ON THE CHOICE OF THE NUMBER OF CLASS INTERVALS IN THE
APPLICATION OF THE CHI SQUARE TEST
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Introduction. To test whether a sample has been drawn from a population
with a specified probability distribution, the range of the variable is divided
into a number of class intervals and the statistic,

2 (a — Np): 2
(1) ;l _W— =X
computed. In (1) k is the number of class intervals, «; the number of observa-
tions in the sth class, p; the probability that an observation falls into the <th
class (calculated under the hypothesis to be tested). It is known that under
the null hypothesis (hypothesis to be tested) the statistic (1) hasasymptotically
the chi-square distribution with ¥ — 1 degrees of freedom, when each Np; is
large. To test the null hypothesis the upper tail of the chi-square distribution
is used as a critical region.

In the literature only rules of thumb are found as to the choice of the number
and lengths of the class intervals. It is the purpose of this paper to formulate
principles for this choice and to determine the number and lengths of the class
intervals according to these principles.

If a choice is made as to the number of class intervals it is always possible to
find alternative hypotheses with class probabilities equal to the class probabilities
under the null hypothesis. The least upper bound of the ‘“distances” of such
alternative distributions from the null hypothesis distribution can evidently be
minimized by making the class probabilities under the null hypothesis equal to
each other. By the distance of two distribution functions we mean the least
upper bound of the absolute value of the difference of the two cumulative
distribution functions. We have therefore based this paper on a procedure by
which the lengths of the class intervals are determined so that the probability
of each class under the null hypothesis is equal to 1/k where k is the number of
class intervals.’

Let C(A) be the class of alternative distributions with a distance > A from the
null hypothesis. Let f(N, k, A) be the greatest lower bound of the power of the
chi-square test with sample size N and number of class intervals k£ with respect
to alternatives in C'(A). The maximum of f(N, k, A) with respect to & is a
function (N, A) of N and A. It is most desirable to maximize f(N, k, A) for

1Research under a grant in aid from the Carnegie Corporation of New York.

2This procedure was first used by H. Hotelling. “The consistency and ultimate dis-
tribution of optimum statistics,”” Trans. Am. Math. Soc., Vol. 32, pp. 851.) It has been
advocated by E. J. Gumbel ir a paper which will appear shortly.
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such values of A for which ®(N, A) is neither too large nor too small and in this
paper we propose to determine A so that ®(N, A) is equal to 1.

Hence we introduce the following definitions:

DEriNiTION 1. A positive integer k is called best with respect to the number of
observations N if there exists a A such that f(N, k, A) = % and f(N, k', A) < %
for any posttive integer k’.

DeFinNITION 2. A positive integer k is called e-best (0 < e < 1) with respect to
the number of observations N if e is the smallest number in the interval [0, 1] for
which the following condition is fulfilled: There exists a A such that f(N, k, A) >
3 — eand f(N, k', A) < % + e for any positive integer k'.

It,is obvious that an e-best k is a best k if ¢ = 0. If eis very small an ebest
k is for all practical purposes equivalent to a best k.

Since f(N, k, A) is a continuous function of A it is easy to see that for any
pair of positive integers k£ and N there exists exactly one value e such that k is
ebest with respect to the number of observations N. Since the value of this e
is a function of k¥ and N we will denote it by e(k, N).

DeriNtTION 3. A sequence {ky} of positive integers is called best in the limit if
lim e(ky , N) = 0.

N=00
In this paper the following theorem is proved:

2(N — 1)

THEoREM 1. Let ky = 4 /‘7 ; where ¢ is determined so that

1o
\/*—2—7; f e dx s equal to the size of the critical region (probability of the critical

region under the null hypothesis) then the sequence {ky} s best in the limit.

Furthermore im f(N, ky , Ay) = % for Ay = 3 _ :42—
N=e kv ky

It is further shown that for N 2> 450, if the 59, level of significance is used,
and for N > 300, if the 19 level of significance is used, the value of e(ky, N)
is small so that for practical purposes kx can be considered as a best k. The
authors are convinced although no rigorous proof has been given that e(ky , N)
is quite small for N > 200 and is very likely to be small even for considerably
lower values of N.

