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Abstract. Calibration is an essential step for improving the

accuracy of simulations generated using hydrologic models.

A key modeling decision is selecting the performance met-

ric to be optimized. It has been common to use squared

error performance metrics, or normalized variants such as

Nash–Sutcliffe efficiency (NSE), based on the idea that their

squared-error nature will emphasize the estimates of high

flows. However, we conclude that NSE-based model cali-

brations actually result in poor reproduction of high-flow

events, such as the annual peak flows that are used for flood

frequency estimation. Using three different types of perfor-

mance metrics, we calibrate two hydrological models at a

daily step, the Variable Infiltration Capacity (VIC) model and

the mesoscale Hydrologic Model (mHM), and evaluate their

ability to simulate high-flow events for 492 basins through-

out the contiguous United States. The metrics investigated

are (1) NSE, (2) Kling–Gupta efficiency (KGE) and its vari-

ants, and (3) annual peak flow bias (APFB), where the lat-

ter is an application-specific metric that focuses on annual

peak flows. As expected, the APFB metric produces the best

annual peak flow estimates; however, performance on other

high-flow-related metrics is poor. In contrast, the use of NSE

results in annual peak flow estimates that are more than 20 %

worse, primarily due to the tendency of NSE to underesti-

mate observed flow variability. On the other hand, the use

of KGE results in annual peak flow estimates that are better

than from NSE, owing to improved flow time series metrics

(mean and variance), with only a slight degradation in per-

formance with respect to other related metrics, particularly

when a non-standard weighting of the components of KGE

is used. Stochastically generated ensemble simulations based

on model residuals show the ability to improve the high-flow

metrics, regardless of the deterministic performances. How-

ever, we emphasize that improving the fidelity of streamflow

dynamics from deterministically calibrated models is still

important, as it may improve high-flow metrics (for the right

reasons). Overall, this work highlights the need for a deeper

understanding of performance metric behavior and design in

relation to the desired goals of model calibration.

1 Introduction

Computer-based hydrologic, land-surface, and water balance

models are used extensively to generate continuous long-

term hydrologic simulations in support of water resource

management, planning, and decision making. Such models

contain many empirical parameters that cannot be estimated

directly from available observations, hence the need for pa-

rameter inference by means of the indirect procedure known

as calibration (Gupta et al., 2006). In general, all such mod-

els require some degree of calibration to maximize their abil-

ity to adequately reproduce the observed dynamics of the

system response (e.g., streamflow).
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A key decision in model calibration is the choice of per-

formance metric (also known as the “objective function”)

that measures the goodness of fit between the model sim-

ulation and system observations. The performance metric

can substantially affect the quality of the calibrated model

simulations. The most widely used performance metrics are

based on comparisons of simulated and observed response

time series, including the mean squared error (MSE), Nash–

Sutcliffe efficiency (NSE; a normalized version of MSE), and

root mean squared error (RMSE; a transformation of MSE).

Many previous studies have examined different variants of

these metrics (e.g., see Oudin et al., 2006; Kumar et al., 2010;

Pushpalatha et al., 2012; Price et al., 2012; Wöhling et al.,

2013; Ding et al., 2016; Garcia et al., 2017), including their

application to transformations of the system response time

series to emphasize performance for specific flow regimes

(e.g., use of logarithmic transformation to target low flows)

or using combinations of different metrics to obtain balanced

performance on different flow regimes.

As an alternative to metrics that measure the distance

between response time series, the class of hydrologic sig-

nature metrics (e.g., Olden and Poff, 2003; Shamir et al.,

2005; Gupta et al., 2008; Yilmaz et al., 2008; Westerberg

and McMillan, 2015; Westerberg et al., 2016; Addor et al.,

2017a) has been gaining popularity for hydrologic model cal-

ibration (Yadav et al., 2007; Westerberg et al., 2011; Shafii

and Tolson, 2015; Kavetski et al., 2018). A hydrologic sig-

nature is a metric that quantifies a targeted property or behav-

ior of a hydrologic time series (e.g., that of a specific portion

such as peaks, recessions, water balance, flow variability, or

flow correlation structure), in such a way that it is informa-

tive regarding a specific hydrologic process of a catchment

(Yilmaz et al., 2008).

