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Abstract 

Cloud analysis has emerged as a popular tool for the seismic demand/fragility assessment of structures. The output of cloud analysis is a seismic 
demand model which relates an Engineering Demand Parameter (EDP) indicative of structural distress to an Intensity Measure (IM) signifying 
the severity of ground shaking. IMs commonly used for probabilistic seismic demand assessment are quite heterogenous with respect to their 
“efficiency”, i.e. their degree of correlation with a specific EDP. This feature has serious implications on the number of ground motion records 
that must be used to perform cloud analysis on a given structure in order to accurately describe the distribution of the EDP at various IM levels. 
In the current study, demand models for maximum interstorey drift (θmax), based on a wide spectrum of IMs, are developed from the cloud 
analyses of a five-storey RC bare frame structure using a suite of fifty unscaled natural ground motion records. The method of bootstrap 
resampling is used to investigate the convergence of the regression coefficients in the demand model with the size of the bootstrap subsamples, 
each comprising of a limited subset of records drawn from the original suite with repetitions allowed. This procedure helps determine the 
minimum number of ground motion records necessary for the calibration of demand models without compromising its accuracy in predicting the 
drift demands. Results from the study indicate a strong correlation between the efficiency of various IMs and the optimal number of records 
required to produce reliable seismic demand models. 
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1. Introduction 

Cloud analysis [1,2] has emerged as a popular tool for the 
seismic demand and fragility assessment of structures. 
Unlike other nonlinear dynamic analysis procedures such as 
incremental dynamic analysis [3] and multiple stripe 
analysis [4,5], which require a large number of nonlinear 
response history analyses (NLRHA) to be performed on a 
structure using ground motion records scaled to multiple 
intensity levels, cloud analysis may be performed using a set 
of as-recorded or unscaled accelerograms. Thus, the cloud 
method benefits from the need for lesser computational 
resources and run time compared to the other techniques.  

 
The output from cloud analysis is represented in the form of 
a scatter plot (in logarithmic scale) comprising of ordered 
pairs of an intensity measure (IM) and the engineering 
demand parameter (EDP) of interest. Assuming an 
appropriate functional form for the IM-EDP relationship, 
classical regression techniques can be employed to assess 
the correlation between the above variables. The 

mathematical relationship established between the IM and 
EDP through statistical regression is commonly referred to 
as a ‘seismic demand model’. Such models may be 
conveniently used for the estimation of seismic fragility 
using conventional reliability-based approaches [6]. 

 
A critical decision to be made while selecting ground 
motion records for cloud analysis, pertains to the size of the 
record bin to be used. The larger the size of the bin, the 
more time consuming will be the execution of NLRHA. The 
current study builds on the understanding that certain 
intensity measures are more efficient than others [7,8] and 
seeks to examine whether the choice of IM has a bearing on 
the minimum number of records necessary to accurately 
calibrate a demand model for cloud analysis. If so, the 
assessment framework could clearly benefit from the use of 
highly efficient IMs in formulating the demand model. In 
the present study, numerical investigation is carried out on a 
2D RC bare frame model to examine the possible correlation 

between the efficiency of IMs (E) and the optimum number 
of records (Nopt) necessary to calibrate a reliable seismic 

demand model for maximum interstorey drift. Ten popular 
IMs are considered, which include five non-structure 



Bhasker and Menon / ASPS Conference Proceedings 1: 631-637 (2022) 

632 

specific and five structure specific descriptors. A modified 
version of the bootstrap resampling procedure proposed by 
[9] is used to determine Nopt. A mathematical model for the 
variation of Nopt with E is also proposed. 