1. Mean value and standard deviation of the statistic under alternative hy-
potheses. It is well known that every continuous distribution can by a simple
transformation be transformed into a rectangular distribution with range [0, 1].
We may therefore for convenience assume that the hypothesis to be tested is
that of a rectangular distribution with the range [0, 1]. Moreover as mentioned
earlier we assume that a procedure is chosen by which the class probabilities
under the null hypothesis are equal to each other.

The statistic whose mean value and standard deviation is to be determined is

Tk
2 _ = 4/ - N
,Z‘{ z; = x° where z; ,‘/;T(a. k)
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Let p; be the probability under the alternative hypothesis that one observa-
tion will fall into the sth class. The probability of obtaining certain specified
values a1, @z, -+, oy is given by

N!
f(al,az,"'ak)= — i 'pflp;2...p:k.
a1.02! o Q.
ik
Since )_ a; = N we have

i1
= RS
2o =2 ai — N.
=1 N3

We consider the function
(pletl + p2et2 4+ ... pke‘k)N = Ef(al , 0, e ak)e“l‘l"’“?’z"'"'“klk.

Differentiating twice and then setting {; = 0 for ¢ = 1, 2, - - - k£ we obtain
@) N — 1)p} + Np: = E(a}), NN — 1)pip; = E(ear;) for i 5 j.
" Hence

1=k 1=k

E(Zaf-) = NN -1) 2 pi+ N,

te=1 i=1

and
1=k

3) E(X") = k(N — 1) g: pi+k—N.

To compute the standard deviation of x”* we put

(o D)/ =)

¥i = (s — Npj) ,‘/% hence Yi = Ti — iy E(y:) = 0.
We have

oin=E [2 (i + w) — E (g’: (y: + m)z)]z
- E(ik RED 3 —E<2:?: ?f))z

t=]1 im=1

A’_ : = Z: g s = VY2
kyt iy kl‘t i

V,'=N(p,'—l-:-lé>, z.~=a.-—Np,-.

Let

then
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We now assume that N is so large that the joint distribution of the z; is suffi-

ciently well approximated by a multivariate normal distribution.
E(ziz) = 0, E(2) = 3[E@)T,

We have the well known relations

E(z}) = E(d}) — N°pi = Npi(1 — py),

E(z2j) = E(aia;) — N'pip; = —Npap; .

Using the above equations we obtain

oy = N;{E (‘_‘-:f ) (E f): zf) + 4E (Z‘: zm)z},
5(54) - (e24)

Tk

Then
E(Zi2}) = E(ZD)EZ) + 2(E(z:2,)) for i 5 j.

1=k
= N2{3 2pil—p) + Z [pipi(1 — p)(1 — p;) + 2 P3P}l — [Z p(1—ps) }

=k
= 2N [21 pi1 — p)’ + Z P} p,]
1=k 1wk 2
= 2N2[Z:p’.- - 2Ep?+ (Z‘;pf)].

Further

(5 -#(E z.y.) ()

S (o) - G-
HEre-] -[E(e- ]
w25 - [Ba-1]
Sa- p%)’] .

Substituting this into the formula for ¢%.: we finally obtain

= N3

) ot = 2 {i 2+ 2N — 1) 2 pt— (2N — 1)(2 pf.) }

Let C be determined so that the
Pk

2. The Taylor expansion of the power.
probability under the null hypothesis that > z% >
fm]

-3

C is equal to the size Ay of
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i=k

the critical region. Let P (Z > C) be the probability under the alternative

i=1

1=k
hypothesis that ) 23 > C. Then the power P is given by

i=1

(5) P(Ea>0),

i=1

where

Hence

1=k k 1=k
Ex2i= N(Zat-’ —>)

i=1 t=1

and (5) can be written in the form

(6) P (i &> C'>

i=1
where C’ is a certain function of N and k. Let 6; = p; — Ilc’ where p; is the
probability of the sth class interval under the alternative hypothesis.
Expanding P into a power series we obtain (in this and the following deriva-
tions, we take all partial differential quotients at the point & = & = -+ =
& = 0)

1=k 1=k 2
zaP P
Port Haule + S8+ TanSol+

Since P is a symmetric function of the §; we have for 6, = & = -

’p_op P _ oP
38: 98’ 06,05; 08,00,

6r=20

for ¢ # j.