The use of hydrologic signatures to form metrics for model

calibration requires selection of a full set of appropriate sig-

nature properties that are relevant to all of the aspects of sys-

tem behavior that are of interest in a given situation. As dis-

cussed by Gupta et al. (2008), the use of multiple hydrologic

signatures for model calibration involves the use of multi-

objective optimization (Gupta et al., 1998) in which a trade-

off among the ability to optimize different signature metrics

must be resolved. This means that, in the face of model struc-

tural errors, it is typically impossible to simultaneously ob-

tain optimal performance on all of the metrics (in addition

to the practical difficulty of determining the position of the

high-dimensional Pareto front). Further, if only a small sub-

set of signature metrics is used for calibration, the model

performance in terms of the non-included metrics can suffer

(Shafii and Tolson, 2015). The result of calibration using a

multi-objective approach is a Pareto set of parameters, where

different locations in the set emphasize different degrees of

fit to the different hydrological signatures.

In general, water resource planners focus on achieving

maximum accuracy in terms of specific hydrologic proper-

ties and will therefore select metrics that target the require-

ments of their specific application while accepting (if neces-

sary) reduced model skill in other aspects. For example, in

climate change impact assessment studies, reproduction of

monthly or seasonal streamflow is typically more important

than behaviors at finer temporal resolutions, and so hydrol-

ogists typically use monthly rather than daily error metrics

(Elsner et al., 2010, 2014). Hereafter this metric is referred

to as an “application-specific metric”. It is worth noting that

the application-specific metric can be a hydrologic signature

metric. For example, high-flow volume based on the flow du-

ration curve characterizes the surface flow processes and may

be of interest for estimation of flood frequency.

In this study, we examine how the formulation of the per-

formance metric used for model calibration affects the over-

all functioning of system response behaviors generated by

hydrologic models, with a particular focus on high-flow char-

acteristics. The specific research questions addressed in this

paper are the following.

1. How do commonly used time-series-based performance

metrics perform compared to the use of an application-

specific metric?

2. To what degree does use of an application-specific met-

ric result in reduced model skill in terms of other metrics

not directly used for model calibration?

We address these questions by studying the high-flow

characteristics and flood frequency estimates for a diverse

range of 492 catchments across the contiguous United States

(CONUS) generated by two models: the mesoscale Hydro-

logic Model (mHM; Kumar et al., 2013b; Samaniego et al.,

2010, 2017) and the Variable Infiltration Capacity (VIC;

Liang et al., 1994) model. Our focus on high-flow estima-

tion is motivated by (a) their importance to a wide range

of hydrologic applications related to high-flow characteris-

tics (e.g., flood forecasting, flood frequency analysis) and

their relevance to historical change and future projections

(Wobus et al., 2017); and (b) persistent lack of community-

wide awareness of the pitfalls associated with use of squared

error type metrics for high-flow estimation. Specifically, we

compared and contrasted the model simulation results of the

calibration based on metric (1) NSE, (2) Kling–Gupta ef-

ficiency (KGE) and its variants, and (3) annual peak flow

bias (APFB) – with a focus on understanding and evaluating

the appropriateness of different metrics to capture observed

high-flow behaviors across a diverse range of US basins. We

also discuss the implications of the choice of different cal-

ibration metrics based on stochastic ensemble simulations

generated based on remaining model residuals.

The remainder of this paper is organized as follows. Sec-

tion 2 shows how the use of NSE for model calibration is

counter-intuitively problematic when focusing on high-flow

estimation. This part of the study is motivated by our ex-

perience with CONUS-wide annual peak flow estimates and

serves to motivate the need for our large-sample study (Gupta
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et al., 2014). Section 3 describes the data, models, and cali-

bration strategy adopted. Section 4 then presents the results

followed by discussion in Sect. 5. Concluding remarks are

provided in Sect. 6.

2 Motivation

One of the earliest developments of a metric used for model

development was by Nash and Sutcliffe (1970), who pro-

posed assessing MSE relative to the observation mean: NSE.

