,,))" s the
vector of approximate displacement costs. Again, this
problem is of the same form as the column-generation

subproblem (10). We give a specific example next.

6.3. Application to the MNL Choice Model with
Disjoint Segments

Consider the special case of the MNL choice model.
(See Ben-Akiva and Lehrman 1985 for a description
of the MNL model.) We assume each customer is
interested only in a subset of the entire product set.
We call this set the customer’s consideration set. Cus-
tomers choose among the available products in their
consideration set according to the MNL model. We
assume there are L segments of customers and that
each segment | has a distinct consideration set C,.
Let s, = |C;| denote the number of products in con-
sideration set C;. We further assume that the consid-
eration sets are disjoint, so that GNC, =@ if | #k.
Let A; denote the probability that an arrival is from
segment I, so Y, A, = A is the total arrival probabil-
ity. We call this the MNL with disjoint consideration sets
model. We focus on this model because of its com-
putational efficiency. In particular, under the MNL
model with disjoint segments, the column-generation
subproblem (10) (and hence the various inner opti-
mization problems in the decomposition heuristic)
can be separated by segment, and each segment sub-
problem can be solved by a simple ranking procedure.
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(See §6.3.1 for a detailed discussion.) However, we
emphasize that our decomposition heuristic applies
to general choice models; the only difference is the
complexity of solving the combinatorial subset selec-
tion subproblems. Indeed, Bront et al. (2006) have
recently extended our decomposition heuristic to a
MNL model with overlapping segments by exploiting
integer programming techniques to solve the combi-
natorial subproblems.

For this model, it is convenient to define a binary
vector vy, that indicates which products in consider-
ation set C; are offered. Each component y; of y,
corresponds to the availability of product j and is
defined by

1
Y= 0

Similarly, we let P;(y;) denote the probability of a
sale of product j to a customer of segment ! given y,.
Under the MNL choice model, the choice probabil-
ity is defined by a preference vector, denoted v,,
that indicates the preference “weight” for each prod-
uct contained in C;. This vector, together with the
no-purchase preference value, v),, determines a cus-
tomer’s choice probabilities as follows:

if product j is available, j € C;;
if product j is unvailable, j € C,.

oYy

P, =
() 2ieq Vil +

The following proposition shows why the MNL
model is computationally efficient. This same result
is shown by Gallego et al. (2004), although for
completeness we provide an alternative proof of it in
the appendix.

ProrosITION 6. Consider the optimization problem

Y jec, WivYy
max =G Yy (14)
wElo, 11 Y iee, Uiy + Vi

Rank the values w; in a decreasing order; that is, W

> W= > W Then there is a critical value k*,
1 < k* <s,, such that the optimal solution to the above

problem is given by

Y= .
0 if w; < Wy

This property is useful because, again, both the
column-generation subproblem (10) in the CDLP and
the set selection problem (13) in the decomposition
heuristic are of this form. Proposition 6 shows that
both problems can be solved by an efficient ranking
procedure. We next discuss each problem in turn.

6.3.1. Solving the CDLP for the MNL with Dis-
joint Segments. Under the MNL with disjoint seg-
ments model, the column-generation subproblem (10)
separates by segment; that is, each segment I chooses
products from its consideration set C;, and hence (10)
reduces to

max{AR(S) — A7 Q(S)}

L > icc (i — T AN vy
C iV
=) A, max fe / ]y].
2jec, ViYii + Vo

= welo, 1)

Each term on the right-hand side above is of pre-
cisely the form required by Proposition 6, where w; =
r,—m " A;. Therefore, we can find the optimal solution
by simply ranking the products in each considera-
tion set by their displacement-adjusted revenue val-
ues r; — m' A;. By Proposition 6, then, the optimal
offer set consists of the k* highest-ranked products for
some k*. Therefore, the optimization problem reduces
to checking at most s; = |C;| possibilities. Hence, this

subproblem is quite efficient to solve.

6.3.2. Decomposition Heuristic for MNL with Dis-
joint Segments. The decomposition heuristic under
the MNL with disjoint segments model is also effi-
cient computationally. Indeed, the leg-level DPs (12)
become

vanw=§mznmx{(ZXﬁ—AvLAm>

S
1=1 y;e{O,l] ! jECI

-2 77;) Ulj]/lj)

heAih;éi

-1

' (Z Uiy +Uzo) } +Via(x)
jeC
with the boundary conditions

Vli"+1 (xi) =0,

Vi(0)=0,

Vx; >0,
vt=1,...,T.
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Table 2 Dynamic Offer Sets for the Running Example at Period t = 20 In each case, customers were assumed to follow the
Remaining capacity Offer set Remaining capacity ~ Offer set behavior of the MNL with disjoint segments model.
The parameters of the MNL choice models were var-
Ej g g; E 2 g 2 gi g ? ?; {1{3?} ied to simulate different degrees of customer willing-
3' 3' 4 1’ 2' 3' 4’ 5 1Y3’ | 1.4 ness to switch among alternatives in the consideration
(3,3,4) (1,2,3,4,5) (1,3,1) (1,4 h gal h d
(3,4,3) {1,3,4) (2,2,2) 1,3} sets. In addition, different load factors were simulated
(4.3,2) (1.3,4) (3,0,1) ¥ by changing the network capacities
4,2,3) {1,2,3,5} (1,3,0) (1,4} ’
(3,3,3) 1,3,4} (0,3,1) 1,4} The following policies were tested:
(3,2,2) {1,3} (3,1,0) {3} INDEP. This policy implements the DP decomposi-
g policy imp p
2,3,3) {1,3,4) 2.2, 1,3} i licy based on the independent d d model
(2.2,3) 11,3} (1,2,2) ) tion policy based on the independent demand model.
2,3,2) {1,3,4) 2,1,2) {3} We first solved the DLP, where mean demand was
(3.2,1) {1,3) (0,2,1) i computed assuming that all products are offered. That
(3,1,2) {2,3} (2,0,1) 3) < th bability of ¢ 4 .
2,3,1) {1,3,4) (1,2,0) ) 1s, the probability of a request tor product ; was

