
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

On the Choice of the Offspring Population Size in

Evolutionary Algorithms

Thomas Jansen, Kenneth A. De Jong

and Ingo Wegener

No. CI-181/04

Technical Report ISSN 1433-3325 September 2004

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

On the Choice of the

Offspring Population Size

in Evolutionary Algorithms

Thomas Jansen Thomas.Jansen@udo.edu

FB Informatik, LS 2, Universität Dortmund, 44221 Dortmund, Germany

Kenneth A. De Jong kdejong@gmu.edu

Krasnow Institute, George Mason University, Fairfax, VA 22030, USA

Ingo Wegener Ingo.Wegener@udo.edu

FB Informatik, LS 2, Universität Dortmund, 44221 Dortmund, Germany

Abstract

Evolutionary algorithms (EAs) generally come with a large number of
parameters that have to be set before the algorithm can be used. Finding
appropriate settings is a difficult task. The influence of these parameters
on the efficiency of the search performed by an evolutionary algorithm can
be very high. But there is still a lack of theoretically justified guidelines
to help the practitioner find good values for these parameters. One such
parameter is the offspring population size. Using a simplified but still
realistic evolutionary algorithm, a thorough analysis of the effects of the
offspring population size is presented. The result is a much better under-
standing of the role of offspring population size in an EA and suggests a
simple way to dynamically adapt this parameter when necessary.

1 Introduction

A persistent issue that arises in evolutionary computation (EC) applications
is the choice of an appropriate population size. Depending on the particular
form of the evolutionary algorithm (EA) being used, this will require one or
more parameters to be set. In canonical genetic algorithms (GAs) (Goldberg
1989) and evolutionary programming (EP) (Fogel 1995), the size of the parent
and offspring populations are the same. However, for evolution strategies (ESs)
(Schwefel 1995), the parent and offspring population sizes (µ and λ) are tra-
ditionally chosen independently for the (µ+λ)-variant. For the (µ, λ)-variant
where parents cannot survive λ ≥ µ is a necessary condition and most often
λ > µ.

An open question is whether there is any advantage to having λ much larger
than µ, and if so what should it be. Most of the GA and EP literature assumes
µ = λ and focuses on what that value should be, while the (1+1) ES plays
a major role in the ES literature. On the other hand, there are a number of
empirical studies that suggest advantages when λ is considerably larger than µ,

1

and recommend settings such that λ
µ = 7 (see, for example, (Bäck 1996)). In this

paper we undertake a systematic analysis of this issue with the goal of obtaining
a better understanding of the role that λ plays in the overall performance of
EAs, and improving our ability to choose appropriate values for it.

In order to be able to concentrate on the effects of the value of this sin-
gle parameter, it makes sense to use a simple EA that supports analysis and
avoids unnecessary complications due to effects of other EA components. Con-
sequently, in this paper we investigate what is known as a (1+λ) EA. It uses
a parent population size of 1 and creates λ offspring in each generation. Indi-
viduals are represented by binary strings of fixed length n. Since the parent
population size is one, there is no reproductive selection or recombination. Re-
productive variation is accomplished via a standard bit-flip mutation operator
that flips each bit of an individual independently of the other bits with proba-
bility 1/n. In the survival selection step, the parent is replaced by an offspring
with maximal fitness if and only if the maximal offspring fitness is greater than
or equal to the parent’s fitness. This is repeated until some stopping criterion
is fulfilled.

For the sake of clarity we give a formal definition of the (1+λ) EA for the
maximization of a fitness function f : {0, 1}n → R as Algorithm 1.

Algorithm 1 ((1+λ) EA).

1. Initialization
Choose x ∈ {0, 1}n uniformly at random.

2. Mutation
For each i ∈ {1, . . . , λ}:

Create yi ∈ {0, 1}n by copying x and, independently for each

bit,

flip this bit with probability 1/n.

3. Selection
If max{f(y1), . . . , f(yλ)} ≥ f(x), replace x by some randomly chosen

yi with maximal f-value.

4. “Stopping Criterion”
Continue at line 2.

Typically, one assumes that the number of function evaluations performed
is an accurate measure for the run time of an evolutionary algorithm. We adopt
this point of view and define the optimization time T , or more precisely Tλ, to
be the number of function evaluations performed until f(x) = max{f(x′) | x′ ∈
{0, 1}n} holds. One iteration of the main loop of the (1+λ) EA (lines 2–4) is
called a generation. If a global optimum of f is found after Gλ generations, then
Tλ = 1+Gλ·λ since there is one function evaluation for the initial population and
an additional λ function evaluations in each generation. Since EAs are stochastic
algorithms, Tλ is a random variable and our main interest is in determining how
its expected value, E (Tλ), is affected by changes in λ. We consider two cases:
when λ is set to a fixed value independent of the dimension n of the solution
space being searched (e.g., λ = 7), and when λ is a (polynomial) function of n
(e.g., λ = n · log n).

If the fitness evaluation of an individual can be performed independently of
the evaluation of other individuals, then a clear advantage to having λ > 1 is

2

that the fitness evaluation of the offspring population can be done in parallel. In
this case the corresponding parallel optimization time is simply Gλ, the number
of EA generations. If λ > λ′ but Gλ ≈ Gλ′ , there is a sense of computational
wastefulness of the (1+λ) EA since a parallel optimization of approximately Gλ

could be obtained with the smaller number of only λ′ processors. Hence, we are
interested in the smallest possible λ leading to the almost smallest values of Gλ.

The analysis reported in this paper consists of a three-pronged approach,
reflecting the fact that there is no single approach to EA analysis that is capable
of providing a complete picture. We begin by using standard algorithm analysis
tools that allow us to answer questions about E (Tλ) asymptotically as the search
space dimension n increases. This leaves open the question as to whether the
results are relevant for practitioners using “normal”values of n. To address this
issue a second set of analysis tools is used to give precise characterizations of
E (Tλ) for values of n normally encountered in practice. Finally, since both
of these tool sets can only be successfully applied to relatively simple fitness
functions, we follow up with an empirical study that validates the theoretical
results and extends them to more complex fitness landscapes.

The result of this three-pronged analysis is a much clearer understanding of
the role of λ in EAs, and suggests a simple strategy for dynamically adapting λ
during an evolutionary run. That mechanism was implemented and empirically
analyzed in comparison with EAs using static values for λ. These results are
presented in Section 5, followed by the final section in which we present our
conclusions, discuss some open problems, and make a few remarks on possible
future research.

2 Asymptotic Analysis

The analyses in this section are carried out using well-known concepts and
notation for the comparison of the asymptotic growth of functions (see, for
example, (Cormen, Leiserson, Rivest, and Stein 2001)). A brief summary is
provided here.

Definition 1. For functions f : N0 → R and g : N0 → R we say that

• f = O(g) (f grows not faster than g), iff ∃n0 ∈ N0, c ∈ R
+ : ∀n ≥

n0 : f(n) ≤ c · g(n),

• f = Ω(g) (f grows not slower than g), iff g = O(f),

• f = Θ(g) (f grows as fast as g), iff f = O(g) and f = Ω(g),

• f = o(g) (f grows slower than g), iff lim
n→∞

f(n)/g(n) = 0, and

• f = ω(g) (f grows faster than g), iff g = o(f).

In addition, since our analyses focus on characterizing E (Tλ) and E (Gλ)
for different algorithms and difference fitness functions, we adopt the following
notation. For an algorithm A and a function f we denote the sequential opti-
mization time (or optimization load) of A on f by TA,f . Analogously, we denote
the parallel optimization time of A on f by GA,f . In the case of A = (1+λ) EA,
we use the abbreviations Tλ,f and Gλ,f and even Tλ and Gλ if the choice of f
is unambiguous.

3

We start our investigation of the impact the choice of the offspring population
size has on the optimization time required for two very simple and well-known
fitness functions, OneMax and LeadingOnes. Both functions f are quite easy
to optimize and we expect the (1+1) EA to have a sequential optimization time
E (T1,f) that is difficult to beat. However, it may well be possible that the use
of a larger offspring population may reduce the expected parallel optimization
time E (Gλ,f) considerably without E (Gλ,f) · λ significantly exceeding E (T1,f).

We then consider the question as to whether there are fitness landscapes
f for which E (Tλ,f) for some large λ is much smaller than E (T1,f). We con-
struct a function SufSamp for which this can be rigorously proved. The results
presented in this section have partially been published in (Jansen and De Jong
2002).

2.1 Asymptotic Analysis of LeadingOnes

We begin our analysis with the LeadingOnes function since it turns out to
be particularly easy to analyze. LeadingOnes is a pseudo-boolean function of
n input bits that simply counts the number of leading ones from left to right,
stopping when the first zero-bit is found. More formally,

Definition 2. The function LeadingOnes : {0, 1}n → R is defined by

LeadingOnes(x) :=
n
∑

i=1

i
∏

j=1

xj for all n ∈ N and all x ∈ {0, 1}n.