2. Numerical Investigation 
 

2.1 Description of the numerical model 
 
The numerical model used in the current investigation is that 
of a five-storey RC bare frame building, with configuration 
as outlined in Fig.1. The lateral load resisting system of the 
structure is a moment resisting frame comprising of beams 
and columns. In addition to its self-weight, each beam is 
assumed to carry a superimposed vertical load of 15kN/m 
over its entire span. The structure is designed to safely carry 
the gravity loads as per the guidelines of IS 456:2000 [10]. 
For the structural design, the characteristic compressive 
strength of concrete (fck) and the characteristic yield strength 
of the steel rebars (fy) are assumed to be equal to 25 MPa 
and 415 MPa respectively. The geometric and reinforcement 
details of the beams and columns are furnished in Table 1 
and Table 2 respectively. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Elevation of the planar RC moment frame model used 
in the study 

 

Table 1. Geometric and reinforcement details of beams 

Property 
ID 

Dimensions 
(mm) 

Reinforcement details (mm) 
L/R M 

B1 250 x 250 
T: 2-16Y 
B: 2-12Y 

T: 2-10Y 
B: 2-16Y 

B2 250 x 300 
T: 2-16Y 
B: 3-12Y 

T: 2-10Y 
B: 2-16Y 

B3 250 x 250 
T: 2-12Y 
B: 2-12Y 

T: 2-10Y 
B: 2-12Y 

L: Left end     R: Right end      M: Mid-span  
T: Top face      B: Bottom face 

Table 2. Geometric and reinforcement details of columns 
 

Property ID 
Dimensions 

(mm) 
Reinforcement details 

(mm) 

C1 250 x 250 Corners: 4-14Y 

C2 300 x 300 Corners: 4-16Y 

 
Table 3. Modal periods of vibration and mass participation 
factors for the model considered 

Mode 
Modal period 

T (s) 

Modal mass 
participation factor 

UX (%) 
Mode 1 1.01 83.31 
Mode 2 0.32 10.27 
Mode 3 0.18 4.02 
Mode 4 0.12 1.85 

 
The seismic analysis platform Seismostruct 2020 [11] is 
used to execute the required NLRHA on the above structure. 
Inelastic force-based elements with five integration sections 
and fifty fibers per cross-section are used to define the frame 
members. The uniaxial stress-strain behavior of concrete 
under cyclic loading is defined using the nonlinear 
constitutive model proposed by Mander et al. [12] and the 
strength and stiffness degradation rules proposed by 
Martinez-Rueda and Elnashai [13]. The reverse cyclic 
behavior of the steel rebars is defined using the Menegotto-
Pinto steel model [14] coupled with the isotropic hardening 
rules proposed by Filippou et al. [15]. The Newmark 
average acceleration method is used for the numerical 
evaluation of nonlinear seismic response and the Newton-
Raphson solver is used in each time step. 
 
Prior to the execution of nonlinear dynamic analysis, the 
modal properties of the structure (Table 3) are determined 
by carrying out an eigen value analysis post-application of 
the gravity loads. As can be seen from the table, the building 
is first mode dominated with the mass participation factor 
corresponding to the first mode (T1=1.01s) amounting to 
83.3%. The fundamental period T1 will be used in the later 
parts of the study for the determination of certain structure 
specific descriptors of ground shaking severity. 
 
2.2 Suite of Ground Motions 
 
NLRHA of structures may be performed using natural 
records, artificial waveforms or synthetic records as the 
seismic input [16]. Here, a suite of fifty unscaled natural 
strong motion records, downloaded from the PEER 
NGAWEST database [17] is used to define ground shaking 
scenarios. The records originate from events covering a 
moment magnitude range of 5.5-7.5 and were recorded on 
NEHRP class C sites (360m/s < VS30 < 720m/s) [18] located 
at a distance of at least 15 km from the source of the 
earthquake. The records are selected to be free field or on 
the ground level. After filtering the records in the database 
based on the above pre-selection criteria, the final selection 
(Table 4) is made ensuring that the ensemble covers a broad  
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Fig.2 Variability in moment magnitudes and Joyner Boore 

distances among the selected ground motions 
 

 
Fig.3 5% damped acceleration response spectra for the suite 

of fifty unscaled ground motion records 
 
range of intensity values. No specific constraints related to 
spectral matching are imposed during this process. Fig.2 
demonstrates the diversity among the ensemble of ground 
motion records in terms of their moment magnitude (Mw) 
and Joyner-Boore distances (RJB). Fig.3 highlights the 
variability among the chosen ground motion records in 
terms of their 5% damped acceleration response spectra. 