1=k
Furthermore ) 8; = 0. Therefore

=1

=N+ 5 {62P ik : P> s

° Pt aal 3, &5
We shall first show that the terms of second order are always positive. This
shows that the test is unbiased and justifies again the choice of equal class
probabilities under the null hypothesis since this assures unbiasedness and mini-
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mizes among all unbiased tests the g.l.b. of the distances of such alternatives
whose power is equal to the size of the critical region.
The power is given by

N! a a a
P= X aTml anPl PR

altalt--afzcr 0alon!

i=k

Since Z o = —é: 8:0; we obtain for the second order terms
i=1 i
azP 1=k a2P a?P 62 P 1=k
eyt 2P > = (0s - :
a5 21 %+ g5 a, 2 6 (aaf aslaa) 20
(7) . 1=k
= 2 (ad — a1 — crae)plan, an - -+ o) ) 8%
a¥+a§+~~'+azz c’ i=1
where
(a LR a ) = N! .l
Ploa, k al'az' ak!k}v‘

In the following derivation extend all sums if not otherwise stated over all

i=k i=k
terms for which 2 oF > €’ and use the relation D a; = N. We have because
=1 1=1

of the symmetry

Z a1p(a1, g, * ak) = ']sz(al; ag ¢+ ak) o ']X)\O,
k k

1=k

> aarplon, az, -+ - ax) = _1 Z<N2 - Zaf-)p(al,az, e ap)

k(k — 1) 2
B k(lzcvzz‘ol) Tk i ;2 edplen, az, o au).
Hence the coefficient of the second order term becomes
k_é—lza%p(al’a”’"""")‘%M—k(ijl)xo
ik N -

= ! 2 i) = Y —
=i eiplen e ) = Pl = g

But
i=k
ZZaﬁp(al, ag, o ak) i=k
) >E (E aﬁ),
0

i=1

1=k

since the conditional mean for values of ) o > €’ must be larger than the

=1
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==k 9 A=) . N2 N
mean of all values of E o; . Since E (Z a;) =% % + N, we obtain
7==] =]
=)

Eé—l 202 aiplan, o - o)

=]
N (N° N(k—l))_ ( N? N
>k—1(k+ ) Rl Ve y R
=k
and hence the coefficient of ), 87 is larger than 0.
t=]
To prove Theorem 1, we will have to determine the alternative distribution
1=k
for which Y, 8% becomes a minimum subject to the condition that the distance
=1
from the null hypothesis should be greater than or equal to a given A.
Hence we have to find a distribution function F(z) such that | F(z) —z | 2 A
1=k t=) 2 1=k
for at least one value x and Z a=> (p,- - k1-> = Z p; — % is & minimum
r==] 7=l 3=l
i i—1 VPP~ g
where p; = F| %)~ F ) Instead of minimizing ), 7 we may minimize
im=1
1=k
> p%, since the two expressions differ merely by a constant. There will be two
=1
different solutions for F(x) depending on whether F(z) — z 2 Aor F(x) — z <
— A for at least one value z. Because of symmetry we restrict ourselves to the
case in which F(x) — x 2 A for at least one value of x.
Let @ be a value for which F(a) — @ 2> A and suppose that

l-1 l
R < 2
T <a\k
then
F(a) 2 a + A,
l l
F<k‘)—];+€.
We prove first
1
€>A‘_E.

Proor: Since F 7:) — F(a) 2 0 we have

(%) = F(a) +F<7é> —F(@) 2 a+ A
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and
l l Il 1l—-1 l 1
= -_- —_—— > —_—— > -_— _—— = —_——,
e=F (k) FZOTATg 2 TAT =4
If A < > we can always find a distribution function in C(A) for which p; = 1

k k
i=k

Hence we consider only the case &k > IZ We must minimize ), p} under the
pe=]1
=l =k

condition Y p; = 75 +e 2 pi = k=1 _ e. We therefore minimize
=1

imlg1 k
= 1= 1=)
& =2 pi—2upi— 20 2 B
=] =] t=l+1
This leads to
1 € .
[E+i for ¢=1,.--1
pi= 1
€ .
P for ¢=(0+1), -k .
We then have

S RTC) ST TN SO
Zr=lGty) +E-0G =) “itm—y

i=1

This is smallest if e = A — %andl = g The following discontinuous distribu-
tion function gives these values for ¢, [ and p; and has the distance A from the

rectangular distribution.