Again, the inner optimization above is of the form
required by Proposition 6, where w; =r;, — AV}, (x;) —
> e At Ty Hence, the optimization at each stage
in this DP can be solved by simply ranking prod-
ucts by these weights and checking which cutoff
value k* yields the highest objective function value.
Note that the weights again have the interpreta-
tion of displacement-adjusted revenues—the differ-
ence is that leg i has a dynamic displacement cost of
AV/ (x;), whereas all other legs have static displace-
ment costs given by the dual prices .

Once these individual leg-level DPs are solved, sets
are selected dynamically in real time by solving (13).
Again, this is an easy problem because (13) is also of
the form required by Proposition 6; hence, a simple
ranking procedure can be used to identify the optimal
offer set.

Returning to our running example, we illustrate
how the optimal offer sets are dynamically gener-
ated based on the CDLP outputs: The dual solu-
tion obtained with the starting leg capacities is
(0, 800, 500). Substituting this into (12), we compute
each leg-level value function. The optimal offer sets
at each time t are then determined by solving (13).
Table 2 shows the resulting offer sets for a range of
the residual capacities at time ¢ = 20.

7. Numerical Examples

To test the relative performance of our decomposition
heuristic, we conducted numerical experiments using
two example networks. One is a collection of parallel
flights; the other is a small hub-and-spoke network.

taken as A; = AP;(N). The mean demand for prod-
uct j in the DLP is then TA;. Once the DLP model
was solved, we used the dual prices in a dynamic
programming decomposition scheme, as described in
Talluri and van Ryzin (2004b, Chapter 3). This scheme
is in fact equivalent to the decomposition scheme of
§6.2, but with P;(S) = A, for all j and S (the indepen-
dent demand model assumption). This policy serves
as a benchmark to evaluate the benefits of explicitly
using a choice-based modeling in the optimization
procedure.

CDLP. This policy implements the static CDLP
solution. The optimal primal solution to the deter-
ministic LP (2) gives the total time to offer each set.
Because the sequence in which the sets are offered is
ambiguous, we considered two ways to construct this
sequence. The first is that sets were offered accord-
ing to their indexes in the solutions to (2), that is, sets
were indexed as they were generated and then simply
offered according to this index order. In the second
approach, we randomly generated the sequence to
offer.® Our tests showed that neither approach domi-
nated the other. Hence, we only report results for the
first method in the tables below.

¢ To make these two procedures more precise, in our running exam-
ple the efficient sets generated (in order) were S, ={1,2,3}, S, =
{1,2,3,4}, S, =1{1,2,3,5}, and S, ={1,2,3,4,5} with associated
CDLP solution t; =16.35, t; =2.48, t; = 10.30, and #; = 0.87. Hence,
in the first approach, S, is offered for t; = 16.35 units of time, then S,
for t; = 2.48 units of time, etc. In the second approach, we randomly
permuted the indices and obtained the sequence {3, 2, 1, 4}; hence,
S, was first offered for #; =10.30 units of time, then S, was offered
for t; =2.48 units of time, etc.
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DCOMP. This is our choice-based decomposition
heuristic, as described in §6.2.

We also computed an upper bound on the opti-
mal expected revenue based on the CDLP value (2).
We used this upper-bound to bound the subopti-
mality gap of our DCOMP method. In the tables
below, we denote the upper-bound revenue by UB
REV, and the revenues produced by the DCOMP,
CDLP, and INDEP methods, by DCOMP REV, CDLP
REV, and INDEP REV, respectively. We denote the
percentage gap between UB and DCOMP by %OPT-
GAP. The revenue improvements of DCOMP relative
to CDLP and INDEP are denoted %DCOMP-CDLP
and %DCOMP-INDEDP, respectively.

We also tested the effect of reoptimizing the poli-
cies periodically throughout the simulated booking
process. In the no-reoptimization case, the determin-
istic LPs are solved only once, and the dual vari-
ables associated with the capacity constraints are used
to estimate the marginal capacity for the entire time
horizon. In the reoptimization procedure, we divided
the total time horizon into five equal-sized periods
and resolved the problem at the beginning of each
period, using the remaining time, capacity, and esti-
mated demand-to-come as input parameters to the
policies.

Simulations were run under various load factors
by scaling all leg capacities by a common factor a.
Five different load factors were tested. We also sim-
ulated various degrees of choice behavior by varying
the no-purchase preference value vector v,. A zero
no-purchase value vector describes a perfect substi-
tution case in which customers are perfectly willing
to substitute among the products in their considera-
tion sets. As v, increases, the probability of customers
not purchasing rather than substituting increases.
When v, is very large, customer behavior approaches
the independent demand model.

In the parallel flight example, the number of simu-
lation runs was fixed at 20,000, whereas in the small
network, the number of runs was fixed at 3,000.
We used T = 300 periods in the parallel flight example
and T =1,000 periods in the small network example.
With these simulation sample sizes, the revenue esti-
mates had relative errors in the range 0.1%-0.6% with
99% confidence.