 
 

2.3 Intensity Measures 
 
A total of ten popular IMs are used in the current numerical 
investigation. They include peak ground acceleration 
(PGA), peak ground velocity (PGV), peak ground 
displacement (PGD), specific energy density (SED), 
cumulative absolute velocity (CAV), first mode spectral 
acceleration (Sa(T1)) [19], acceleration spectrum intensity  
(ASI), velocity spectrum intensity (VSI) [20], Housner 
intensity (HI) [21] and average spectral acceleration (Saavg) 
[22]. The first five IMs fall into the category of non-
structure specific IMs while the latter five are structure 
specific in nature [23]. Previous studies [24] have shown 
that these measures are characterized by different levels of 
efficiency; i.e. their degree of correlation with an EDP of 
interest. The procedure adopted in the present study for the 
determination of IM efficiency is described in the next sub-
section. 

 
 

Table 4. Suite of ground motion records used in the study 

ID  Event Name  Year  Station Name 

1  Imperial Valley-03 1951  El Centro Array #9 

2  Kern County 1952  Taft Lincoln School 

3  Imperial Valley-04 1953  El Centro Array #9 

4  Parkfield 1966  Cholame - Array #12 

5  Parkfield 1966  Cholame - Array #8 

6  Parkfield 1966  Temblor Pre-1969 

7  Northern California-05 1967  Ferndale City Hall 

8  San Fernando 1971  Castaic - Old Ridge  

9  San Fernando 1971  Fairmont Dam 

10  San Fernando 1971  LA - Hollywood Store FF 

11  San Fernando 1971  Pearblossom Pump 

12  Point Mugu 1973  Port Hueneme 

13  Friuli-01 1976  Tolmezzo 

14  Fruili-03 1976  Buia 

15  Fruili-03 1976  Forgaria Cornino 

16  Friuli-02 1976  Buia 

17  Friuli-02 1976  Forgaria Cornino 

18  Friuli-02 1976  San Rocco 

19  Santa Barbara 1978  Cachuma Dam Toe 

20  Tabas 1978  Boshrooyeh 

21  Coyote Lake 1979  Halls Valley 

22  Coyote Lake 1979  SJB Overpass 

23  Coyote Lake 1979 San Juan Bautista  

24  Coyote Lake 1979  San Juan Bautista Polk St 

25  Norcia Italy 1979  Bevagna 

26  Norcia Italy 1979  Spoleto 

27  Imperial Valley-06 1979  Calexico Fire Station 

28  Imperial Valley-06 1979  Calipatria Fire Station 

29  Imperial Valley-06 1979  Cerro Prieto 

30  Imperial Valley-06 1979  Compuertas 

31  Livermore-01 1980  APEEL 3E Hayward  

32  Livermore-01 1980  Antioch - 510 G St 

33  Livermore-01 1980  Del Valle Dam (Toe) 

34  Livermore-01 1980  Fremont - San Jose 

35  Mammoth Lakes-01 1980  Long Valley Dam  

36  Mammoth Lakes-02 1980  Long Valley Dam  

37  Mammoth Lakes-03 1980  Long Valley Dam  

38  Mammoth Lakes-03 1980  Long Valley Dam (L) 

39  Victoria  1980  SAHOP Casa Flores 

40  Irpinia-01 1980  Brienza 

41  Irpinia-01 1980  Mercato San Severino 

42  Irpinia-02 1980  Auletta 

43  Irpinia-02 1980  Bagnoli Irpinio 

44  Taiwan-05 1981  SMART1 C00 

45  Taiwan-05 1981  SMART1 I06 

46  Taiwan-05 1981  SMART1 I12 

47  Corinth 1981  Corinth 

48  Westmorland 1981  Brawley Airport 

49  Westmorland 1981  Niland Fire Station 

50  Westmorland 1981  Superstition Mtn Camera 

 
 
