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ON THE CHROMATIC NUMBER OF

GEOMETRIC HYPERGRAPHS∗

SHAKHAR SMORODINSKY†

Abstract. A finite family R of simple Jordan regions in the plane defines a hypergraph H =
H(R) where the vertex set of H is R and the hyperedges are all subsets S ⊂ R for which there is a
point p such that S = {r ∈ R|p ∈ r}. The chromatic number of H(R) is the minimum number of
colors needed to color the members of R such that no hyperedge is monochromatic. In this paper
we initiate the study of the chromatic number of such hypergraphs and obtain the following results:
(i) Any hypergraph that is induced by a family of n simple Jordan regions such that the maximum

union complexity of any k of them (for 1 ≤ k ≤ m) is bounded by U(m) and
U(m)
m

is a nondecreasing

function is O(
U(n)
n

)-colorable. Thus, for example, we prove that any finite family of pseudo-discs can
be colored with a constant number of colors. (ii) Any hypergraph induced by a finite family of planar
discs is four colorable. This bound is tight. In fact, we prove that this statement is equivalent to the
four-color theorem. (iii) Any hypergraph induced by n axis-parallel rectangles is O(logn)-colorable.
This bound is asymptotically tight. Our proofs are constructive. Namely, we provide deterministic
polynomial-time algorithms for coloring such hypergraphs with only “few” colors (that is, the number
of colors used by these algorithms is upper bounded by the same bounds we obtain on the chromatic
number of the given hypergraphs). As an application of (i) and (ii) we obtain simple constructive
proofs for the following: (iv) Any set of n Jordan regions with near linear union complexity admits
a conflict-free (CF) coloring with polylogarithmic number of colors. (v) Any set of n axis-parallel
rectangles admits a CF-coloring with O(log2(n)) colors.
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1. Introduction. A hypergraph is a pair (V, E), where V is a finite set and
E ⊂ 2V . The set V is called the ground set or the vertex set and the elements of E
are called hyperedges. A k-coloring of a hypergraph H = (V, E), for some positive
integer k, is a function χ : V → {1, 2, . . . , k} such that no S ∈ E with |S| ≥ 2
is monochromatic. Let χ(H) denote the minimum integer k for which H has a k-
coloring. χ(H) is called the chromatic number of H.

Let R be a set of regions in the plane. For a point p ∈ ∪r∈Rr, put r(p) = {r ∈
R | p ∈ r}. Let H(R) denote the hypergraph (R, {r(p) | p ∈ ∪r∈R}). We say that
H(R) is the hypergraph induced by R.

Definition 1.1. Let R be a family of n simple Jordan regions in the plane. The
union complexity of R is the number of vertices (i.e., intersection of boundaries of
pairs of regions in R) that lie on the boundary ∂

⋃
r∈R r.

In this work we initiate the study of the chromatic number of hypergraphs that
are induced by simple geometric regions such as discs, pseudo-discs, axis-parallel rect-
angles, etc. Our main result (section 5) is a theorem correlating the chromatic number
of the underlying hypergraphs with the union complexity of the regions inducing those
hypergraphs. Specifically, we prove the following theorem.
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Theorem 1.2. Let R be a set of n regions and let U : N → N be a function
such that U(m) is the maximum complexity of any k regions in R over all k ≤ m, for

1 ≤ m ≤ n. We assume that U(m)
m

is a nondecreasing function. Then, χ(H(R)) =

O(U(n)
n

). Furthermore, such a coloring can be computed in polynomial time.
In section 3 we study the chromatic number of a hypergraph that is induced by

discs and prove the following theorem.
Theorem 1.3. Let D be a finite family of discs in the plane. Then the hypergraph

H(D) is four colorable.
As one can easily see, this bound is tight by taking four pairwise touching discs.

In such a case, every pair of discs needs to be colored with distinct colors. This
bound is somewhat surprising in the following sense. In the restricted case where we
are given a finite family R of discs such that every two are either touching (i.e., the
boundaries of the two discs share a common point but the interiors of the discs are
disjoint) or disjoint, it is easy to see that bounding the chromatic number of H(R) by
four is equivalent to bounding the chromatic number of the “kissing” graph induced
by the discs (i.e., the vertex set of the graph is R and the edges are the touching
pairs) by four. However, this graph is planar. On the other hand, a classical theorem
due to Koebe [12] asserts that every planar graph can be realized as a kissing discs
graph. In section 3 we show that the four-color theorem is equivalent to coloring a
hypergraph induced by a finite family of discs (not necessarily interior disjoint but
also discs that might have arbitrary overlaps) with at most four colors. As mentioned
above, one direction of the proof easily follows from Koebe’s theorem [12].

In section 4 we study the chromatic number of a hypergraph induced by n axis-
parallel rectangles and prove the following theorem.

Theorem 1.4. Let R be a family of n axis-parallel rectangles. Then χ(H(R)) =
O(logn).

This bound is asymptotically tight as demonstrated recently by a lower bound
construction of Pach and Tardos [14].

To the best of our knowledge, these questions were not addressed previously.
Beyond their purely theoretical interest, we apply our results to obtain a simple
framework for tackling the problems of conflict-free colorings.