A key motivation was to quantify how well the updated

model outputs performed when compared against a simple

benchmark (the observation mean). Since then, such squared

error metrics have been predominantly used for model eval-

uation as well as for model calibration. Furthermore, MSE-

based metrics have been thought to be useful in model cali-

bration to reduce simulation errors associated with high-flow

values, because these metrics typically magnify the errors in

higher flows more than in the lower flows due to the fact

that the errors tend to be heteroscedastic. Although Gupta

et al. (2009) showed theoretically how and why the use of

NSE and other MSE-based metrics for calibration results in

the underestimation of peak flow events, our experience in-

dicates that this notion continues to persist almost a decade

later (Price et al., 2012; Ding et al., 2016; Seiller et al., 2017;

de Boer-Euser et al., 2017). Via an algebraic decomposition

of the NSE into “mean error”, “variability error”, and “cor-

relation” terms, Gupta et al. (2009) demonstrate that use of

NSE for calibration will underestimate the response variabil-

ity by a proportion equal to the achievable correlation be-

tween the simulated and observed responses; i.e., the only sit-

uation in which variability is not underestimated is the ideal

but unachievable one when the correlation is 1.0. They fur-

ther show that the consequence is a tendency to underesti-

mate high flows while overestimating low flows (see Fig. 3

in Gupta et al., 2009).

Our recent large-sample calibration study (Mizukami

et al., 2017) made us strongly aware of the practical im-

plications of this problem associated with the use of NSE

for model calibration. Figure 1 illustrates the bias in the

model’s ability to reproduce high flows when calibrated with

NSE. The plot shows distributions of annual peak flow bias

at 492 Hydro-Climate Data Network (HCDN) basins across

the CONUS for the VIC model using three different param-

eter sets determined by Mizukami et al. (2017). Note that

the collated parameter set is a patchwork quilt of partially

calibrated parameter sets, while the other two sets were ob-

tained via calibration with NSE using the observed data at

each basin. The results clearly demonstrate the strong ten-

dency to underestimate annual peak flows at the vast major-

ity of the basins (although calibration at individual basins

results in less severe underestimation than the other cases).

Figure 1b–d clearly show that annual peak bias is strongly

related to variability error but not to mean error (i.e., water

balance error). Even though the calibrations resulted in sta-

tistically unbiased results over the sample of basins, there is a

strong tendency to severely underestimate annual peak flow

due to the fact that NSE results in poor statistical simulation

of variability. Clearly, the use of NSE-like metrics for model

calibration is problematic for the estimation of high flows

and extremes. However, improving only simulated flow vari-

ability may not improve high-flow estimates in time. It likely

also requires improvement of the mean state and daily corre-

lation.

In general, it is impossible to improve the simulation of

flow variability (to improve high-flow estimates) without si-

multaneously affecting the mean and correlation properties

of the simulation. To provide a way to achieve balanced

improvement of simulated mean flow, flow variability, and

daily correlation, Gupta et al. (2009) proposed the KGE as a

weighted combination of the three components that appear in

the theoretical NSE decomposition formula and showed that

this formulation improves flow variability estimates. KGE is

expressed as

KGE = 1 −

√

[Sr(r − 1)]2 + [Sα(α − 1)]2 + [Sβ(β − 1)]2,

α =
σs

σo
,β =

µs

µo
, (1)

where Sr , Sα , and Sβ are user-specified scaling factors for the

correlation (r), variability ratio (α), and mean ratio (β) terms;

σs and σo are the standard deviation values for the simulated

and observed responses, respectively, and µs and µo are the

corresponding mean values. In a balanced formulation, Sr ,

Sα , and Sβ are all set to 1.0. By changing the relative sizes

of the Sr , Sα , or Sβ weights, the calibration can be altered

to more strongly emphasize the reproduction of flow timing,

statistical variability, or long-term water balance.

The results of the Mizukami et al. (2017) large-sample

study motivated us to carry out further experiments to inves-

tigate how the choice of performance metric affects the esti-

mation of peak and high flow. Here, we examine the extent

to which altering the scale factors in KGE can result in im-

proved high-flow simulations compared to NSE. We also ex-

amine the results provided by use of an application-specific

metric, here taken as the percent bias in annual peak flows.