7.1. Simulation Example 1: Parallel Flights

This set of simulations is based on a network with
three parallel flights with two fare classes on each
flight (high (H) and low (L)), producing six prod-
ucts in total. We assumed there were two cus-
tomer segments corresponding to the two fare classes
(H and L). That is, we assumed customers were will-
ing to choose among flight times within a class, but
were not willing to purchase up or down from their
preferred fare classes. This is essentially the model
studied by Zhang and Cooper (2005).

The arrival probabilities for each segment were
(Ag, Ar) = (0.2,0.3). The initial capacities for each
flight were ¢ = (30, 50, 40). For class H, the fares for
each flight were ry; = (800, 1,000, 600) and the prefer-
ence vector was vy, = (5, 10, 1). For class L, the rev-
enue values for each flight were r; = (400, 500, 300)
and the preference vector was v; = (5,1,10). We
simulated different capacity scaling factors a rang-
ing from 0.6 to 1.4 and for various no-purchase vec-
tors vy = (V,y, Uor), Where vy (respectively, vy) is
again interpreted as the “weight” that class H (respec-
tively, L) places on the no-purchase option. The sim-
ulation results with and without reoptimization are
summarized in Tables 3 and 4, respectively.

Note that the DCOMP heuristic produces con-
sistent revenue gains over the CDLP policy, espe-
cially in the tightly constrained (@ =0.6 and a =0.8)
capacity cases. The gains in these cases are on the
order of 1%-5%, which is quite significant. Also
note the extremely large gains (up to 13% improve-
ment in revenue) relative to the independent demand
model policy (INDEP). The improvements are largest
in the cases where v, = (0,0), that is, when cus-
tomers are perfectly willing to substitute among the
products in their consideration sets. This is intuitive
and illustrates the potential improvement in revenue
from explicitly considering choice behavior when cus-
tomers are willing to substitute.

Table 4 shows that the improvements from using
DCOMP over CDLP are not as large when the param-
eters of the policies are reoptimized. However, the
gains are still significant, especially in the high load
factor case (a« =0.6), where improvements are on the
order of 1%—2%.

Table 5 reports each policy’s gain in revenue from
reoptimization. It is clear from this table that the
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Table 3 Simulation Results for Parallel Flights Without Reoptimization

UBREV ~ DCOMPREV ~ CDLPREV  INDEPREV ~ %OPT-GAP  %DCOMP-CDLP  %DCOMP-INDEP

o

>

0.6 (0,0) 55,200 53,356 51,051 51,841 —3.34 4.51 2.92
(1,5) 53,400 51,866 49,186 51,264 —2.87 5.45 1.17

(5,10) 50,400 48,396 46,476 48,023 —-3.98 413 0.78

(10,20) 45,139 43,132 41,673 42,835 —4.45 3.50 0.69

0.8 (0,0 67,200 64,626 63,066 64,393 —-3.83 2.47 0.36
(1,9) 65,600 63,189 61,139 62,461 —-3.67 3.35 117

(5,10) 59,446 57,122 55,572 55,231 —-3.91 2.79 3.42

(10,20) 47,431 46,621 46,137 46,316 -1.7 1.05 0.66

1.0 (0,0) 78,000 75,176 74,141 72,129 -3.62 1.40 4.22
(1,5) 76,000 73,622 71,512 68,793 -3.13 2.95 7.02

(5,10) 60,731 60,222 59,293 58,908 —0.84 1.57 2.23

(10,20) 47,442 47,339 47,251 47,248 -0.22 0.19 0.19

1.2 (0,0 88,800 87,082 84,511 77,193 -1.93 3.04 12.81
(1,5) 78,117 77,534 75,750 72,574 -0.75 2.36 6.83

(5,10) 61,039 60,845 60,483 60,361 —-0.32 0.60 0.80

(10,20) 47,442 47,435 47,401 47,372 —-0.02 0.07 0.13

1.4 (0,0 93,200 92,762 89,498 81,533 —0.47 3.65 13.77
(1,9) 78,117 78,038 77,882 74,392 —-0.10 0.20 4.90

(5,10) 61,038 60,993 60,916 60,660 —-0.07 0.13 0.55

(10,20) 47,442 47,441 47,408 47,380 —0.00 0.07 0.13

CDLP policy improves significantly when reopti- is less sensitive to the frequency of reoptimization.

mized periodically; the DCOMP policy performance,  This behavior is likely to be an advantage in practical
in contrast, does not change significantly when it is  applications because the CDLP is quite computation-
reoptimized. The DCOMP method, therefore, appears ally complex to solve, and, therefore, one would like
to be more robust in the sense that its performance  to avoid frequent reoptimizations if possible. Notice