For this simple fitness function the following holds.

Theorem 1. For λ = nO(1), the following holds on the expected optimization
load and expected parallel optimization time of the (1+λ) EA on
LeadingOnes : {0, 1}n → R. E (Tλ,LeadingOnes) = Θ

(

n2 + nλ
)

. E (Gλ,LeadingOnes) =

Θ
(

n2/λ + n
)

.

Proof. For the (1+λ) EA, Gλ,f = Θ(Tλ,f/λ) holds for any offspring population
size λ and any fitness function f . Thus, it suffices to prove the result on either
Gλ,f or Tλ,f . In the following we investigate the function LeadingOnes.

We begin with the upper bound. If the optimum is not reached, the prob-
ability to increase the function value in one single mutation equals (1/n) · (1 −
1/n)LeadingOnes(x) ≥ 1/(en): It suffices to mutate the leftmost bit with value zero
while leaving the leading ones unchanged. Thus, in each generation the prob-
ability to increase the function value is bounded below by 1 − (1 − 1/(en))λ ≥
1 − e−λ/(en). We distinguish two cases with respect to the offspring population
size λ. If λ ≥ en, the probability to increase the function value in one generation
is bounded below by 1 − e−1. Application of Chernoff bounds (Motwani and
Raghavan 1995) yields that with probability 1 − e−Ω(n) the global optimum is
reached within the first 2(1− e−1)n generations. This proves E (Gλ) = O(n) in
the case λ ≥ en. In the case λ < en, the probability for increasing the function
value in one generation is bounded below by λ/(2en). This holds since for each
x ∈ [0, 1], e−x ≤ 1 − x/2 holds. We conclude that with probability 1 − e−Ω(n)

the global optimum is reached within the first 4en2/λ generations. This proves
E (Gλ) = O(n2/λ) in the case λ < en. Together we have E (Gλ) = O(n + n2/λ)
for any value of λ.

In order to prove a lower bound the following observation is crucial: At any
time, all bits of the current search point x which are right of the leftmost bit

4

with value zero are independent and uniformly distributed (Droste, Jansen, and
Wegener 2002). The offspring population size is polynomially bounded. Thus,
there exists a constant k ∈ N, such that λ ≤ nk holds. In each generation we
consider the current string x and its k + 2 leftmost zero-bits. The probability
that in ε · n generations (ε > 0 constant) with λ ≤ nk offspring each there
is at least one offspring mutating all these k + 2 bits is bounded above by
ε/n. Therefore, with probability 1 − ε/n we do not have such a generation
during the first εn generations. A mutation of at most k + 1 leftmost zero-
bits increases the function value by at most k + 1 + A where A is the random
number of bits with value 1 following each of the mutating leftmost zero-bits.
The increase is smaller if one of this one-bits is flipped. Remember that the
bits considered are independent and uniformly distributed. We consider all
εn generations together. Using Chernoff bounds it is easy to see that with
probability 1−2−Ω(n) there are less than 2(k+1)εn additional one-bits increasing
the function value. Therefore, the initial function value is increased by at most
3(k + 1)εn with probability 1 − O(1/n). Choosing ε sufficiently small we see
that the unique global optimum is not reached within the first εn generations
with probability 1 − O(1/n). We denote this event by M . We have E (Gλ) ≥
E (Gλ | M) · Prob (M) = Ω (E (Gλ | M)) and get a lower bound for E (Gλ) this
way. We see that the optimum cannot be reached before Ω(n) mutations that
increase the function value. This immediately implies Ω(n) as lower bound
on the number of generations. Furthermore, such a mutation requires that
the leftmost zero-bit flips and occurs therefore with probability at most 1/n.
Thus, the probability to have such a mutation within one generation is bounded
above by λ/n. This implies Ω(n2/λ) as lower bound on the expected number of
generations.

From this theorem we see that E (Gλ) only gets smaller when λ = Ω(n).
At the same time we see that E (Tλ) does not increase significantly as long
as λ = O(n) holds. Thus, E (Gλ) is minimized when λ = Θ(n). The fact
that E (Tλ) does not increase significantly as long as λ = O(n) means that the
performance of (1+λ) EAs for which 1 ≤ λ ≤ n are asymptotically equivalent
when run on a sequential machine. This means that there is no particular reason
in this case to set the value of λ to a constant (e.g., λ = 1) or to maintain a
fixed ratio such as λ

µ = 7.

Finally, the fact that the “cut-off point” O(n), the value of λ where increas-
ing λ only creates costs and has no benefits, is not an arbitrary one. It is in the
same order of growth as the reciprocal of the mutation “success probability”,
the probability p that a mutation will result in an increase in fitness. In the case
of LeadingOnes, increasing the fitness value is always advantageous. Hence,
choosing λ = 1

p cannot increase the expected optimization load E (Tλ) signifi-

cantly since, on average, 1/p mutations are needed to improve fitness regardless
of whether these mutations are done sequentially or in parallel.

2.2 Asymptotic Analyses of OneMax

For our second asymptotic analysis we focus on one of the best-known simple
fitness landscapes, OneMax, that simply counts the number of ones in an n-bit
string. More formally,

5

Definition 3. The function OneMax : {0, 1}n → R is defined by OneMax(x) :=
n
∑

i=1

xi for all n ∈ N and all x ∈ {0, 1}n.

Interestingly, the “cut-off point” for the (1+λ) EA is much harder to pre-
dict for OneMax than for LeadingOnes. This is due to the fact that the
success probability of mutation changes during a run. For LeadingOnes, the
success probability is always bounded below by 1/(en) and bounded above by
1/n. For OneMax it may be as small as almost 1/(en) (for x ∈ {0, 1}n with
OneMax(x) = n − 1) or as large as 1 − (1 − 1/n)n (for the all zero string
0n). Typically, it will be Θ(1) in the beginning and drop to Θ(1/n) in the end.
Which maximal value for λ will not be harmful on average is not easy to see.
Therefore, we approach our result in several steps. First of all, we show that
E (TA,OneMax) = Ω(n log n) holds for any evolutionary algorithm A that initial-
izes its population uniformly at random and is based on standard mutations
with mutation probability 1/n and selection only. We call such EAs standard
mutation EAs.

Theorem 2. Let f : {0, 1}n → R be a function with unique global optimum
x∗ ∈ {0, 1}n. Let A be a standard mutation EA. E (TA,f) = Ω(n log n).

Proof. Let µ be the initial population size of A. The probability to have x∗ in
the initial population is bounded above by µ/2n. For µ ≥ n log n, A performs on
average Ω(n log n) function evaluations for the initial population without finding
x∗. Thus, we only have to consider the case µ < n logn. With probability
1 − e−Ω(n) the minimal Hamming distance between x∗ and a member of the
population is bounded below by n/3. Thus, there are at least n/3 bits which
all need to be mutated at least once in order to find x∗. The probability not to
mutate a specific bit in t mutations equals (1 − 1/n)t ≥ e−t/(n−1). Thus, with
probability at least 1/n a specific bit is not mutated at all within t = (n−1) lnn
mutations. Therefore, with probability 1 − (1 − 1/n)n/3 ≥ 1 − e−1/3 there is a
bit within n/3 bits that is not mutated at all in (n − 1) lnn mutations. This
implies E (TA,f) ≥ (1 − e−Ω(n)) · (1 − e−1/3) · (n − 1) lnn = Ω(n log n).

For the (1+λ) EA on OneMax, an upper bound of O(n log n + nλ) is easy
to prove. We simply follow the same basic idea as for LeadingOnes.

Theorem 3. E (Tλ,OneMax) = O(n log n + nλ).
E (Gλ,OneMax) = O((n log n)/λ + n).

Proof. Let d denote the Hamming distance between the current string x and the
global optimum 1n. Obviously, the probability to increase the function value in
one single mutation is bounded below by (d/n)·(1−1/n)n−1 ≥ d/(en). Thus the
probability to increase the function value in one generation is bounded below
by

1 −
(

1 − d

en

)λ

≥ 1 − e−dλ/(en) ≥ 1 − 1

1 + dλ/(en)
=

dλ

en + dλ
.

Thus,

E (Gλ) =
n
∑

d=1

en + dλ

dλ
= n +

en

λ

n
∑

d=1

1

d
= O

(

n +
n log n

λ

)

.