3 Models, datasets, and methods

We use two hydrologic models: VIC (version 4.1.2h) and

mHM (version 5.8). The VIC model, which includes ex-

plicit soil–vegetation–snow processes, has been used for a

wide range of hydrologic applications, and has recently been

evaluated in a large-sample predictability benchmark study

(Newman et al., 2017). The mHM has been shown to pro-

vide robust hydrologic simulations over both Europe and the

US (Kumar et al., 2013a; Rakovec et al., 2016b) and is cur-

rently being used in application studies (e.g., Thober et al.,

www.hydrol-earth-syst-sci.net/23/2601/2019/ Hydrol. Earth Syst. Sci., 23, 2601–2614, 2019
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Figure 1. Spatial distribution of Hydro-Climate Data Network (HCDN) basins; (b) cumulative distribution of percent bias of annual peak

flow (APFB) over 1989–2008 simulated with three different sets of VIC parameters used in Mizukami et al. (2017) at HCDN basins.

(c) Relationships between variability error (α: simulation-to-observation ratio of daily flow variability) and APFB. (d) Relationships between

mean error (β: simulation-to-observation ratio of mean flow) and APFB.

2018; Samaniego et al., 2018). We use observed streamflow

data at the HCDN basins and daily basin meteorological data

from Maurer et al. (2002) for the period from 1980 through

2008, as compiled by the CONUS large-sample basin dataset

over a wide range of climate regimes (Newman et al., 2014;

Addor et al., 2017b). The use of the large-sample dataset is

recommended to obtain general and statistically robust con-

clusions (Gupta et al., 2014). In the context of flood mecha-

nisms across the CONUS, large flood events are due to pre-

cipitation excess in conjunction with antecedent soil mois-

ture states at the majority of the catchments, except that rapid

snowmelt events are primarily responsible for floods over

the mountainous west (Berghuijs et al., 2016). Both mod-

els are run at a daily time step, and each model is calibrated

separately for each of the 492 study basins (see Fig. 1a for

the basin locations) using several different performance met-

rics. Although sub-daily simulation is preferable for some

flood events, such as flash floods, the effects of the perfor-

mance metrics on the calibrated high-flow estimates are in-

dependent of the simulation time step. Furthermore, instan-

taneous peak flow (at sub-daily scale) is strongly correlated

with daily mean flows (Dieter and Arns, 2003; Ding et al.,

2016), justifying daily simulations still providing useful in-

formation for instantaneous peak flow estimates. We use a

split-sample approach (Klemes, 1986) for the model evalua-

tion. The hydrometeorological data are split into a calibration

period (1 October 1999–30 September 2008) and an eval-

uation period (1 October 1989–30 September 1999), with

a prior 10-year warm-up when computing the statistics for

each period.

The model parameters calibrated for each model are the

same as previously discussed: VIC (Newman et al., 2017;

Mizukami et al., 2017) and mHM (Rakovec et al., 2016a,

b). Although alternative calibration parameter sets have also

been used by others, particularly for VIC (Newman et al.,

2017), the purpose of this study is purely to examine the ef-

fects of performance metrics used for calibration, and not to

obtain “optimal” parameter sets. Each model is identically

Hydrol. Earth Syst. Sci., 23, 2601–2614, 2019 www.hydrol-earth-syst-sci.net/23/2601/2019/
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configured for each of the 492 basins. Both models use the

same set of underlying physiographical and meteorological

datasets, so that performance differences can be attributed

mainly to the strategy used to obtain the parameter estimates.