Table 4 Simulation Results for Parallel Flights with Reoptimization

a Vo UBREV  DCOMPREV ~ CDLPREV  INDEPREV ~ %OPT-GAP  %DCOMP-CDLP  %DCOMP-INDEP
0.6 (0,0 55,200 53,555 52,925 51,831 —2.98 1.19 3.33
(1,9) 53,400 52,288 51,305 51,267 —2.08 1.92 1.99
(5,10) 50,400 48,584 47,827 48,019 —-3.60 1.58 1.18
(10,20) 45,139 43,283 42,870 42,810 —-4.11 0.96 1.1
0.8 (0,0) 67,200 64,855 63,185 64,394 —-3.49 2.64 0.72
(1,9) 65,600 64,079 63,333 62,459 -2.32 1.18 2.59
(5,10) 59,446 57,231 56,847 55,233 -3.73 0.68 3.62
(10,20) 47,431 46,588 46,525 46,277 —1.78 0.14 0.67
1.0 (0,0) 78,000 76,195 76,021 72,132 —2.31 0.23 5.63
(1,5) 76,000 73,738 73,118 68,767 —2.98 0.85 7.23
(5,100 60,731 60,235 60,056 58,901 —-0.82 0.30 2.26
(10,20) 47,442 47,302 47,321 47,233 -0.29 —0.04 0.15
1.2 (0,0 88,800 87,203 86,139 77,213 —1.80 1.24 12.94
(1,5) 78,117 77,510 77,092 72,553 —-0.78 0.54 6.83
(5,10) 61,038 60,840 60,765 60,357 —-0.32 0.12 0.80
(10,20) 47,442 47,403 47,440 47,367 —0.08 —0.08 0.08
1.4 (0,0) 93,200 92,769 91,451 81,506 —0.46 1.44 13.82
(1,5) 78,117 78,008 77,941 74,410 —-0.14 0.09 4.84
(5,10) 61,039 60,993 60,977 60,666 —-0.07 0.03 0.54
(10,20) 47,442 47,408 47,447 47,373 -0.07 —0.08 0.07
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Table 5 Percentage Gains in Revenue from Reoptimizing for Table 6 Product Descriptions and Revenues
Parallel Flights
Product Legs Class Revenue Products Legs Class Revenue
o Vo % Gain-DCOMP % Gain-CDLP % Gain-INDEP
1 1 1 1,000 12 1 2 500
0.6 (0,0) 0.37 3.67 —0.02 2 2 1 400 13 2 2 200
1,5) 0.81 4.31 0.01 3 3 1 400 14 3 2 200
(5,10) 0.39 2.91 —0.01 4 4 1 300 15 4 2 150
(10, 20) 0.35 2.87 —0.06 5 5 1 300 16 5 2 150
1 17 2 2
0.8 0,0) 0.35 0.19 0.00 6 6 500 6 50
7 7 1 500 18 7 2 250
(1,5) 1.41 3.59 —0.00
8 (2,4} 1 600 19 (2,4} 2 300
(5,10) 0.19 2.29 0.00
10.20 0.07 0.84 0.08 9 3,5} 1 600 20 3,5} 2 300
(10,20) -0 : -0 10 2,68 1 700 21 260 2 350
1.0 (0,0) 1.36 2.54 0.00 11 {3, 7} 1 700 22 {3, 7} 2 350
(1,5) 0.16 2.25 —0.04
(5,10) 0.02 1.29 —0.01
(10, 20) —0.08 0.15 —0.03 and connecting itineraries). Figure 2 shows the net-
1.2 (0,0) 0.14 1.93 0.03 work and Table 6 describes the products. The product
E; %) :88? 81; :88? set is segmented into 10 disjoint consideration sets,
(10,20) 007 0.08 001 corresponding to 10 customer segments. Segments are
14 0,0) 0.01 918 003 defined in terms of their fare class preference (busi-
(1,5) —0.04 0.08 0.02 ness or leisure) and their origin-destination market.
(5,10) 0 0.10 0.01 Table 7 describes the 10 customer segments and their
(10, 20) —0.07 0.08 —0.01

that the INDEP method does not always benefit from
reoptimization; in some cases, the expected revenue
when reoptimizing is a bit worse than without reop-
timizing. This phenomenon also occurs under the
traditional independent demand model. (See Cooper
2002, Secomandi 2005 for detailed discussions.)

7.2. Simulation Example 2: Small Network

This example considers a small airline network con-
sisting of seven flight legs, with two fare classes on
each leg and a total of 22 products (including local

Figure 2 Two-Fare-Class Airline Network

Leg 2 (150; morning)

Leg 3 (150; afternoon)

H: Hub bank; A, B: Major cities; C: Minor city

consideration sets and preferences. The simulation
results for this network are shown in Tables 8 and 9.
The first component of v, is the no-purchase “weight”
for business customers (segments 1, 3, 5, 7, 9), and
the second component is the no-purchase “weight”
for leisure customers (segments 2, 4, 6, 8, 10). Again,
as these values increase it makes the corresponding
segment of customers less likely to substitute.
Without reoptimization, the DCOMP heuristic gen-
erally achieves a significant gain over the CDLP solu-
tion, although there are a few outlier cases where it
does worse. We discuss the reason for this behavior
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Table 7 Segments and Their Characteristics As in the previous example, there is little benefit to
Consideration  Preference  Feoptimizing our DCOMP procedure, although reop-
Segment  Probability  Description set value timizing improves the CDLP method significantly.
] 0.08 AB Business (1.8.9) 10.5.5 This is illustrated in Table 19. Again, this illustrates
2 0.20 AB Leisure {19.20,12) 10,105 the robustness and computational advantages of the
3 0.05 AH Business {2,3} 10,10 DCOMP method.
4 0.20 AH Leisure {13,14} 10,10
5 0.10 HB Business (4,5} 10,10 . .
6 0.15 HB Leisure {15, 16} 10,5 7.3. Multlple Dual Solutions to CDLP
7 0.02 HC Business 16,7} 10,5 As noted, our DCOMP approach does worse than the
g ggg AI-(I:CBLesl'snuers(?s ﬂg l?i 18 ;0 CDLP method in some extreme cases—for instance,
. usi , ) .
10 0.04 AC Leisure {21 22} 10, 10 Example 2 m the cases o = 0.6, UO = (0, 0), and a= 1.2,

below, but it is essentially due to the existence of mul-
tiple dual solutions to CDLP. When the policies are
reoptimized, the relative improvement of the DCOMP
method over the CDLP is smaller, but still significant,
especially in the cases of tight capacity («=0.6 and
a =0.8). Again, the gains over the INDEP policy are
very large in general. However, in one case (o =0.6,
v, = (0,0)), the INDEP method produced a larger
revenue than the DCOMP method. This behavior,
however, can again be attributed to the existence of
multiple dual solutions in CDLP, as discussed below.