6

From Theorem 3 we see that the “cut-off point” for λ is Ω(log n). For
offspring population sizes λ = ω(log n) the expected optimization load may be
ω(n log n) — but we do not know. The proof of Theorem 3 only takes mutations
of single bits into account. One may speculate that in the beginning when the
success probability is still large simultaneous mutations of several bits may speed
up the optimization. Thus, even larger values of λ may be helpful. We prove
this idea to be correct for slightly larger offspring population sizes.

Theorem 4. For λ = O((ln n)(ln lnn)/ ln ln lnn): E (Tλ,OneMax) = O(n log n)
and E (Gλ,OneMax) = O((n log n)/λ).

Proof. For λ = O(log n) the result follows from Theorem 3. So, we assume
λ ≥ lnn and define γ := ⌊λ/ lnn⌋. Obviously, γ ≥ 1 holds.

We divide a run of the (1+λ) EA into two disjoint phases. The first phase
starts with random initialization and ends when OneMax(x) > n − n/ ln lnn
holds for the first time. The second phase starts after the first phase is finished
and ends when the global optimum is found. Let G1,λ denote the number of
generations in the first phase. Let G2,λ be defined in the same way for the
second phase. Let T1,λ and T2,λ denote the number of function evaluations in
the first and second phase. Obviously, we have Gλ = G1,λ + G2,λ.

In order to get an upper bound on E (G2,λ) we can use the same arguments
and estimates as in the proof of Theorem 3. Note that we have d ≤ n/ ln lnn
by the definition of the second phase. This yields

E (G2,λ) =

n/ ln lnn
∑

d=1

en + dλ

dλ
=

n

ln lnn
+

en

λ

n/ ln ln n
∑

d=1

1

d
= O

(

n

ln lnn
+

n logn

λ

)

.

Since we have λ = O((ln n ln lnn)/ ln ln lnn), E (T2,λ) = O(n log n) follows.
Now, we give an upper bound for the first phase under the assumption that

λ ≤ (lnn)(ln lnn)/(2 ln ln lnn) holds. In the first phase we have d ≥ n/ ln lnn
by definition of the first phase. Thus, the probability to increase the function
value by at least γ in one single mutation is bounded below by
(

n/ ln lnn

γ

)

·
(

1

n

)γ

·
(

1 − 1

n

)n−γ

≥
(

n

γ · n · ln lnn

)γ

·1
e

= e−(1+γ ln γ+γ ln ln ln n).

Thus, the probability to increase the function value by at least γ in one gener-
ation is bounded below by

1 −
(

1 − e−(1+γ lnγ+γ ln ln ln n)
)λ

≥ λ

e lnn + λ
≥ 1

e + 1
.

Here we need γ ≤ (ln lnn)/(2 ln ln lnn). Obviously, after at least n/γ such
generations the first phase ends. This implies E (T1,λ) = O(λ·n/γ) = O(n log n).

We still need an upper bound on the length of the first phase in the case
λ > (lnn)(ln lnn)/(2 ln ln lnn). We define ε := (lnn)(ln lnn)/(2λ ln ln lnn).
According to our assumptions, we have ε = Θ(1). We redefine γ := ⌊ελ/ lnn⌋
and have 1 < γ ≤ (ln lnn)/(2 ln lnn). Now we can repeat the arguments from
above and get E (T1,λ) = O(ε−1n logn) = O(n log n).

We see that, with offspring population size λ = O((ln n)(ln lnn)/ ln ln lnn),
a (1+λ) EA is still efficient. Now, we prove that Θ((ln n)(ln lnn)/ ln ln ln n) is
indeed the cut-off point: larger values of λ significantly increase the expected
optimization load.

7

Theorem 5. For λ = ω((lnn)(ln lnn)/ ln ln lnn): E (Tλ,OneMax) = ω(n log n)
and E (Gλ,OneMax) = ω((n/λ) log n)

Proof. The lower bound E (Gλ) = Ω(n/ log n) is easy to prove. This is sufficient
for λ = ω(log2 n), only.

The probability to create an offspring y by mutating x with OneMax(y) ≥
OneMax(x) + d is bounded above by

(

n

d

)

· 1

nd
≤ 1

d!
<
(e

d

)d

for all x ∈ {0, 1}n and all d ∈ {1, 2, . . . , n − OneMax(x)}. The probability
for such a mutation within n generations is bounded above by λn(e/d)d. The
probability that the Hamming distance to the global optimum is decreased by
at least log n in one single generation during the first n generations is therefore
bounded above by

n
∑

d=log n

λn(e/ log n)log n = e−Ω((log n)(log log n)).

With probability 1− e−Ω(n), after random initialization the Hamming distance
to the optimum is bounded below by n/3. We have seen that in a single gen-
eration the Hamming distance is decreased by at most log n with probability
1 − e−Ω((log n)(log log n)). This implies E (Gλ) = Ω(n/ log n) as claimed.

Now we come to the tight result. We derive an upper bound on the expected
decreasement in the Hamming distance in one generation. Then we use this
upper bound in order to prove that it is not likely that the Hamming distance
is decreased by a certain amount in a pre-defined number of generations. This
corresponds to the lower bound method based on the expected advance used by
Jansen and Wegener (2000).

It is easy to see that at some point of time the Hamming distance between
the current string x and the global optimum is within {⌈n/(2e)⌉ , . . . , ⌈n/e⌉}
with probability very close to 1. From this point of time on the probability to
create an offspring y with OneMax(y) ≥ OneMax(x)+d is bounded above by
(

n/e
d

)

· 1/nd < 1/dd.
Consider g generations of the (1+λ) EA. Let x be the current string before

the first generation and let x′ be the current string after the g-th generation. Let
Dλ,g,x denote the advance in these g generations by means of Hamming distance,
i. e. Dλ,g,x := OneMax(x′)−OneMax(x). Obviously, Dλ,g,x depends on x and
we have Prob (Dλ,g,x ≥ d) ≥ Prob (Dλ,g,y ≥ d) for all d ∈ {0, 1, . . . , n} and all
x, y ∈ {0, 1}n with OneMax(x) ≤ OneMax(y). Since the function value of the
current string of the (1+λ) EA can never decrease, E (Dλ,g,x) ≤ g · E (Dλ,1,x)
holds for all λ, g and x. So, we concentrate on E (Dλ,1,x) now.

Obviously, Dλ,1,x is a random variable that depends on λ and the cur-
rent string x at the beginning of the generation. However, it is clear that
Prob (Dλ,1,x ≥ d) < λ/dd holds for all x with OneMax(x) ≥ n − ⌈n/e⌉. From
now on, we always assume that OneMax(x) is bounded below in this way.

We are interested in E (Dλ,1,x). Since Dλ,1,x ∈ {0, 1, . . . , n}, we have E (Dλ,1,x) =
∑n

d=1 Prob (Dλ,1,x ≥ d). For d < (3 lnλ)/ ln lnλ we use the trivial estimation
Prob (Dλ,1,x ≥ d) ≤ 1. For d with (3 lnλ)/ ln lnλ ≤ d < (λ ln λ)/ ln lnλ we have

λ

dd
≤ eln λ

e((3 lnλ)/(ln lnλ))·((ln ln λ)−ln ln lnλ))
<

1

λ

8

and use the estimation Prob (Dλ,1,x ≥ d) ≤ 1/λ. Finally, for d ≥ (λ lnλ)/ ln lnλ
we have λ/dd ≤ eλ/eλ ln λ < e−λ and use the estimation Prob (Dλ,1,x ≥ d) <
e−λ < 1/n. These three estimations yield

E (Dλ,1,x) <

((3 ln λ)/ ln lnλ)−1
∑

i=1

1

+

((λ ln λ)/ ln ln λ)−1
∑

i=(3 ln λ)/ ln ln λ

1/λ

+

n
∑

i=(λ ln λ)/ ln ln λ

1/n

< (3 lnλ/(ln lnλ) − 1) + (lnλ/ ln lnλ) + 1 < 4 lnλ/ ln lnλ

for the expected advance in one generation.
Of course, E (Gλ) ≥ t ·Prob (Gλ ≥ t) holds for all values of t. As we argued

above, with probability at least 1/2 at some point of time we have some x
with OneMax(x) ∈ {n − ⌈n/e⌉ , . . . , n − ⌈n/(2e)⌉} as current string x. Thus,
Prob (Gλ ≥ t) ≥ Prob (Dλ,t,x < n/e) holds, if x is some string with at least n/e
zero-bits. This yields

E (Gλ) ≥ (t/2) · Prob (Dλ,t,x < n/e) = (t/2) · (1 − Prob (Dλ,t,x ≥ n/e)) .

By Markov’s inequality we have

E (Gλ) ≥ (t/2) · (1 − E (Dλ,t,x) /(n/e)) ≥ (t/2) · (1 − e · t · E (Dλ,1,x) /n) .