Optimization is performed using the dynamically dimen-

sioned search (DDS, Tolson and Shoemaker, 2007) algo-

rithm. Five performance metrics are used for the calibra-

tion/evaluation purpose: (1) KGE, (2) KGE-2α, (3) KGE-5α,

(4) APFB, and (5) NSE. The first three metrics are KGEs

with different scaling factor combinations (Sr , Sα and Sβ )

= (1, 1, 1), (1, 2, 1), and (1, 5, 1) in Eq. (1), respectively;

because variability is strongly correlated with annual peak-

flow error (see Fig. 1c), we explore the impact of rescaling

the variability error term in Eq. (1). The fourth metric, APFB,

is our application-specific high-flow metric, defined as

APFB =

√

[(µpeakQs/µpeakQo − 1)]2, (2)

where µpeakQs is the mean of the simulated annual peak flow

series and µpeakQo is the mean of the observed annual peak

flow series. Finally, we took NSE as a benchmark perfor-

mance metric, and compared and contrasted the simulations

based on other performance metrics.

The most common choice of KGE scaling factor for hy-

drologic model calibration has been to set all of them to unity.

We applied the KGE in different variants (i.e., with non-unity

scaling factors), which to the best of our knowledge have not

been studied so far. Note that this scaling is only used to de-

fine the performance metric used in model calibration; all

performance evaluation results shown in this paper use KGE

computed with Sr , Sα , and Sβ all set to 1.0.

4 Results

4.1 Overall simulation performance

First, we focus on the general overall performance for the

daily streamflow simulations as measured by the perfor-

mance metrics used. Figures 2 and 3 show the cumulative

distributions of the model skill during the evaluation period

across the 492 catchments in terms of KGE and its three

components: (a) α (standard deviation ratio), (b) β (mean ra-

tio), and (c) r (linear correlation) for VIC (Fig. 2) and mHM

(Fig. 3). Considering first the result obtained using KGE,

both models, at the median values of the distributions, show

improvement in the variability error by approximately 20 %

over that obtained using the NSE-based calibration (Figs. 2a

and 3a). The plots, however, indicate a continued statisti-

cal tendency to underestimate observed flow variability even

when the (1, 5, 1) component weighting is used in the scaled

KGE-based metric. The corresponding median α and r val-

ues obtained for KGE are (α, r) = (0.83, 0.74) for VIC and

(α, r) = (0.94, 0.82) for the mHM. Interestingly, the VIC re-

sults are more sensitive than the mHM to variations in the Sα

weighting. For VIC, the variability estimate continues to im-

prove with increasing Sα (median moves closer to 1.0), but

simultaneously leads to overestimation of the mean values

(β) and deterioration of correlation (r).

The use of APFB as a calibration metric yields poorer per-

formance for both models, on all of the individual KGE com-

ponents (wider distributions for α and β, and distribution of r

shifted to the left) and consequently on the overall KGE value

as well (distribution shifted to the left). In terms of perfor-

mance as measured by NSE, the use of KGE with the original

scaling factors (α = 1) results in 3 %–10 % lower NSE than

those obtained with the NSE-based calibration case (plots not

shown). This is consistent with the expectation that an im-

provement in the variability error (α closer to unity) leads to

deterioration in the NSE score. In general, all the calibration

results from both models are consistent with the NSE-based

calibration characteristics described in Gupta et al. (2009).

4.2 High-flow simulation performance

Next, we focus on the specific performance of the models in

terms of simulation of high flows. As expected, use of the

application-specific APFB metric (Eq. 2) leads to the best

estimation of annual peak flows for both models (Fig. 4a

and b), while use of NSE produces the worst peak flow esti-

mates. Simply switching from NSE to KGE improves APFB

by approximately 5 % for VIC and 10 % for the mHM at the

median value during the evaluation period. Improvement of

APFB occurs at over 85 % of 492 basins for both models.

Note that the inter-quartile range of the bias across the basins

becomes larger for the evaluation period compared to the cal-

ibration period. This is even more pronounced when APFB

is used as the objective function (see the results from the

mHM; Fig. 4a and b), indicating that the application-specific

objective function results in overfitting, and consequently the

model is less transferable in time than when the other metrics

are used for calibration.