v, = (0, 0) without reoptimization. This is due to the
existence of multiple dual solutions to the CDLP (2).
Multiple dual solutions result in different estimates
of marginal capacities in the DCOMP policy. In
our column-generation procedure, we chose the first
product in each segment’s consideration set as the ini-
tial offer set of the reduced LP. In the extreme case
when v, = (0, 0), we observed multiple dual solutions,
and the particular choice of offer sets used to initial-
ize the column-generation procedure has a significant
impact on the dual prices produced, which in turn
impacts the DCOMP policy.

To illustrate this effect, consider the case of a =1.2
and v, = (0, 0) in Example 2 without reoptimization.

Table 8 Simulation Results for a Small Network Without Reoptimization
a Vo UBREV  DCOMPREV ~ CDLPREV  INDEPREV  %OPT-GAP  %DCOMP-CDLP  %DCOMP-INDEP
0.6 (0,0) 186,400 172,818 176,354 178,290 -7.29 -2.00 -3.07
(1,5) 181,835 179,385 171,280 173,571 -1.35 473 3.35
(5,10) 166,017 163,643 157,621 160,035 —1.43 3.82 2.26
(10,20) 149,798 146,630 142,711 142,317 -2.11 2.75 3.03
0.8 (0,0) 227,200 221,834 216,994 212,027 -2.36 2.23 4.63
(1,5) 216,062 213,813 207,014 202,771 —1.04 3.28 5.45
(5,10) 194,500 192,152 186,535 181,935 —1.21 3.01 5.62
(10,20) 165,560 163,900 162,599 160,055 —-1.00 0.80 2.40
1.0 (0,0) 256,000 252,135 246,612 235,550 -1.51 2.24 7.04
(1,5) 244,110 241,308 235,028 221,803 -1.15 2.67 8.79
(5,10) 213,833 212,413 210,266 199,603 —0.66 1.02 6.42
(10,20) 171,071 170,696 170,073 170,300 -0.22 0.37 0.23
1.2 (0,0) 284,000 272,051 274,436 253,963 —4.21 —-0.87 712
(1,5) 267,429 264,421 260,775 239,212 -1.12 1.40 10.54
(5,10) 217,738 217,722 217,452 212,920 —0.01 0.12 2.26
(10,20) 171,071 171,008 170,983 171,047 —0.04 0.01 -0.02
1.4 (0,0) 309,000 306,862 300,673 271,258 —-0.69 2.06 13.13
(1,5) 269,588 269,458 268,883 253,337 —0.05 0.21 6.36
(5,10) 217,738 217,731 217,729 215,630 —-0.00 0.00 0.97
(10,20) 171,071 171,008 170,983 171,047 —0.04 0.01 —-0.02
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Table 9 Simulation Results for a Small Network with Reoptimization
o Vo UB REV DCOMP REV CDLP REV INDEP REV %OPT-GAP %DCOMP-CDLP %DCOMP-INDEP
0.6 (0,0) 186,400 181,450 181,626 178,673 —2.66 —0.04 1.55
(1,5) 181,835 179,408 177,098 173,989 -1.33 1.30 3.1
(5,10) 166,017 163,679 161,833 160,444 —-1.41 1.14 2.02
(10,20) 149,798 146,964 146,183 142,226 -1.89 0.53 3.33
0.8 (0,00 227,200 221,929 221,050 212,511 —2.32 0.40 4.43
(1,5) 216,062 213,836 211,590 202,577 —1.03 1.06 5.56
(5,10) 194,500 192,307 190,867 181,571 -1.13 0.75 591
(10,20) 165,560 164,160 163,849 159,772 -0.85 0.19 2.75
1.0 (0,0) 256,000 252,301 251,522 235,247 —1.45 0.31 7.25
(1,5) 244110 241,430 240,023 221,642 -1.10 0.59 8.93
(5,10) 213,833 212,502 211,846 199,222 —-0.62 0.31 6.67
(10,20) 171,071 170,549 170,578 170,178 —0.30 —0.02 0.22
12 (0,0) 284,000 280,816 279,625 253,978 -1.12 0.43 10.57
(1,5) 267,429 264,920 263,639 239,207 —0.94 0.49 10.75
(5,10) 217,738 217,443 217,449 212,544 —0.14 —0.00 2.30
(10,20) 171,071 170,949 170,948 170,826 —0.08 0.00 0.07
14 (0,0) 309,000 306,741 305,074 271,498 —0.73 0.55 12.98
(1,5) 269,588 269,351 269,141 253,304 —0.09 0.08 6.34
(5,10) 217,738 217,590 217,529 215,267 —0.07 0.03 1.08
(10,20) 171,071 170,951 170,949 170,826 —0.07 0.00 0.07