Together with our estimation for E (Dλ,1,x) we have
E (Gλ) ≥ (t/2)·(1 − 4e · t · lnλ/(n · ln lnλ)). We set t := (n ln lnλ)/(8e lnλ) and
get E (Gλ) ≥ n ln lnλ/(32e lnλ) which implies E (Tλ) = Ω (nλ ln lnλ/ lnλ). It is
easy to see that this implies E (Tλ) = ω(n logn) for λ = ω((lnn)(ln lnn)/ ln ln lnn)
as claimed.

So, for OneMax we see that the cut-off point for λ is Θ((lnn)(ln lnn)/ ln ln lnn).
While smaller than the Θ(n) cutoff for LeadingOnes, there is still significant
opportunity for speedup in a parallel computing environment as n increases,
and no theoretical reason to set λ to a small constant value.

2.3 Asymptotic Analysis of SufSamp

For both of the previous fitness functions, the (1+1) EA can only be outper-
formed by the (1+λ) EA if a parallel computer is used. It is therefore interesting
to see whether there exist fitness functions where the use of an offspring popu-
lation with size λ > 1 reduces the expected optimization time significantly —
even on a sequential computer. In order to construct an appropriate example
function one needs an idea of where such an advantage might come from. One
possibility is a fitness landscape in which “helpful hints” are more difficult to
find than misleading ones. If sufficient sampling of the search space in the neigh-
borhood of the current population is required to avoid misleading hints (e.g.,
paths to local optima), a (1+λ) EA may well be superior to a (1+1) EA. We
prove that this idea is correct by first defining an example function, SufSamp

that has exactly this property and second analyzing the performance of the
(1+1) EA and the (1+λ) EA with sufficiently large offspring population size λ.

The intuition for this function is quite simple as illustrated in Figure 1. We
want it to consist of a narrow main path that leads to the optimum. However,
while following that path, the algorithm is confronted with multiple branch

9

points, each with the property that from it there is a variety of paths leading
uphill, but only the steepest one leads to the global optimum. Hence, as we
increase λ, we increase the likelihood of picking the correct path at the branch
point.

global optimum

point from Bn

point from Ln

direction of

increasing f -values

0n

1n

main
path

main
path

Figure 1: Core function f .

The formal definition of this function is more complicated than the intuition.
To simplify it somewhat, we divide the definition into two parts. First, we define
a function f : {0, 1}n → R that realizes the main idea but assumes that the initial
string is 0n.

Definition 4. For n ∈ N we define k := ⌊√n⌋. We use |x| = OneMax(x) and
define the function f : {0, 1}n → R for all x ∈ {0, 1}n by

f(x) :=

(i + 3)n + |x| if (x = 0n−i1i with 0 ≤ i ≤ n) or

(x = y0n−i−k1i with i ∈ {k, 2k, . . . , (k − 2)k}, y ∈ {0, 1}k)

0 otherwise.

The core function f contains one main path 0i1n−i. There are about
√

n
points on this path that are of special interest. At these points it is not only
beneficial to add another 1 on the right side. The function value is also increased
by flipping any of the leftmost ⌊√n⌋ bits. Thus, at these points there is a variety
of uphill paths to choose among. One path of the form 0i1n−i leads to the global

optimum, while paths of the form y0i′1n−i′−⌊√n⌋ with y ∈ {0, 1}⌊
√

n⌋ all lead to
local optima. Therefore, we call these special points on the path branch points.

10

Definition 5. For n ∈ N we define k := ⌊√n⌋ and call a point x ∈ {0, 1}n a
branch point of dimension n iff x = 0n−i1i holds for some i ∈ {2k, 3k, . . . , (k − 1)k}.
Let Bn denote the set of all branch points of dimension n.

At the branch points a (1+λ) EA may proceed toward a local optimum or
the global one. It is important to know what the probabilities are for the two
different possibilities:

Lemma 1. Let n ∈ N, k := ⌊√n⌋, Bn the set of branch points of dimension
n as defined in Definition 5, x ∈ Bn, and λ : N → N be a function that has
a polynomial upper bound. Consider a (1+λ) EA (λ = λ(n)) with current
string x optimizing the function f : {0, 1}n → R as defined in Definition 4. Let
y = y1y2 · · · yn be the first point with f(y) > f(x) reached by the (1+λ) EA. Let
p be the probability that OneMax(y1y2 · · · yk) > 0 holds, then:

1 − e−λ/(en)

1 − e−2λ/k
≤ p ≤ 1 − e−λ/n

1 − e−λ/(ek)
.

Proof. Let x ∈ Bn be the current string of the (1+λ) EA operating on f . The
points in Bn are ordered according to the function value. We prove the claim
under the assumption that no mutation of at least k bits occurs before we have
a generation that produces an offspring with larger function value. This changes
all probabilities involved by a factor of at most 1+2−Ω(k). It allows us to ignore
mutations leading to points with function values equal to or greater than the
function value of the next branch point.

Let x(1), x(2), . . . , x(λ) be the offspring generated in one generation by inde-

pendent mutations of x. We use the notation x(i) = x
(i)
1 x

(i)
2 · · ·x(i)

n to denote the

specific bits. Let Ai denote the event that f(x(i)) > f(x) and OneMax(x
(i)
1 · · ·x(i)

k) =
0 hold. In this case x(i) is on the main path behind x. Let Bi denote the event

that f(x(i)) > f(x) and OneMax(x
(i)
1 · · ·x(i)

k) > 0 hold. In this case x(i) is on
one of the misleading paths starting in x. With these definitions we have

p = Prob

(

λ
⋃

i=1

Ai |
λ
⋃

i=1

(Ai ∪ Bi)

)

=

Prob

(

λ
⋃

i=1

Ai

)

Prob

(

λ
⋃

i=1

(Ai ∪ Bi)

) . (1)

Note that the events concerning different offspring are completely independent
and have the same probability. Thus,

Prob

(

λ
⋃

i=1

Ai

)

= 1 − Prob

(

λ
⋂

i=1

Ai

)

= 1 − Prob
(

A1

)λ

holds. Upper and lower bounds for Prob
(

A1

)

are easy to find. The event A1

requires that all the one-bits in x do not change their values and any positive
number of consecutive zero-bits become one-bits in one mutation. This yields

1

n

(

1 − 1

n

)n−1

≤ Prob (A1) ≤
k
∑

i=1

(

1

n

)i (

1 − 1

n

)n−i

and we have

1 − 1

en
≥ Prob

(

A1

)

≥ 1 − 1

n

11

as bounds. Therefore,

1 − e−λ/(en) ≤ Prob

(

λ
⋃

i=1

Ai

)

≤ 1 − e−λ/n

holds.
Of course,

Prob

(

λ
⋃

i=1

(Ai ∪ Bi)

)

= 1 − Prob

(

λ
⋂

i=1

(

Ai ∩ Bi

)

)

holds and we see that the events
(

Ai ∩ Bi

)

are completely independent and have
the same probability. This leads to

Prob

(

λ
⋃

i=1

(Ai ∪ Bi)

)

= 1 − Prob
(

A1 ∩ B1

)λ
.

For A1 ∪ B1 it is easy to see that

k

n

(

1 − 1

n

)n−1

≤ Prob (A1 ∪ B1)

≤

k
∑

j=1

(

k

j

)(

1

n

)j (

1 − 1

n

)n−j

+

k
∑

i=1

k
∑

j=0

(

k

j

)(

1

n

)i+j (

1 − 1

n

)n−i−j

holds and we have

1 − k

en
≥ Prob

(

A1 ∩ B1

)

≥ 1 − 2k

n

as bounds. Plugging these bounds into equation (1) completes the proof.

Assume that the (1+λ) EA happens to continue in the direction of some

y0n−i−⌊√n⌋1i with y ∈ {0, 1}⌊
√

n⌋, y 6= 0⌊
√

n⌋. Then it is quite likely to reach

“the last point in this direction”, i. e., y0n−i−⌊√n⌋1i with y = 1⌊
√

n⌋. The set
of these points is called Ln.

Definition 6. For n ∈ N we define k := ⌊√n⌋ and

Ln :=
{

1k0n−i−k1i | i ∈ {k, 2k, . . . , (k − 2)k}
}

.

When considering the (1+1) EA on the core function f , it is essential that
the algorithm is started with 0n as initial string. Since the (1+1) EA chooses
the initial string uniformly at random this will not be the case with probability
1− 2−n. Therefore, we now relax the assumption that the initial string is 0n by
extending f to another function SufSamp in a way that most starting points
lead to the main path defined by f . The function is named SufSamp since the
main idea (already of f) is that only sufficient sampling of the current search
point’s neighborhood allows an evolutionary algorithm to remain on the main
path.