Figure 4c and d show the high-flow simulation perfor-

mance in terms of another high-flow-related metric – the per-

cent bias in the runoff volume above the 80th percentile of the

daily flow duration curve (FHV; Yilmaz et al., 2008). Inter-

estingly, FHV is not reproduced better by the APFB calibra-

tions compared to the other objective functions, particularly

for VIC. The implication is that, in this case, the application-

specific metric only provides better results for the targeted

flow characteristic (here the annual peak flow), but can re-

sult in poorer performance for other flow properties (even

the closely related annual peak flow). While the mHM model

calibrated with APFB does produce a nearly unbiased FHV

estimate across the CONUS basins, the inter-quartile range

is much larger than that obtained using the other calibra-

tion metrics. The VIC model-based results also exhibit larger

variability in the FHV bias across the study basins.

www.hydrol-earth-syst-sci.net/23/2601/2019/ Hydrol. Earth Syst. Sci., 23, 2601–2614, 2019
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Figure 2. Cumulative distributions of (a) flow variability errors α, (b) bias β, (c) linear correlation r , and (d) Kling–Gupta efficiency over

the 492 HCDN basin calibrations with five performance metrics for evaluation period and VIC.

4.3 Implication for flood frequency estimation

Annual peak flow estimates are generally used directly in

the flood frequency analysis. Figure 5 shows estimated daily

flood magnitudes at three return periods (5-,10-, 20-year)

using the five different sets of calibration results. Although

many practical applications (e.g., floodplain mapping and

water infrastructure designs) require estimates of higher ex-

treme events, we focus on a 20-year event (0.95 exceedance

probability) for the highest extremes, given use of only 20

years of data for this study; this is to avoid the need for ex-

trapolation of extreme events via theoretical distribution fit-

ting. For this evaluation case (of annual flood magnitudes),

we use the combined calibration and evaluation periods.

Figure 5 shows results that are consistent with Fig. 4, al-

though more outlier basins are found to exist for estimates of

flood magnitude at the three return periods. The KGE-based

calibration improves flood magnitude estimates (compared

to NSE) at all three return periods for both models. In par-

ticular, mHM especially exhibits a clear reduction of the bias

by 10 % at the median compared to the NSE calibration case.

The APFB calibration further reduces the bias by 20 % and

10 % for VIC and mHM, respectively. However, regardless

of the calibration metric, for both models the peak flows at

all return periods are underestimated, although mHM under-

estimates the flood magnitudes to a lesser degree due to its

smaller underestimation of annual peak flow estimates. Even

though APFB is less than 5 % at the median value for mHM

calibrated with APFB (Fig. 4), the 20-year flood magnitude is

underestimated by almost 20 % at the median (Fig. 5). Also,

the degree of underestimation of flood magnitude becomes

larger with longer return periods.

5 Discussion

While both models show fairly similar trends in skill for each

performance metric, it is clear from our large-sample study

of 492 basins that the absolute performance of VIC is inferior

to that of mHM, irrespective of choice of evaluation metric.

A full investigation of why VIC does not perform at the same

level of mHM is clearly of interest but is left for future work.

To improve the performance of VIC it may be necessary to

perform rigorous sensitivity tests similar to comprehensive

sensitivity studies that have included investigation of hard-

coded parameters in other more complex models (e.g., Men-

Hydrol. Earth Syst. Sci., 23, 2601–2614, 2019 www.hydrol-earth-syst-sci.net/23/2601/2019/
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Figure 3. The same as Fig. 2 except for the mHM.

doza et al., 2015; Cuntz et al., 2016). Below, we discuss our

results in the context of usage of different performance met-

rics, in regard to remaining aspects of model errors, and pro-

vide suggestions for potential improvement of the high-flow

related metrics.

5.1 Consideration of an application-specific metric

Although the annual peak flow estimates improve by switch-

ing calibration metrics from NSE to KGE and KGE to APFB,

the flood magnitudes are underestimated at all of the return

periods examined no matter which performance metric is

used for calibration. While the APFB calibration improves,

on average, the error of annual peak flow over the 20-year

period, the flood magnitude estimates at several percentile

or exceedance probability levels are based on estimated peak

flow series. Therefore, improving only the bias does not guar-

antee accuracy of the flood magnitudes at a given return pe-

riod. Following Gupta et al. (2009), events that are more ex-

treme may be affected more severely by variability errors

when examining the series of annual peak flows, particularly

because this performance metric accounts only for annual

peak flow bias. Figure 6 shows how the estimates of flood

magnitudes at the 20-year return period (top panels) and 5-

year return period (bottom panels) are related to variability

error and bias of annual peak flow estimates. As expected,

the more extreme (20-year return period) flood estimates are

more strongly correlated with estimates of the variability of

annual peak flows than with the 20-year bias of the annual

peak flow series. For the less extreme (5-year return period)

events, this trend is flipped, and flood magnitude errors are

more correlated with the bias.