We tested two options for initializing the column-
generation procedure: (1) the first product in each
segment’s offer set is used to initialize the reduced
LP, and (2) the second product in each segment’s
offer set is used to initialize the reduced LP. These
choices lead to different optimal dual solutions in
the CDLP. Although the CDLP optimal values do
not differ much in those two cases, the revenues
produced by the DCOMP heuristic are quite differ-
ent, as can be seen from Table 11. Indeed, Table 11
shows that with the proper choice of the initial sub-
sets, the DCOMP method still generates larger rev-
enue than the CDLP policy. The negative gains of the
DCOMP policy observed in Tables 8 and 9, there-
fore, can be attributed to this multiple dual solution
effect.” Although one would like the method to be less
sensitive to this sort of occurrence, it is an inherent

”Note that this phenomenon is more likely to have a significant
effect when we solve the CDLP once and use a single dual solution
for the entire time horizon. In the case of reoptimizing, we are using
new dual solutions at each resolving point, which makes it less
likely that a single case of multiple dual solutions will negatively
impact the DCOMP heuristic. Of course, resolving frequently is not
guaranteed to improve performance, as shown by Cooper (2002)
and Secomandi (2005). Still, in our example, when the CDLP is
resolved over time, its performance clearly improves.

weaknesses of any method that uses dual rather than
primal information. From our (albeit limited) expe-
rience, however, it appears that this multiple-dual-
solution effect is only significant in extreme cases,

Table 10 The Percentage Gain in Revenue from Reoptimizing for a
Small Network
a Vo % Gain-DCOMP % Gain-CDLP % Gain-INDEP
0.6 (0,0) 4.99 2.93 0.21
(1,5) 0.01 3.40 0.24
(5,10) 0.02 2.67 0.26
(10, 20) 0.23 243 —0.06
0.8 (0,0) 0.04 1.87 0.23
(1,5) 0.01 2.21 —-0.10
(5,10) 0.08 2.32 -0.20
(10, 20) 0.16 0.77 -0.18
1.0 (0,0) 0.07 1.99 -0.13
1,5) 0.05 213 -0.07
(5,10) 0.04 0.75 -0.19
(10, 20) -0.09 0.30 -0.07
1.2 (0,0) 3.22 1.89 0.01
(1,5) 0.19 1.10 —0.00
(5,10) -0.13 —-0.00 -0.18
(10, 20) -0.03 —0.02 -0.13
1.4 (0,0) —-0.04 1.46 0.09
(1,5) —-0.04 0.10 —-0.01
(5,10) —0.06 —-0.09 -0.17
(10, 20) —-0.24 —-0.02 -0.13
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Table 11 Revenues from Different Settings of the Initial Consideration Sets for « = 1.2 and v, = (0,0)
Without Reoptimization
Initial prod. uB DCOMP CDLP INDEP
selected REV REV REV REV %O0PT-GAP %DCOMP-CDLP %DCOMP-INDEP
First 284,000 272,051 274,436 253,963 —4.21 —0.87 712
Second 284,000 279,756 273,843 254,023 —1.49 2.16 10.13
like the v, = (0, 0) cases here, although more experi-  Acknowledgments

ence with the method is needed to make any strong
claims in this regard.

8. Conclusions

The CDLP of Gallego et al. (2004) is the natural
analog of the traditional deterministic LP, which is
widely used in revenue management practice. Here,
we have extended their analysis of this model, show-
ing that its performance—as in the traditional inde-
pendent demand case—is asymptotically optimal as
capacity and demand are scaled up proportionately.
We used these results to extend the concept of
efficient sets developed by Talluri and van Ryzin
(2004a) to the network case. Efficiency is a poten-
tially useful concept for identifying good offer sets
and thereby reducing the complexity of choice-based
problems, although more work is needed on this
issue. We also developed a heuristic that uses the dual
information from the CDLP to decompose the net-
work DP into a collection of leg-level DPs. It is the
choice-based analog of traditional network decompo-
sition methods such as DAVN and DP decomposi-
tion. The method has several attractive features: It
is efficient to compute, recommends a unique offer
set that changes dynamically in response to changes
in remaining capacity and time, improves on the
naive CDLP policy significantly—especially in high-
load factor cases—and is much less sensitive to the
frequency of reoptimization. Overall, the heuristic
appears to be a viable practical method for using and
enhancing the CDLP model of Gallego et al. (2004).
Although both the CDLP and decomposition heuristic
are computationally complex in general, we showed
that under the MNL with disjoint segments model,
both problems can be solved efficiently. Although this
is a restrictive model, the recent work of Bront et al.
(2006) indicates that the approach is viable for broader
classes of choice models.

The authors thank Gustavo Vulcano for numerous detailed
comments on earlier drafts of this work, especially regard-
ing the computational examples. The authors also thank the
anonymous referees and associate editor for their construc-
tive feedback.

Appendix
Proor or Prorosition 3. We first show the “only if”
part. Define R: [0, 1]" — R as

R =max| S a(IRE): D610 <4,
S S

Y a(S)=1,a(5)>0,YSCN}.
S

Then R(q) is increasing and concave in 4. (See Theorem 5.1,
p- 213, of Bertsimas and Tsitsiklis 1997.)
For any efficient set T, T satisfies R(g) for some g, which
is concave in 4. There exists a supporting hyperplane (u, v),
u € R, veR" such that
R(T)=v"Q(T)+u,

R(S)<v"Q(S)+u, SCN.
Therefore,

R(T) —0"Q(T) = R(S) — 0" Q(S).
It is left to show that v > 0.

2 a(TR(T) = 3 a(T) (0" Q(T) +u)

T T
<ov'g+u.

Since Y7 a(T)R(T) = R(q) is increasing in g, it must be

v>0.