1 1 1
F(x)=x[1+2<A—]—c>] for Oéxéé—k,
1 1 1 1 1
= _ [ Z - < Z
F(z) 2+A % for2 k<x\2’
) F(x)=x[1—2(A—})]+2(A—-l) for 1$x$1,
k k 2
F(z) =0 for 0 < z,
F(z) =1 for z > 1.

3. Solution for large N. Denote by F(4A, k) the distribution function (8) of
qu=]
C(A) which makes 2, 6% a minimum if the test is made with & class intervals.
g

Assume that k is large enough that x’* can be taken as normally distributed.
The power of the test is then given by
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1 [i=k i=k 2
1 ® — 5o (Z;; a4 Z}l xf)) i=k
Frrss “EEN (5

(9) '\/_2—7-1'_ " Jk—D4er/2(k1)

i=1

,
e—iv’ dy ,

=1

= 1 f N
V2 Ic—-l—E(tisz>+c\/2W—T)

rg
1=k

where o' is the standard deviation of 22> and ¢ is determined so that

=1
1 -]
Py / ¢ dy is equal to the size of the critical region. Hence to maximize

the power with respect to & is equivalent to maximizing

1=k

E(}:x‘i) —k—=1)—cV2k=1)
y(k) =

i=1

O,I

with respect to k.
Under the alternative F(A, k) we obtain

B(S#)-G-0=kV -1 Zpt+h-N-b+1=a-p(a-1)

=1

Hence

(k) = 4N — 1) (A - %)2 — eV2k —1)

o,/

We choose A so that this maximum power is exactly %, that is, so that (k) = 0
for that k which maximizes y(k). Denote this value of A by Ay and let kxy be
the value of £ which maximizes (k). The differential-quotient of the nume-
rator of y(k) with respect to k is then equal to O for k = ky . Hence

(10) 8(N—1)<A"_ki~)/?13=\7k%_——1)'

Furthermore since y(ky) = 0 we have

2
11) 4(N — 1)(A~ - I%) = c\2(ky - 1).
N
Solving equations (10) and (11) we obtain
5 4
12 Ay = — — —
(12) VT
and

17 ki g4 Vz(N— 1)2
(ky — 13 P2
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ke <4 4/ PV et 1,
Hence
(13) either k}v = l:4: /‘7,2(]\,0—2—1)2} or kN = [4: /‘72(Nc: 1)2] + 1’

is the value of k for which the power with respect to F(Ay , k) becomes a maxi-
mum. We have merely to show that ¢'/(k) is negative for k = ky .
Using the fact that ¢(ky) = ¢'(kx) = 0 we obtain

or since ky > 3,

—16(N — 1) 24(N — 1) c
0” " kN = N e ——— .
Y’ (kx) 7 Ay + ) + V=D

Substituting for Ay the right hand side of (12) we obtain on account of (10)

—56(N—1)+64(N—1)+8(N—1)(_4___4_>
kix kx 206 = 1) \ky  kn/

Using 2(k — 1) > k we obtain

0"¢ II(kN) =

&

which is negative. ¢’ can be shown to be of order k} ; ¢”/(kx) is, therefore, of

V) < ey (—24(N —n+2w- 1))

order I;];H = O(A—lﬁ) . The maximum is, therefore, rather flat for large

values of N.

We shall now show that if % is large enough to assume x* to be normally
distributed then F(A, k) is the alternative which gives the smallest power com-
pared with all alternatives in the class C(A) provided the power for the alter-
native F(4A, k) equals 3.

1=k

We know that £ (E xf) is smallest for F(A, k). Since the power with respect

1=1

to F(A, k) equals { we have

imak
E<le”> —(k—1—¢V2k—-1=0.
Thus the lower limit of the integral in (9) becomes negative for every other
alternative and the power will be larger than 3.