12

Definition 7. For n ∈ N we define m′ := ⌊n/2⌋, m′′ := ⌈n/2⌉, and
SufSamp : {0, 1}n → R by

SufSamp(x) :=

n − OneMax(x′′) if x′ 6= 0m′ ∧ x′′ 6= 0m′′

2n− OneMax(x′) if x′ 6= 0m′ ∧ x′′ = 0m′′

f(x′′) if x′ = 0m′

for all x = x1x2 · · ·xn ∈ {0, 1}n with x′ := x1x2 · · ·xm′ ∈ {0, 1}m′

and x′′ :=
xm′+1xm′+2 · · ·xn ∈ {0, 1}m′′

.

We double the length of each bit string and define the core function f only
on the right half of the strings. The first half is used to lead a search algorithm
towards the beginning of the main path of f . The construction will have the
desired effect for all search heuristics that are efficient on OneMax.

Theorem 6. The probability that the (1+1) EA optimizes the function
SufSamp : {0, 1}n → R within nO(1) function evaluations is bounded above by

2−Ω(
√

n).

Proof. Our proof strategy is the following. First, we consider the expected
optimization time of the (1+1) EA on the function SufSamp : {0, 1}n → R

under the condition that at some point of time the current string x = x′x′′,
with x′ and x′′ defined as in Definition 7, is of the form x′ = 0m′

, x′′ ∈ Lm′′ ,

with m′ = |x′|, m′′ = |x′′|, k =
⌊√

m′′
⌋

, and i ∈ {1, . . . , ⌊k/2⌋}. Then, we prove

that the probability that such a string becomes current string at some point of
time is Ω(1).

First, assume that such a string x is current string of the (1+1) EA. Let
A be the set of all such strings. Obviously, this string x is different from the
unique global optimum. Moreover, due to the definition of SufSamp, all points
with larger function value have Hamming distance at least k and there are
less than n such points. Thus, the probability to reach such a point in one

generation is bounded above by n · (1/n)k ≤ (1/n)
√

n/2−2. The probability
that such an event occurs at least once in nk generations is bounded above by

n−
√

n/2+k+1 = 2−Ω(
√

n log n).
The initial current string x = x′x′′ after random initialization is some

string with x′ 6= 0m′

and m′′/3 < OneMax(x′′) < 2m′′/3 with probability
1 − 2−m′

. Then, the function value is given by n − OneMax(x′′). With prob-
ability 1 − 2−Ω(n) then some point x on the main path below the first branch
point b = 0n−2k12k is reached within O

(

n2 log n
)

steps. If no other string y
with SufSamp(y) ≥ SufSamp(b) is reached before, the statement holds by
known results on OneMax. We estimate the probability to reach some y with
SufSamp(y) ≥ SufSamp(b). We consider levels of strings that contain all
strings with a given number of zero-bits. On each level, for symmetry reasons
each string has the same probability to be reached as long as no string y with
SufSamp(y) ≥ SufSamp (0n) is reached. We are only interested in levels with
less at least m′′/3 and at most m′′ − 2k zeros. Such levels contain 2Ω(k) strings.
Thus, the probability to reach a string on some path is 2−Ω(k) = 2−Ω(

√
n).

At each branch point, the (1+1) EA comes to a string x = x′x′′ as new
current string with some bit set to 1 within the first k bits of x′′ with probability
at least 1−Θ(1/

√
n). This follows from the proof of Lemma 1. The probability

13

to proceed with such strings instead of returning to a string with k zeros at
these bit positions increases. In fact, it is easy to see that with probability 1 −
O (1/

√
n) the (1+λ) EA reaches a point in A before reaching some point with k

zeros at these positions. Since we have k−1 >
√

n/2 branch points, we conclude
that the probability that the (1+1) EA does not reach some point in A is

bounded above by 2−Ω(
√

n log n) under the described circumstances. Combining
all estimations completes the proof.

Theorem 7. For all constants ε > 0, the probability that the (1+λ) EA with λ ≥
cn log n, c > 0 a constant sufficiently large, optimizes the function SufSamp : {0, 1}n →
R within O (n · λ) function evaluations is bounded below by 1 − ε.

Proof. First, assume that the initial string x = x′x′′ is some string with x′ 6=
0m′

. Given that the all zero string is the first string y = y′y′′ becoming current
string with y′ = 0m′

, we can conclude from Theorem 3 that the expected number
of steps the (1+λ) EA needs to reach the all zero string is O (n · λ). In a fashion
similar to the proof of Theorem 6 we can conclude that the all zero string is
reached within c′n · λ steps with probability at least 1 − ε, where c′ and ε are
positive constants. Note that by enlarging c′ the failure probability ε can be
made arbitrarily small. Given that for all following current strings x = x′x′′

we have that x′′ does not contain a bit different from 0 within the first k bits,
it follows from Theorem 1, that the expected number of steps until the global
optimum is reached is bounded above by O (n · λ). So, under the assumption
that no such string is reached, we have similarly to the reasoning above that the
global optimum is reached within O (n · λ) steps with probability at least 1− ε,
where ε is an arbitrarily small positive constant. We know from Lemma 1 that
the probability to reach some x where this assumption is not met is bounded
above by e−Ω(λ/n) at each branch point. Since there are less than

√
n branch

points, we have that with probability at least 1 − √
n · e−Ω(λ/n) no such point

becomes current point x at any branch point. Since we have λ/n ≥ c log n with
c > 0 sufficiently large, this probability is sufficiently close to 1. Combining
these estimations completes the proof.

So, our intuition can now be seen to be correct. Larger offspring populations
can be of considerable benefit with (1+λ) EAs on fitness landscapes in which
additional sampling is required to identify the “correct” direction in which to
continue searching.

2.4 SufSamp
�

The perceptive reader may have already noted that the same ideas used to
construct SufSamp can also be used to construct a landscape that misleads the
same (1+λ) EA that easily finds the global optimum of SufSamp. Consider a
different fitness function f that can be described as a “small” modification of
SufSamp. Consider SufSamp and all strings x = x′x′′ where x′′ is a branch
point. Let x′′′ be a string of length |x′′| with x′′′ ∈ L|x′′′|, that has k bits with
the value 1 at the beginning and is equal to x′′ on the rest of the bits. The
proofs of Theorem 6 and Theorem 7 rely on the fact that the (1+1) EA reaches
some string x′x′′′ with high probability whereas the (1+λ) EA does not. We see
that a function SufSamp

′ that has all such points x′x′′′ as global optimum and
is equal to SufSamp on all other points is obviously optimized within O

(

n2
)

14

function evaluations by the (1+1) EA with probability converging to 1, whereas
the (1+λ) EA fails to optimize SufSamp

′ within a polynomial number of steps
with probability converging to 1, given that λ = Ω(n log n) holds.

Note that it is not the existence of local optima that makes the example
functions SufSamp and SufSamp

′ so difficult for some algorithms. It is not
difficult to come up with unimodal versions of SufSamp and SufSamp

′: the
idea is to connect the local optima of SufSamp and SufSamp

′ with a unique
global optimum via very long paths that take the (1+λ) EA very long time
(Droste, Jansen, and Wegener 1998)).

2.5 Asymptotic Analysis Summary

The asymptotic analysis in this section makes it very clear that there is no
simple answer to the question of an appropriate value for λ in a (1+λ) EA. For
simple landscapes such as OneMax and LeadingOnes, settings in the range
1 ≤ λ ≤ log n yield optimization times that are all asymptotically equivalent on
serial machines. Hence, conventional settings such as 1 or 7 seem adequate in
such cases but not required, while on parallel machines there is a clear advantage
to increase λ to the point at which additional parallelism provides no additional
speedup. On the other hand, the SufSamp landscape illustrates that even on
sequential machines there are situations in which large values of λ are required
to find the global optimum with high probability.

3 Exact Analysis

All the results from the previous section are asymptotic ones. That means
that they hold for sufficiently large values of n and they neglect multiplicative
constants. Therefore, they may not be accurate for small values of n. For
example, for OneMax and LeadingOnes, it may be the case that for some
values of n and some values of λ the expected optimization load may in fact
be less for the (1+λ) EA than for the (1+1) EA — in spite of our asymptotic
results. However, there is nothing in our analysis that supports such a belief. In
fact, for functions as simple as OneMax and LeadingOnes, an exact analysis
is possible that shows that this is not the case. So, in this section we revisit the
performance of the (1+λ) EA on OneMax and LeadingOnes and prove that
larger offspring population sizes cannot decrease the optimization time for any
value of n.

3.1 Exact Analysis for OneMax

Theorem 8. For any λ ≥ 1, any t ∈ N, and any k ∈ N:
Prob (Tλ,OneMax < t) ≥ Prob (Tk·λ,OneMax < t).