Next, we show the “if” part. Suppose T is the optimal
solution to (7) for some 7 = (my, ..., m,) >0; then,

R(T)-m'Q(T)=R(S) =7 Q(S), SCEN,

(R(T) = R(9) -7 (Q(T) = Q(5))=0.  (15)
Multiplying each inequality (15) with «(S), and summing
those inequalities, we have

(R -2 a®RE) - =7(Qn) - Za)2) =0. (16)

S S
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Table A1 Enumeration of All Offer Sets and the Associated Choice Probabilities, Consumption Probabilities, and Expected Revenues for the
Running Example

S F(S) P(S) P3(S) Py(S) Ps(S) Pe(S) Fo(S) R(S) & (S) @(S) @;(5) Efficient?
{o} 0 0 0 0 0 0 1 0 0 0 0 Y
{1} 0.20 0 0 0 0 0 0.80 240 0 0.20 0 Y
{2} 0 0.150 0 0 0 0 0.85 120 0.15 0 0.15 Y
{3} 0 0 0.14 0 0 0 0.86 84 0.14 0 0 Y
4 0 0 0 0.17 0 0 0.83 136 0 0.17 0 N
{5} 0 0 0 0 0.25 0 0.75 125 0.25 0 0.25 N
{6} 0 0 0 0 0 0.16 0.84 48 0.16 0 0 N
{1,2} 0.15 0.075 0 0 0 0 0.775 240 0.075 0.15 0.075 Y
{1,3} 0.20 0 0.14 0 0 0 0.66 324 0.14 0.20 0 Y
{1,4} 0.20 0 0 0.17 0 0 0.63 376 0 0.37 0 Y
{1,5} 0.20 0 0 0 0.25 0 0.55 365 0.25 0.20 0.25 N
{1,6} 0.20 0 0 0 0 0.16 0.64 288 0.16 0.20 0 N
{2,3} 0 0.150 0.14 0 0 0 0.71 204 0.29 0 0.15 Y
{2,4} 0 0.150 0 0.17 0 0 0.68 256 0.15 0.17 0.15 N
{2, 5} 0 0.150 0 0 0.25 0 0.60 245 0.40 0 0.40 N
{2, 6} 0 0.150 0 0 0 0.16 0.69 168 0.31 0 0.15 N
{3, 4} 0 0 0.14 0.17 0 0 0.69 220 0.14 0.17 0 N
{3, 5} 0 0 0.14 0 0.25 0 0.61 209 0.39 0 0.25 N
{3, 6} 0 0 0.07 0 0 0.11 0.82 75 0.18 0 0 N
{4, 5} 0 0 0 0.10 0.20 0 0.70 180 0.20 0.10 0.20 N
{4, 6} 0 0 0 0.17 0 0.16 0.67 184 0.16 0.17 0 N
{5, 6} 0 0 0 0 0.25 0.16 0.59 173 0.41 0 0.25 N
{1,2,3} 0.15 0.075 0.14 0 0 0 0.635 324 0.215 0.15 0.075 Y
{1,2,4} 0.15 0.075 0 0.17 0 0 0.605 376 0.075 0.32 0.075 N
{1,2,5} 0.15 0.075 0 0 0.25 0 0.525 365 0.325 0.15 0.325 N
{1,2,6} 0.15 0.075 0 0 0 0.16 0.615 288 0.235 0.15 0.075 N
{1,3,4} 0.20 0 0.14 0.17 0 0 0.49 460 0.14 0.37 0 Y
{1,3,5} 0.20 0 0.14 0 0.25 0 0.41 449 0.39 0.20 0.25 N
{1,3,6} 0.20 0 0.07 0 0 0.11 0.62 315 0.18 0.20 0 N
{1,4,5} 0.20 0 0 0.10 0.20 0 0.50 420 0.20 0.30 0.20 N
{1,4,6} 0.20 0 0 0.17 0 0.16 0.47 424 0.16 0.37 0 N
{1,5,6} 0.20 0 0 0 0.25 0.16 0.39 413 0.41 0.20 0.25 N
{2,3,4} 0 0.15 0.14 0.17 0 0 0.54 340 0.29 0.17 0.15 N
{2,3,5} 0 0.15 0.14 0 0.25 0 0.46 329 0.54 0 0.40 Y
{2, 3,6} 0 0.15 0.07 0 0 0.11 0.67 195 0.33 0 0.15 N
{2,4,5} 0 0.15 0 0.10 0.20 0 0.55 300 0.35 0.10 0.35 N
{2, 4,6} 0 0.15 0 0.17 0 0.16 0.52 304 0.31 0.17 0.15 N
{2,5,6} 0 0.15 0 0 0.25 0.16 0.44 293 0.56 0 0.40 N
{3,4,5} 0 0 0.14 0.10 0.20 0 0.56 264 0.34 0.1 0.20 N
{3, 4,6} 0 0 0.07 0.17 0 0.1 0.65 211 0.18 0.17 0 N
{3, 5, 6} 0 0 0.07 0 0.25 0.1 0.57 200 0.43 0 0.25 N
{4,5, 6} 0 0 0 0.10 0.20 0.16 0.54 228 0.36 0.10 0.20 N
{1,2,3,4} 0.15 0.075 0.14 0.17 0 0 0.465 460 0.215 0.32 0.075 Y
{1,2,3,5} 0.15 0.075 0.14 0 0.25 0 0.385 449 0.465 0.15 0.325 Y
{1,2,3,6} 0.15 0.075 0.07 0 0 0.1 0.595 315 0.255 0.15 0.075 N
{1,2,4,5} 0.15 0.075 0 0.10 0.20 0 0.475 420 0.275 0.25 0.275 N
{1,2,4,6} 0.15 0.075 0 0.17 0 0.16 0.445 424 0.235 0.32 0.075 N
{1,2,5,6} 0.15 0.075 0 0 0.25 0.16 0.365 413 0.485 0.15 0.325 N
{1,3,4,5} 0.20 0 0.14 0.10 0.20 0 0.36 504 0.34 0.30 0.20 Y
{1,3,4,6} 0.20 0 0.07 0.17 0 0.11 0.45 451 0.18 0.37 0 N
{1,3,5,6} 0.20 0 0.07 0 0.25 0.11 0.37 440 0.43 0.20 0.25 N
{1,4,5,6} 0.20 0 0 0.10 0.20 0.16 0.34 468 0.36 0.30 0.20 N
{2,3,4,5} 0 0.15 0.14 0.10 0.20 0 0.41 384 0.49 0.10 0.35 N
{2,3,4,6} 0 0.15 0.07 0.17 0 0.11 0.50 331 0.33 0.17 0.15 N
{2,3,5,6} 0 0.15 0.07 0 0.25 0.11 0.42 320 0.58 0 0.40 N
{2,4,5,6} 0 0.15 0 0.10 0.20 0.16 0.39 348 0.51 0.10 0.35 N
{3,4,5,6} 0 0 0.07 0.10 0.20 0.11 0.52 255 0.38 0.10 0.20 N
{1,2,3,4,5} 0.15 0.075 0.14 0.10 0.20 0 0.335 504 0.415 0.25 0.275 Y
{1,2,3,4,6} 0.15 0.075 0.07 0.17 0 0.1 0.425 451 0.255 0.32 0.075 N
{1,2,3,5,6} 0.15 0.075 0.07 0 0.25 0.1 0.345 440 0.505 0.15 0.325 Y
{1,2,4,5,6} 0.15 0.075 0 0.10 0.20 0.16 0.315 468 0.435 0.25 0.275 N
{1,3,4,5,6} 0.20 0 0.07 0.10 0.20 0.11 0.32 495 0.38 0.30 0.20 N
{2,3,4,5,6} 0 0.15 0.07 0.10 0.20 0.11 0.37 375 0.53 0.10 0.35 N
{1,2,3,4,5,6} 0.15 0.075 0.07 0.10 0.20 0.11 0.295 495 0.455 0.25 0.275 N
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If T is not an efficient set, then there exists a(S) > 0,
Y sa(S) =1 such that