The power with respect to F(Ay , kx) is equal to 1, hence if we choose k = ky
the power of the test will be > 1 for all alternatives in the class C(Ay). On the
other hand if we choose k # ky then there will be at least one alternative in

3 Cantelli’s formula and its proof are given by Fréchet in his book Recherches Théoriques
Modernes sur le Théorie de Probabilités, Paris (1937), pp. 123-126.
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C(Ay) for which the power is <%. (For instance F(Ay, k) is such an alter-
native.)

The above statements have been derived under the assumption that x” is
normally distributed. Hence if the distribution of x* were exactly ncrmal
oy = 4 17 20~ D would be a best k and for this ky and Ay = 2 — 7 the

N N
greatest lower bound of the power in the class C(Ay) would be exactly 3. Since
the distribution of x”* approaches the normal distribution with & — « the
sequence {ky} is best in the limit and Theorem 1 stated in the introduction
is proved.

For the purposes of practical applications, it is not enough to know that
{ky! is best in the limit. We have to know for what values of N ky can be
considered practically as a best k, i.e. for what values of N the quantity e(ky , N)
defined in the introduction is sufficiently small. The quantity e(ky , N) is cer-
tainly small if for the number of class intervals ky the distribution of x”* is near
to normal and if the power with respect to at least one alternative of the class
C'(Ay) is smaller than } also in the case when the number of class intervals is too
small to assume a normal distribution for x’.

We shall in the following assume that for £ > 13 the normal distribution is a
sufficiently good approximation. Actually we need not assume a normal distri-
bution but only that the probability is close to % that the statistic will exceed
its mean value.

Cantelli’ gave the following formula. Let M, be the rth moment of a distri-
bution about z, . Let d be any arbitrary positive number. Let P(|z — 2| < d)
be the probability that |z — 2, | < d then the following inequalities hold:

M, M, M,
If 37<@§ then p(|x_x0;<d)>1_?.

M Mz M2r—M2

- 4 h Plz —az| <d) >1— r .
If ar Z &2 then (lx 170[\ )/ (dr—M,-)z-l-Mz,—Mf

Since x” can only take positive values we have

12 2 12\12 ’”2
(14) If E(c" ) ¢ T +C[2E(x W then P2 < e 21— %
k k k

E(x") > o + [EGDF

2
Ck

If
(15) :
T2
(o — EX™) + oye
Where c; is determined so that P(x* > ¢) equals the size of the critical region
if the null hypothesis is true and the number of class intervals equals k. ¢, can
be obtained from a table of the chi-square distribution.

For F(Ax , k) we obtain with Ay = 5_+¢_1 from (3) and (4)
kx k% Kk

then P(x”? <) 21—
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E(x") = (k — 1) + 4(N — 1Ay,
oyr = 2(k — 1) + 8Ay(k + 2N — 4) — 32(2N — 1)A.

By numerically calculating E(x”*) and o2 for N = 450 and a 5% level of sig-
nificance, for N = 300 and a 19, level of significance, and fork = 13,12 .-

[Zl-:l + 1 it can be shown that for these values of N and &

N
EKX) 5 arr + [EGF
o ,cﬁ '
Hence we have to use (15). From (16) it follows that ¢ > E(x). If
P(x"” < ¢ < } we obtain on account of (15) and (16)

(16)

% 5 1
(o — EX*) 4oy 7 2
Numerical calculation shows that for the values of N and k and the significance
levels considered

17 ov: + E(x") < e

It can then be shown that for N > 450 and N > 300 respectively NAy decreases
with N. A simple argument then shows that (16) and (17) are also true for
all values N 2> 450 and N > 300 respectively. Hence the power with respect
to F(Ax , k) is <3 for these values of N. Thus we see: For N > 450 if the 59,
level is used, and for N 2> 300 if the 19, level is used, the value ky =

5 /JO(N — 1)2
4 ,‘/ Mc—ww can be considered for practical purposes as a best k. The value

oxr + B(x") 2 .

1 L
¢ is determined so that N f ¢ dt is equal to the size of the critical region.
c