Proof. Let xt denote the current generation of the (1+1) EA after the t-th func-
tion evaluation (with x1 denoting the initial population). The main observation
is the following. For all x, x′ ∈ {0, 1}n, all t, k ∈ N

OneMax(x) ≥ OneMax(x′)

⇒ Prob (OneMax(xt) ≥ k | x1 = x) ≥ Prob (OneMax(xt) ≥ k | x1 = x′)
(2)

15

holds. This can be proved via induction on t. Let t = 2. Because of symmetry
of OneMax with respect to the bit positions we can assume w. l. o. g. that
x = 1i0n−i and x′ = 1i+d0n−i−d with d ≥ 0. If d = 0, then x = x′ and (2)
is obvious. Let d > 0. Then we may consider a so-called “coupled mutation”,
i. e., the decision whether bit i of x and bit i of x′ flips is done by the same
experiment. This leads to the mutants m(x) and m(x′) of x and x′ to the same
probability distributions than usual mutations. Hence, m(x) and m(x′) agree
in the prefix of length i and in the suffix of length n− i−d. The number of ones
in the middle part of m(x) is binomially distributed with the parameters d and
1− 1/n and for m(x′) we have the binomial distribution with the parameters d
and 1/n. If n ≥ 2, the probability of at least r ones, 0 ≤ r ≤ d, is for m(x) at
least as large as for m(x′). Hence,

Prob (OneMax(m(x)) ≥ k) ≥ Prob (OneMax(m(x′)) ≥ k) .

Since OneMax(x) ≥ OneMax(x′) and x2 is the better one among x and m(x),
similarly for x′

2, (2) holds for t = 2.
For the induction step, we investigate the probabilities pl, 0 ≤ l ≤ n, that

xt−1 contains exactly l ones, similarly for p′
l and x′

t−1. We arrange the probabil-
ities as shown in Fig. 2 for n = 5. The crucial point is the following observation.

0 1

p′5p′4p′3p′2p′1p′0

p5p4p3p2p1p0

Figure 2: Comparing pl and p′l.

Consider some r ∈ [0, 1]. If r ∈ Ii and r ∈ I ′j , then by the induction hypothesis
j ≤ i. In order to pick xt−1 and x′

t−1 we pick r ∈ [0, 1] uniformly at random. If
r ∈ Ii and r ∈ I ′j , then we choose some xt−1 with i ones and some x′

t−1 with j
ones. For each r we can apply arguments from the induction base and, finally,
we have proved (2).

A direct consequence is that

OneMax(x) ≥ OneMax(x′)

⇒ Prob (T1,OneMax ≤ t | x0 = x) ≥ Prob (T1,OneMax ≤ t | x0 = x′)

holds.
To prove the theorem we start with the special case λ = 1 and compare a

(1+1) EA and a (1+λ) EA. Due to the definition of the (1+λ) EA, we have
xi = xi+1 = · · · = xi+λ for all i 6≡ 1 mod λ. Only for i ≡ 1 mod λ the current
population xi is replaced by an offspring (from the last λ created) with maximal
function value. Since xt 6= xt+1 implies OneMax(xt) ≥ OneMax(xt+1), the
claim follows.

The same holds for the comparison of the (1+λ) EA and the (1+kλ) EA,
since the (1+λ) EA always updates earlier than the (1+kλ) EA.

We see that increasing λ by some factor can never decrease the expected
optimization load. Furthermore, it is not difficult to see that for t > 1 the

16

inequalities in the first statement can all be made strict. The same holds for
the second statement and t > λ.

We do not make a similar statement for arbitrary offspring population sizes
λ < λ′. It is not clear that an analogy to Theorem 8 holds in this general case.
Updating the current string later may deliver an advantage in the beginning.
Since this seems to vanish in later generations we make the following conjecture.

Conjecture 1. For any λ, λ′ ∈ N with λ ≤ λ′, there exists an t0 ∈ N, such that
for all t ∈ N with t ≥ t0

Prob (Tλ,OneMax < t) ≥ Prob (Tλ′,OneMax < t)

holds.

3.2 Exact Analysis for LeadingOnes

Theorem 9. For any λ ≥ 1, any t ∈ N, and any k ∈ N:

Prob (Tλ,LeadingOnes < t) ≥ Prob (Tk·λ,LeadingOnes < t) .

Proof. The first observation is, that equation (2) does not hold for LeadingOnes.
This is due to the missing correspondence between the function value and the
Hamming distance to the optimum. Obviously, LeadingOnes(10n−1) = 1 and
LeadingOnes(01n−1) = 0, but we expect the success probability after t steps
to be greater if the initial population is 01n−1. However, we already observed
that for any (1+λ) EA the distribution of all bits right to the leftmost zero-bit
is uniform (Theorem 1). Taking this into account the same correspondence be-
tween the function value and the probability of mutations to strings with larger
fitness exists for LeadingOnes as for OneMax. Thus the proof follows in the
same way as the proof of Theorem 8.

Since the structural similarities between OneMax and LeadingOnes are so
large, we make the same conjecture for LeadingOnes as we did for OneMax.

Conjecture 2. For any λ, λ′ ∈ N with λ ≤ λ′, there exists an t0 ∈ N, such that
for all t ∈ N with t ≥ t0

Prob (Tλ,LeadingOnes < t) ≥ Prob (Tλ′,LeadingOnes < t)

holds.

3.3 Exact Analysis Summary

The exact analysis in this section nicely complements the asymptotic analy-
sis in section 2 by showing that, regardless of the dimensionality n of simple
landscapes such as OneMax and LeadingOnes, one cannot improve on the
sequential optimization time of a (1+1) EA by increasing the offspring popula-
tion size λ. Recall, however, that section 2 did exhibit an artifically constructed
landscape for which λ > 1 resulted in significant improvements in optimization
time. This leaves open the question as to whether there are “normally encoun-
tered” fitness landscapes for which λ > 1 is advantageous. We explore this
possibility in the next section.

17

4 Empirical Analysis

The analyses of the previous two sections were performed with rigorous math-
ematical tools and involved very specific fitness landscapes. In this section we
complement these mathematical analyses with a series of carefully chosen empir-
ical studies designed to accomplish two goals: 1) to validate the mathematical
results by comparing their predictions with the actual behavior of running algo-
rithms, and 2) to see the extent to which the derived mathematical results apply
to other fitness landscapes that are too complex for mathematical analysis.

4.1 Empirical Analysis Methodology

The design of our empirical analysis is motivated by the results and insights
obtained from our theoretical analysis. First, since the dimensionality n of
the fitness landscapes plays an important role in the theoretical analyses, for
our empirical analyses we systematically varied n for each landscape over the
set of values given by n ∈ {18, 24, 30, . . . , 90}. A second important issue, of
course, was the choice of appropriate values for λ. Clearly, we were interested
in EA performance using small, dimension-independent values. For this aspect
we chose λ ∈ {1, 2, 7}. In addition, the mathematical analyses from Section 2
suggest focusing on a number of dimension-dependent values for λ, specifically
λ = Θ((log n)(log log n)/ log log log n), λ = Θ(n), and λ = Θ(n log n). However,
the choice of the constant factors hidden in the Θ analyses is in some sense
arbitrary. For the experiments reported here we used a constant factor of 10
throughout, i.e., λ ∈ {10 · l(n) · l(l(n))/l(l(l(n))), 10n, 10n · l(n)}, with l(n) =
⌊log2 n⌋. Combining this with our choices for n produced the additional λ-
values in Table 1.

n 10 · l(n) · l(l(n))/l(l(l(n))) 10n 10n · l(n)
18 80 180 720
24 80 240 960
30 80 300 1200
36 100 360 1800
42 100 420 2100
48 100 480 2400
54 100 540 2700
60 100 600 3000
66 120 660 3960
72 120 720 4320
78 120 780 4680
84 120 840 5040
90 120 900 5400

Table 1: Dimension-dependent values used for λ

We performed fifty independent runs for each combination of values for n
and λ. We stopped each run after at most 10n4 function evaluations or when the
global optimum was found. For those runs in which the optimum was located, we
calculated the average number of function evaluations and the average number
of generations needed to do so. Runs that failed to find the optimum were not

18

taken into account for the computation of the averages. Therefore, the number
of runs which are averaged may vary and that number is reported for each
experiment.

We began our empirical analysis of the (1+λ) EA by focusing on the three fit-
ness landscapes used in the mathematical analyses, namely, OneMax, LeadingOnes,
and SufSamp. The goal in the case was to see whether the empirical results
support the theoretical results. We then selected three additional fitness func-
tions that were not part of the theoretical analyses in order to get a sense of the
predictive power of our results.