5.2 Consideration of model residuals

The calibrated models do improve the flow metrics includ-

ing both time series metrics (mean, variability, etc.) and/or

application-specific metrics, depending on the performance

metrics used for the calibration. However, residuals always

remain after the model calibration because the model never

reproduces the observations perfectly. Recently, Farmer and

Vogel (2016) discussed the effects of neglecting residuals on

estimates of flow metrics, particularly errors in statistical mo-

ments of flow time series (mean, variance, skewness, etc.). In

the context of this study for the high-flow simulations, let us

focus on the flow variability (i.e., variance) component for

observation and model simulations, which can expressed by

www.hydrol-earth-syst-sci.net/23/2601/2019/ Hydrol. Earth Syst. Sci., 23, 2601–2614, 2019



2608 N. Mizukami et al.: On the choice of calibration metrics for “high-flow” estimation

Figure 4. Boxplots of percent bias of APFB (a, b) and flow volume above the 80th percentile flow duration curve (%biasFHV: c, d) over the

492 HCDN basin calibrations with five performance metrics for calibration and evaluation periods and two models. Box width represents the

inter-quartile range (first and third quartiles), and lower and upper whiskers are placed at 1.5 times the inter-quartile range.

Figure 5. Boxplots of percent bias of flood estimates corresponding to three return periods (5-,10-, and 20-year) over the 492 HCDN basins

for the two models. Box-plot representation is the same as Fig. 4.
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Figure 6. Scatterplots between (a) the simulation–observation ratio of variability of annual peak flow series (α) and percent bias of 20-year

flood magnitude and (b) the simulation–observation ratio of mean annual peak flow series (β) and percent bias of 20-year flood magnitude;

(c) and (d) are the same as (a) and (b) except for 5-year flood magnitudes. Linear correlations between two variables are specified in the

upper-left corner of each plot.

the following equation:

Var(o) = Var(s + ǫ) = Var(s) + Var(ǫ) + 2COV(s,ǫ), (3)

where Var(X) is variance of X, COV(X,Y ) is covariance

between X and Y , o is the observed time series, s is sim-

ulated time series from the calibrated model, and ǫ is the

residuals. The observation time series can be expressed as

the sum of the model simulation and residual terms (denoted

as ŝ = s + ǫ). As seen in Eq. (3), neglecting the residuals can

match the observed variability only when the variance of the

residuals is offset by covariance between the simulation and

residuals, i.e., COV(s, ǫ). Of course, this condition is not ful-

filled (in real-world simulation studies). In our calibration re-

sults (as discussed above), the observed flow variability is

underestimated for both models in the majority of the study

basins for nearly all performance metrics used for the cali-

bration (Figs. 2a and 3a).

To gain more insight into this topic, we examine how

stochastically generated residuals, once re-introduced to the

simulated flows, can affect the performance metrics. We con-

sider three performance metrics for this analysis: NSE, KGE,

and APFB. Figure 7 shows the distributions of flow residu-

als produced by the calibrated models. The APFB calibration

that produces the worst temporal pattern of flow time series

(the lowest correlation shown in Figs. 2d and 3d) produces

wider residual distributions. Following the method of Bour-

gin et al. (2015) and Farmer and Vogel (2016), 100 sets of

synthetic residual time series (ǫ) are stochastically generated

by sampling the residuals of the calibrated flow (i.e., simula-

tion during the calibration period) for each model and added

to the respective modeled flow during the evaluation period.

The method randomly samples the residuals from the resid-

ual pool based on the flow magnitude. For each of the 100

residual amended flow series, mean error (β) and variabil-

ity error (α) are computed, and then median error values are

compared with the original deterministic flow error metrics.