2.4 Efficiency Analysis 
 
The efficiency of a given IM in predicting the maximum 
interstorey drift demands (θmax) on the test structure is 
determined by cloud analysis using the suite of fifty ground 
motion records. In the present study, the widely adopted log-
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linear model (Equation 1) for seismic demand [25,8] is used 
to represent the functional relationship between the predictor 
variable (IM) and the response variable (θmax). 
 

 max
ˆln a b ln IM       (1) 

 
In the above equation, ‘a’ and ‘b’ are regression coefficients 
and ε is a normal random variable with zero mean and 
standard deviation given by Equation 2. 
 

  
N 2

max,i i
i 1

ln a b ln IM

N 2


     
 




 (2) 

where IMi and θmax,i are the intensity and maximum 
interstorey drift values corresponding to the ‘ith’ observation 
and N is the number of input signals. The complete 
definition of the seismic demand model requires all the three 
parameters- a, b and σ to be estimated with a desired level of 
confidence. 
  
The degree of correlation between the predictor and 
response variables or efficiency (E) is quantified in terms of 
the coefficient of determination for the above regression. A 
value close to zero is indicative of statistical independence, 
where as a value equal to one signifies perfect correlation 
between the IM and θmax. The output from the IM efficiency 
analyses are presented in section 3. 
 
2.5 Determination of optimal number of records 
 
The reliability of a seismic demand model depends on the 
confidence with which its parameters are estimated. In the 
log-linear representation of IM- θmax relationship, there are 
three unknown constants (a, b and σ). Using a larger suite 
for input records to calibrate the demand model could enable 
the estimation of the mean value of these constants with 
better confidence. However, beyond a certain number, 
adding more records to the bin is known to result only in a 
marginal reduction in the width of the confidence interval 
for these statistics [26]. 
 
In the current study, the method of bootstrap resampling 
[27] is used to examine the rate at which the estimates of the 
demand parameters converge with increase in the size of the 
bin of records. Bootstrapping involves generating a large 
number of subsamples of a particular size from a parent set 
with repetitions of elements allowed. From the parent suite 
of fifty records, 100000 bootstrap samples of size 5 are first 
generated. Estimates of the regression constants are made 
using the NLRHA output corresponding to each such 
subsample. Naturally, there will be a variability among the 
estimates of the constants obtained using different samples. 
The coefficient of variation (δ) is a good measure of the 
inter-sample variability of these estimates. The coefficient 
of variation for the estimate of a, b and σ are denoted by δa, 
δb and δσ respectively. The process is repeated for bootstrap 
sample sizes from 6 to 50 in increments of one. The bin size 
‘N’ is considered sufficient when the coefficient of variation 

for all three parameters reduce to a small value (δ0); i.e. 
when the constraints given by Equations 3, 4 and 5 are 
simultaneously satisfied. 
 
 
 

a 0(N, IM)    (3) 

 
b 0(N, IM)    (4) 

 
0(N, IM)    (5) 

 
The minimum value of N which satisfies the above criteria 
is referred to as the optimum number of records (Np). The 
magnitude of Np will vary with the value chosen for the 
tolerance δ0. For discussions in the subsequent section, the 
value of δ0 is assumed as 0.2. Since the demand model may 
be conditioned on different IMs, an investigation is carried 
out on the sensitivity of Nopt to the choice of IM (section 3).  
 
3. Results and Discussions 
 
Based on the procedure outlined in section 2.4, efficiency 
analyses for the ten IMs are carried out and the results 
thereof are presented graphically in Fig. 4.  
 