4.2 Empirical Analyses on LeadingOnes and OneMax

For both LeadingOnes and OneMax the global optimum was discovered in
all runs without any exception, as one might expect from their simplicity. In
Figures 3 and 4 we display the average number of function evaluations until the
global optimum was discovered together with the confidence interval for each
mean. For visual clarity we plot just a few representative values for λ.

0

50000

100000

150000

200000

250000

20 30 40 50 60 70 80 90
dimension of search space n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns l=1

l=n
l=n log

Figure 3: Average number of function evaluations required by various (1+λ)
EAs on LeadingOnes as n increases.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

20 30 40 50 60 70 80 90
dimension of search space n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

l=1
l=log

l=n

Figure 4: Average number of function evaluations required by various (1+λ)
EAs on OneMax as n increases.

The results are exactly those predicted by the theoretical analyses, namely,
that for these simple fitness landscapes, the performance of a (1+1) EA cannot
be improved by increasing the value of λ. Moreover, performance systematically

19

degrades as λ increases. As long as λ is below the theoretical cutoff points
(O(n) for LeadingOnes and O(log n · (log log n)/(log log log n)) for OneMax,
the performance degradation is a constant factor c. However, as λ increases
beyond these cutoff points, the performance degradation is polynomial in n.

4.3 Empirical Analyses on SufSamp

For the much more complex landscape SufSamp, the empirical results are quite
different. Except for very small values of n, no algorithm is able to locate the
global optimum in all 50 runs. The actual numbers of these successful runs are
presented in Table 4 and require some additional discussion and interpretation.

n λ = 1 λ = 2 λ = 7 λ = “logn” λ = “n” λ = “n logn”
18 50 50 50 50 50 50
24 50 49 50 48 50 50
30 14 20 16 37 36 36
36 6 7 10 30 34 36
42 7 9 9 31 32 34
48 0 1 2 12 24 18
54 0 2 0 7 21 25
60 0 0 2 15 23 25
66 4 1 2 6 19 15
72 1 1 1 9 26 16
78 0 0 0 0 10 7
84 0 0 0 5 18 12
90 0 0 0 4 12 8

Table 2: Number of successful runs (out of 50) for different λ-values on SufSamp

First of all, note that for very small values of n (n ≤ 24), the (1+λ) EA
is successful almost regardless of the value of λ. This is mainly due to the
fact that SufSamp does not really exhibit its intended character for such small
dimensions of the search space. Our discussion of the properties of SufSamp

was based on the fact that certain “large jumps” are very unlikely. This holds
only for sufficiently large values of n.

For larger values of n and small constant values of λ (λ ≤ 7), the empirical
results match the theoretical predictions quite well in that the success rate
drops drastically. As we increase λ as a function of n, the success rate improves
until the final “n logn” column. This is a bit surprising since the theoretical
analysis of SufSamp indicated that λ ≥ Θ(n log n) was required for optimal
performance. Since we observe this discrepancy only for the larger values of n,
we believe this to be an artifact of the uniform upper limit of 10n4 function
evaluations that we imposed on these empirical studies.

4.4 Empirical Analyses on Three Additional Fitness Func-

tions

In order to get a sense as to whether the theoretical results of Sections 2 and 3
extend to other fitness landscapes, we performed our empirical analysis on three
additional test functions.

20

4.4.1 De Jong’s F1 Function

The first function is the well-known F1 function from the De Jong test suite

(De Jong 1975). It is defined by F1(x) =
3
∑

i=1

x2
i and is to be minimized. We use

−5.12 ≤ xi ≤ 5.12 for i ∈ {1, . . . , 3} and a binary representation. A bit string of
length n is split into three components of equal length n/3. The i-th component
represents xi using standard binary representation. Therefore, 0n/3 represents
−5.12, 1n/3 represents 5.12, 0(n/3)−11 represents −5.12 + 10.12/(2n/3 − 1) and
so on.

F1 represents a discretized version of a simple continuous fitness landscape
that presents no difficulties for any EA. As such, we would expect our results to
closely match those of OneMax and LeadingOnes, and that is what we found.
A global optimum was found in every run and the situation with respect to the
average number of function evaluations (Figure 5) is very similar to Figures 3
and 4.

0

10000

20000

30000

40000

50000

60000

20 30 40 50 60 70 80 90
dimension of search space n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

l=1
l=log

l=n
l=n log

Figure 5: Average number of function evaluations required by various (1+λ)
EAs on F1 as n increases.

4.4.2 Ackley’s Concatenated Trap Function

The second function, Traps, is a concatenated 3-bit-trap function, defined by

Traps(x) =
n/3
∑

i=1

f(x3(i−1)+1x3(i−1)+2x3i), where f is the well-known trap func-

tion (Ackley 1987), which is given as f(0k) = k + 1 and f(x) = OneMax(x)
for x ∈ {0, 1}k.

In this case the global optimum was also found in every run. However, unlike
any of our earlier results, the particular value of λ had no significant affect on the
performance of the (1+λ) EA (Figure 6). This can be understood by noting that
the Traps function consists of a series of n/3 independent trap functions, thus
producing a highly multi-modal fitness landscape. Improvements in performance
on landscapes of this type are obtained by increasing the parent population size
(µ) in order to support higher degrees of parallel search. Increasing λ when
µ = 1 does not increase this parallelism.

21

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

20 30 40 50 60 70 80 90
dimension of search space n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns l=1

l=log
l=n

l=n log

Figure 6: Average number of function evaluations for various (1+λ) EAs on
Traps as n increases

4.4.3 A Matching Problem

For our third function, we selected a well-studied graph problem, namely, an
instance of the maximal matching problem. In this particular formulation the
graph is a line consisting of m nodes {1, . . . , m} and m−1 edges {{1, 2}, {2, 3}, . . . , {m−
1, m}}. A selection of the edges is represented by a bit string x ∈ {0, 1}m−1 in
the following way. Each bit represents an edge and the edge is selected if the
corresponding bit is set to 1. If the set of selected edges has the property that
no two edges “collide” (i.e., share a common node), the edge set represents “a
match”. In that case, the fitness is defined to be the number of edges in the
match set (i. e., OneMax(x)). Otherwise, the fitness is defined to be −c, where
c is number of colliding edges. The objective is to find a maximal match. If m
is even, there is a unique maximal match.

For Matching, the global optimum was not discovered in every run as in-
dicated in Table 3. This is primarily due to the fact that the uniform upper
bound on the number of function evaluations that we used for all experiments
is of the same order of magnitude as the expected optimization time of O(m4)
for a (1+1) EA (Giel and Wegener 2003). When the use of a larger offspring
population size leads to wasting some function evaluations, this implies a de-
crease of the probability to find the global optimum. Accordingly, we observe a
decreasing number of successful runs with increasing values of λ.

Figure 7 summarizes the effects of increasing λ on the number of function
evaluations required to find the optimum. The results are consistent with the
OneMax and LeadingOnes results, indicating the best performance is ob-
tained by setting λ to small constant values.

4.5 Empirical Analysis Summary

The empirical studies in this section both complement and support the mathe-
matical analyses of the earlier sections. Collectively, these analyses clarify our
sense that the appropriate value for λ is landscape dependent, and is closely
associated with the probability of producing an offspring that lies on a trajec-
tory towards the global optimum. For simple landscapes, that probability is
quite high. In such cases, setting λ to something larger than small constant
values results in wasted computation effort. For complex landscapes in which
that probability is quite low, much larger values of λ are required.

22

n λ = 1 λ = 2 λ = 7 λ = “log n” λ = “n” λ = “n logn”
18 50 50 50 50 44 38
24 50 50 50 50 47 29
30 50 50 50 50 37 28
36 50 50 50 50 38 21
42 50 50 50 49 37 21
48 50 50 50 48 35 16
54 50 50 50 49 30 16
60 50 50 50 50 36 12
66 50 50 50 49 26 13
72 50 50 50 47 23 13
78 50 50 50 49 27 10
84 50 50 50 50 22 9
90 50 50 50 50 21 6

Table 3: Number of successful runs on the Matching problem.

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

20 30 40 50 60 70 80 90
dimension of search space n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

l=1
l=log

l=n
l=n log

Figure 7: Average number of function evaluations for various (1+λ) EAs on the
Matching problem with increasing n.

Unfortunately, the analyses presented here are not capable of making strong
a priori predictions regarding the appropriate value of λ for an arbitrary land-
scape. For the practitioner, this means that some experimenting will be required
to find effective λ-values for new landscapes. In addition, there is no reason to
believe that holding the value of λ fixed during an evolutionary run is optimal.
One possible improvement in this situation would be to have an EA self-adapt
the value of λ. This possibility is explored in the next section.