Figure 8 shows the improvement of bias (α) and variabil-

ity error (β) regardless of the performance metric or resid-

ual distribution characteristics. Similarly to Farmer and Vo-

gel (2016), high-flow volume error (percent bias of FHV) and

APFB computed with residual incorporated flow series also

improve compared to the deterministic flow series from the

calibrated models (Fig. 9).
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Figure 7. Residual distributions conditioned on the non-exceedance probability of the daily flows over the 492 study basins. Analyses are

presented for the three calibration performance metrics. Daily residuals are computed based on the observed and simulated flows during the

evaluation period.

The quality of the original deterministic flow simulated by

the hydrologic models has little effect on the performance

metrics based on the ensemble of residual augmented flows.

Since the stochastically generated ensembles do not account

for temporal correlation, every ensemble has reduced cor-

relation and deteriorated NSE and KGE metrics. However,

the error metric related to the flow duration curve (APFB) is

not affected by the lack of correlation because metrics based

on the flow duration curve (FDC) do not preserve informa-

tion regarding the temporal sequence. Although residual aug-

mented flow time series enhances some of the flow metrics,

the (temporal) dynamical pattern is not reproduced. These

observations point toward the need for careful investigation

in interpreting the improvement in model skill, especially

when different error metrics are considered.

A key issue is the extent to which high flows are repre-

sented in the deterministic and stochastic components. While

it is possible to generate ensembles through stochastic sim-

ulation of the model residuals (as is done here), and these

stochastic simulations improve high-flow error metrics, we

will naturally have more confidence in the model simulations

if the high flows are well represented in the deterministic

model simulations. The use of squared error metrics simply

means that a larger part of the high-flow signal must be re-

constructed via stochastic simulation.

6 Conclusions

The use of large-sample catchment calibrations of two dif-

ferent hydrologic models with several performance metrics

enables us to make robust inferences regarding the effects of

the calibration metric on the ability to infer high-flow events.

Here, we have focused on improving the representation of
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Figure 8. Distribution of the two error metrics (a, b: α and c, d: β) computed based on the simulations from NSE-, KGE-, and APFB-

calibrated models (labeled as s). The distribution of median error metrics (labeled as ŝ) are based on 100 residual augmented flow series. The

evaluation results shown here correspond to the evaluation period. Box-plot representation is the same as Fig. 4.

Figure 9. The same as Fig. 8 except for APFB (a, b) and percent bias in FHV (c, d).
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annual peak flow estimates, as they are important for flood

frequency magnitude estimation. We draw the following con-

clusions from the analysis presented in this paper.

1. The choice of error metric for model calibration impacts

high-flow estimates very similarly for both models, al-

though mHM provides overall better performance than

VIC in terms of all metrics evaluated.

2. Calibration with KGE improves performance as as-

sessed by high-flow metrics by improving time-

dependent metrics (e.g., variability error score). Adjust-

ment of the scaling factors related to the different KGE

components (bias, variability, and correlation terms) can

further assist the model simulations in matching certain

aspects of flow characteristics. The degree of improve-

ment is, however, model dependent.

3. Application-specific metrics can improve estimation of

specifically targeted aspects of the system response

(here annual peak flows) if used to direct model calibra-

tion. However, the use of an application-specific met-

ric does not guarantee acceptable performance with re-

gard to other metrics, even those closely related to the

application-specific metric.

Given that Gupta et al. (2009) show clear improvement of

flow variability estimates by switching the calibration met-

ric from NSE to KGE for a simple rainfall–runoff model

similar to the HBV model (Bergström, 1995), and that our

results are similar for two relatively more complex models,

we can expect that other models would exhibit similar re-

sults when using KGE or its scaled variant. When choosing

to use an application-specific metric, it seems clear that care-

ful thought needs to be given to the design of the metric if

we are to obtain good performance for both the target met-

ric (used for calibration) and other related metrics (used for

evaluation). This is important since we wish to increase con-

fidence in the robustness and transferability of the calibrated

model – an issue that needs to be examined in more detail.
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