R(T) < 2 a(S)R(S),

S

QT) = ¥ a(9)Q(S).

S

Since 7 >0,

(RD-Ta©r®) -7 (oM - L a®)29) <0,
B B
which contradicts (16). O

Proor oF ProrosiTioN 6. Denote vj; - y; = z;; then, we
claim that

2leq, Wiz
max —————— 17)
zj€[0, o] Zzeq 23+ 0y
has the same optimal value as the optimization prob-
lem (14).

To simplify notation, we suppress the subscript / in (17)
and define wT = (w;, ..., w,), 2=[0, 0] x--- x [0, v,], eT =
(1,...,1), and z € @. Then the objective function of (17) can
be expressed as:

k) w'z
&) =50 = ezroy

Note that both h,(z) and h,(z) are linear; in addition, h,(z)
is always positive if v, # 0, and we define /(0) :=0 when
v, =0. Therefore, from results in Avriel (1976, p. 156) on
quasiconvexity properties of the ratio of linear functions, we
conclude that h(z) is quasiconvex. Then, using the fact that
the maximizer of a quasiconvex function on a closed convex
set is achieved at boundary points, the optimal solution to
(17) is either 0 or vy, which is equivalent to y; =0 or y,; = 1.

Without loss of generality, assume w; > w, > --- > w,. We
next show that the optimal solution to

S

i=1 WiZi
max ——————
ziel0, 011 ) ;1 Z; + Uy

is given by

e

. Ui ifi<i

Zz - er s e

0 ifi>q

where 1 <i* <s.

Suppose the optimal solution z},i=1,...,5 does not
have this property. Then there exists 1 <i < j <s, such that
w; > w; and z7 =0, z; = v;. Let z; = min{v;, v;}, 2} =0, —

min{v;, vj} and z;=z/,I=1,...,s, but [ #i,]. It is easy to

check that z; is a feasible solution.
s s
Ywz = Y wz+wzi+wz
1=1 1=1, 14, j
s
, .
— Y wz+wminfo, o)
1=1, 14, j

+ w;(v; —min{v;, v;})

S
=Y wz +(w; - w;) min{v;, v;}
1=1

s
> Y wz.
1=1

The inequality holds because w; > w; and v;, v; > 0. Also,

s s °
Yzj= Yz +min{v, v;} +0; —min{o;, v;) = ¥z}
=1 =1, =1

Thus, s , s
Y1 Wiz 2 Wizf
Yiaztv Xzt

However, this contradicts the fact that z} is the optimal solu-
tion. Therefore, the optimal solution z; must satisfy

.o ifi<i
Zi = e
0 ifi>i*.
where i* is defined by
m m—1
2im WYy D Wi
m 71 7
YL utv YT v+,
= Zz‘ i+1
. . _{ W0 S wv
mm{lfzfmfl ilfl 101 1+]1_1 101 }
Y0t v 250+ 0

otherwise. O
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