5 An Adaptive (1+λ) EA

In this section we use the insights gained from the analyses presented in this
paper to suggest an adaptive mechanism for having the offspring population size
adjusted during a run by the EA itself. The idea for adapting the offspring pop-
ulation size is simple. We have seen in the proofs of Theorem 1 and Theorem 4
that we get maximal speed-up in a (1+λ) EA without significantly increasing
the optimization load when we have the value of λ inversely proportional to the
success probability, i.e., the probability of creating an offspring that replaces
its parent. During an EA run, we can monitor this success rate and modify λ

23

accordingly. The particular algorithm we chose for doing so is as follows. If, in
a particular generation, no offspring replaces its parent, we double the size of
λ. If, in a particular generation, there are s offspring capable of replacing the
parent, we reduce the value of λ to λ/s. Thus, we quickly increase the size of
λ if it seems to be too small and reduce it if it appears to be too large based
on each generation’s estimate of the current success probability. For the sake of
clarity we give a formal description of this adaptive (1+λ) EA:

Algorithm 2 (Adaptive (1+λ) EA).

1. Initialization
Choose x ∈ {0, 1}n → R uniformly at random.

λ := 1

2. Mutation
For each i ∈ {1, . . . , λ}:

Create yi ∈ {0, 1}n by copying x and, independently for each

bit,

flip this bit with probability 1/n.

3. Adaptation of λ

s := |{yi | f(yi) ≥ f(x) ∧ yi 6= x}|

4. Selection
If max{f(y1), . . . , f(yλ)} ≥ f(x), replace x by some randomly chosen

yi with maximal f-value.

5. Adaptation of λ

If s > 0 Then λ := ⌊λ/s⌋ Else λ := 2λ.

6. “Stopping Criterion”
Continue at line 2.

To study the effectiveness of this adaptive (1+λ) EA, we compared its per-
formance with the non-adaptive (1+λ) EA on the six functions used in the
empirical studies from Section 4. With one exception, the results were quite
reasonable in the following sense. The number of function evaluations required
to find the optimum were a bit higher, but comparable to that produced by the
best choices for λ observed in the earlier empirical studies. Figure 8 illustrates
this for the OneMax problem for which small static values of λ were shown to
be best.

However, the way in which this adaptive (1+λ) EA achieves the comparable
performance is strikingly different than an EA with a fixed λ-value. Figure 10
illustrates this by plotting how the adaptive EA dynamically changes the value
of λ during a single run on OneMax. Recall that our earlier analyses suggested
that, on landscapes like OneMax, the success probability is quite high early in
an evolutionary run, but decreases significantly over time. Figure 10 suggests
that our adaptive EA is tracking such changes quite nicely.

The one exception that we noted in the empirical studies regarding the
performance of the adaptive (1+λ) EA was on the SufSamp function. Recall
that it was carefully designed to require large values of λ in order to improve
the likelihood that successful offspring would lie on a trajectory to the global

24

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 20 30 40 50 60 70 80 90 100
dimension of search space n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

l=1
l=2
l=7

l=adapt

Figure 8: Average number of function evaluations for LeadingOnes with λ
constant.

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100
dimension of search space n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

l=log
l=n

l=n log
l=adapt

Figure 9: Average number of function evaluations for LeadingOnes with λ a
function of n.

optimum. However, there is no way to monitor this success rate without a priori
knowledge of the fitness landscape. As a consequence, the adaptive mechanism
set λ to smaller suboptimal values, resulting in a much lower success rate for
finding the optimum, as illustrated in Table 4.

6 Conclusions

Building on known results on the performance of the (1+1) EA, we have pre-
sented an analysis of the performance of the (1+λ) EA for different values of λ.
One of the main reasons to introduce a non-trivial offspring population size is to
significantly reduce the number of generations without significantly increasing
the overall computational effort. When a parallel computing environment is
available, this reduces the optimization time significantly. It is intuitively clear,
that in this scenario it makes sense to increase the offspring population size
λ roughly to the reciprocal of the success probability, i. e., the probability to
produce an improving offspring. For simple landscapes like LeadingOnes and
OneMax, these success probabilities are quite large. Hence, moderate static
values for λ are shown to be optimal, and the penalty for modest increases in λ
up to specified cutoffs points is only a modest decrease in performance. Beyond
these cutoff points the performance penalties are much more severe.

By contrast, we have shown that there are more complicated landscapes for

25

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500
number of function evaluations

of
fs

pr
in

g
po

pu
la

tio
n

si
ze

 l

Figure 10: Values assigned to λ on OneMax during one run.

n 1 2 7 “log” “n” “n logn” adaptive
18 50 50 50 50 50 50 50
24 50 49 50 48 50 50 50
30 14 20 16 37 36 36 18
36 6 7 10 30 34 36 19
42 7 9 9 31 32 34 19
48 0 1 2 12 24 18 8
54 0 2 0 7 21 25 10
60 0 0 2 15 23 25 10
66 4 1 2 6 19 15 9
72 1 1 1 9 26 16 11
78 0 0 0 0 10 7 6
84 0 0 0 5 18 12 4
90 0 0 0 4 12 8 6

Table 4: Number of successful runs (out of 50) for different λ -values on
SufSamp

which the necessary success probabilities require large offspring populations. We
have illustrated such a situation by presenting a carefully constructed example
function, SufSamp, where the offspring population size needs to be quite large
in order to find a global optimum with high probability.

Our investigation has been carried out in three different ways. In Sec-
tion 3, we have presented an exact analysis of the (1+λ) EA on OneMax and
LeadingOnes. Since exact analyses give precise answers for any concrete value
of n, they are obviously the most desirable. However, they are very difficult and
can most often only be done in very simple cases. If an exact analysis is not
possible, an asymptotic analysis can provide very valuable insights. We have
presented such an analysis in Section 2. It yields rigorously proven results that
hold for sufficiently large values of n and ignore the influence of constant factors
and lower order terms. Therefore, it is not immediately clear whether these
results give the right picture for small n, too. This is why an empirical study
is a valuable addition. In Section 4, we have not only presented experiments
supporting our analytical results. In addition, we have investigated some more
fitness functions in order to provide further empirical indications on the validity
of our general reasoning.

26

The insights from our analyses suggested that a simple adaptive scheme
for the setting of the offspring population size λ might leave to a performance
similar to that of a (1+λ) EA with an optimal value of λ without having to
determine that optimal value a priori. We described such an adaptive (1+λ)
EA in Section 5 and tested it on all of the test functions considered here. It turns
out that this very simple adaptive variant performs well in those cases where a
speed-up can be obtained by setting the offspring population size roughly to the
reciprocal of the success probability. However, as could be predicted, it fails in
the more complicated situation that a significantly larger value for λ is needed,
namely on SufSamp.

We believe that we shed some light on questions that arise when good val-
ues for the choice of the offspring population size are needed. It is subject of
future research to investigate whether the findings here are still valid when the
evolutionary algorithm used is more complex.

References

D. H. Ackley (1987). A Connectionist Machine for Genetic Hillclimbers. Nor-
well, MA: Kluwer Academic Publishers.

T. Bäck (1996). Evolutionary Algorithms in Theory and Practice. New York:
Oxford University Press.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein (2001). Introduction to Algo-
rithms, 2nd Edition. New York, NY: McGraw Hill.

K. De Jong (1975). An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph. D. thesis, University of Michigan.

S. Droste, T. Jansen, and I. Wegener (1998). On the optimization of unimodal
functions with the (1+1) evolutionary algorithm. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel (Eds.), Proceedings of the 5th Parallel
Problem Solving from Nature (PPSN V), 47–56. Springer. LNCS 1498.

S. Droste, T. Jansen, and I. Wegener (2002). On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science 276, 51–81.

D. B. Fogel (1995). Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press.

O. Giel and I. Wegener (2003). Evolutionary algorithms and the maximum
matching problem. In Proceedings of the 20th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS 2003), 415–426. LNCS 2607.

D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley.

T. Jansen and K. De Jong (2002). An analysis of the role of offspring popu-
lation size in EAs. In W. B. Langdon, E. Cantu-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honovar, G. Rudolph, J. Wegener,
L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska
(Eds.), Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2002), 238–246. Morgan Kaufman.

T. Jansen and I. Wegener (2000). On the choice of the mutation probability for
the (1+1) EA. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton,

27

J. Merelo, and H.-P. Schwefel (Eds.), Proceedings of the 6th Parallel Problem
Solving From Nature (PPSN VI), 89–98. Springer. LNCS 1917.

R. Motwani and P. Raghavan (1995). Randomized Algorithms. Cambridge Uni-
versity Press.

H.-P. Schwefel (1995). Evolution and Optimum Seeking. New-York, NY: Wiley.

28