It can be seen that there is significant heterogeneity among 
the considered IMs in terms of their degree of correlation 
with θmax. PGA is observed to be the least efficient, with 
E=0.53 and Saavg is observed to be the most efficient with 
E= 0.89. Once the efficiency analysis is complete, the 
bootstrap resampling procedure was used to deduce δa, δb 
and δσ for different subsample sizes and different choices of 
the IM. The output from this exercise is illustrated in Fig.5. 
 
A summary of IM efficiencies and the corresponding 
optimum number of records is presented in Table 5. The 
functional dependence of Nopt on E is illustrated in Fig.6. It 
can be observed that Nopt is highly sensitive to the efficiency 
of the intensity measure used to define the demand model. A 
degrading power law model is found to capture the variation 
of Nopt with E. Larger the efficiency of an IM, fewer the 
number of ground motion records necessary to accurately 
calibrate the demand model. This highlights the importance 
of selecting the number of records for cloud analysis only 
after giving due attention to the efficiency of the intensity 
descriptor used within the assessment framework.  
If the optimum number of records necessary to develop a 
demand model conditioned on an intensity measure IM1 of 
efficiency E1 is known to be Nopt1, then the optimal number 
of records (Nopt2) that must be used to develop an equally 
accurate demand model using an intensity measure IM2 of 
efficiency E2 is given by Equation 6. 
 
 1.57

opt2 2

opt1 1

N E

N E


 

  
 

 (6) 

 
Adopting the values of E1, E2 and Nopt1 from reliable sources 
of literature, once could deduce a priori, an appropriate 
number of records that must be used when a particular IM is 
used as the basis for seismic demand assessment.  
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Fig.4 Efficiency analysis of various ground motion intensity measures 
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Fig.5 Coefficient of variation in the estimates of demand model parameters from bootstrap samples of different sizes.

Table 5. Efficiency (E) of various IMs and the 
corresponding values of Nopt 

IM E Nopt (δ0 = 0.2) 

PGA 0.53 37 

PGV 0.78 21 

PGD 0.73 22 

SED 0.84 18 

CAV 0.68 26 

Sa(T1) 0.71 26 

ASI 0.62 33 

VSI 0.84 20 

HI 0.87 18 

Saavg 0.89 17 

 
Fig.6 Variation in Nopt with the efficiency of IMs 
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4. Summary and Conclusions 

In this study, the method of bootstrap resampling is used to 
investigate the potential relationship between the efficiency 
(E) of various IMs and the minimum number of ground 
motion records necessary to develop a reliable demand 
model for maximum interstorey drift using cloud analysis. 
Ten popular IMs are considered in the study, the efficiencies 
of which are quantified in terms of the R2 value 
corresponding to their regression with θmax (considering fifty 
different ground shaking scenarios in total). Bootstrap 
resampling is carried out on the parent set of fifty records to 
generate 100000 subsamples each, of sizes 5 to 50. The 
constants (a, b and σ) in the log-linear regression model for 
θmax is then estimated using the NLRHA output 
corresponding to each subsample of a particular size ‘N’. 
The coefficient of variation for the estimates of each 
constant across subsamples of the same size is further 
calculated. The optimum number of records (Nopt) for cloud 
analysis is defined herein as the lowest value of ‘N’ for 
which the coefficients of variation for the estimates of all 
three regression constants in the demand model drop to less 
than 20%. 
The results indicate a strong correlation between the 
efficiency of IMs and Nopt. The value of Nopt is as high as 37 
for the least efficient measure PGA (E= 0.53) and as low as 
17 for the most efficient descriptor Saavg (E= 0.89). The 
observed variation of Nopt with E highlights the need to give 
the choice of IM due consideration while determining the 
number of ground motion records to be used for cloud 
analysis. Clearly, the use of a highly efficient IM to define 
the seismic demand model brings down the number of 
required nonlinear response history analyses, easing a 
framework which is otherwise computationally exorbitant. 
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