Definition 1.5 (see [7, 16]). A coloring of regions is conflict-free (CF) if for
any covered point in the plane, there exists a region that covers it with a unique color
(i.e., no other region covering that point has the same color).

In section 6 we show how to apply our results on proper colorings of regions
to obtain simple deterministic, polynomial-time algorithms for CF-colorings of those
regions.

CF-coloring problems were recently introduced in [7, 16] in the context of fre-
quency assignment in cellular networks. In addition to this practical motivation,
this new coloring model has drawn much attention of researchers through its own
theoretical interest and such colorings have been the focus of several recent papers
[1, 4, 6, 8, 9, 10, 13].

Even et al. [7] have shown that any family of n discs in the plane admits a
CF-coloring with only O(logn) colors and that this bound is tight in the worst case.
Furthermore, such a coloring can be computed in deterministic polynomial time.1

The results of Even et al. [7] were further extended by Har-Peled and Smorodinsky

1In [7] it is shown that finding the minimum number of colors needed to CF-color a given collection
of discs is NP-hard even when all discs are congruent, and an O(logn) approximation-ratio algorithm
is provided.
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[9] by combining more involved probabilistic and geometric ideas. The main result of
[9] is a randomized algorithm which CF-colors any set of n pseudo-discs with O(logn)
colors with high probability. As an application of our main result, we obtain a simple
deterministic, polynomial-time algorithm for CF-colorings regions. The performance
(i.e., the number of colors used by our algorithm) depends on the union complexity
of the underlying regions. For example, we obtain a simple determnistic, polynomial-
time algorithm that CF-colors any set of n pseudo-discs with only O(logn) colors.

2. Preliminaries. We start with some basic definitions and lemmas.
Definition 2.1. The Delaunay graph G(H) of a hypergraph H = (V, E) is a

simple graph G = (V,E), where the edge set E is defined as E = {(x, y) | {x, y} ∈ E}
(i.e., G is the graph on the vertex set V whose edges consist of all hyperedges in H of
cardinality two).

Lemma 2.2. For every hypergraph H we have

χ(G(H)) ≤ χ(H).

Proof. Simply because any proper coloring of the vertices of H is also a proper
coloring for G(H).

Definition 2.3. We say that a hypergraph H = (V, E) has rank i for i ≥ 2 if for
any hyperedge S ∈ E with |S| > i there exists a hyperedge S′ ∈ E such that S′ ⊂ S
and |S′| = i.

Lemma 2.4. Let H = (V, E) be a hypergraph of rank two. Then χ(H) =
χ(G(H)).

Proof. By Lemma 2.2 we have χ(G(H)) ≤ χ(H). It remains to prove that
χ(H) ≤ χ(G(H)). Let χ be a proper coloring of G(H) with k = χ(G(H)) colors.
This coloring is also a proper coloring of H. Indeed, let e ∈ E be a hyperedge with
cardinality > 1. Then, by assumption, there exists an edge e′ ⊂ e in G(H) and this
edge is nonmonochromatic. Then, obviously, e is nonmonochromatic. This completes
the proof of the lemma.

Definition 2.5. A simple graph G = (V,E) is called k-degenerate for some
positive integer k, if every (vertex-induced) subgraph of G has a vertex of degree at
most k.

Lemma 2.6. Let G = (V,E) be a k-degenerate graph. Then χ(G) ≤ k + 1.
Proof. Proceed by induction on n = |V |. Let v ∈ V be a vertex of degree at most

k. By the induction hypothesis, the graph G \ v (obtained by removing v and all of
its incident edges from G) is k+ 1 colorable. Since v has at most k neighbors there is
always a free color that can be assigned to v which is distinct from the colors of its
neighbors.

3. Hypergraphs induced by discs. In this section we show that any hyper-
graph induced by a finite family of discs in the plane is four colorable.

Let H+ denote the set of all positive halfspaces in R
3 (i.e., those halfspaces

consisting of all points that lie above some fixed plane). For a given set P ⊂ R
3, put

H+(P ) = {h ∩ P |h ∈ H+}.
A transformation to points and half-spaces. In what follows, we show that the

problem of coloring n arbitrary discs in the plane reduces (but is not equivalent) to
that of coloring a set of points P in R

3 with respect to the set of ranges H+(P ) (i.e.,
coloring the hypergraph H = (P,H+(P ))).

We transform a point p = (a, b) in R
2 to the plane p∗ in R

3, with the parametriza-
tion z = −2ax − 2by + a2 + b2 and transform a disc S in R

2, with center (x, y) and
radius r ≥ 0, to the point S∗ in R

3, with coordinates (x, y, r2 − x2 − y2).
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It is easily seen that in this transformation a point p ∈ R
2 lies inside (respectively,

on the boundary of, outside) a disc S, if and only if the point S∗ ∈ R
3 lies above

(respectively, on, below) the plane p∗. Indeed, assume that point p = (a, b) lies
inside (respectively, on the boundary of, outside) the disc S with center (x, y) and

radius r. This can be formulated by the inequality: (a− x)
2

+ (b− y)
2
< r2 or

−2ax − 2by + a2 + b2 < r2 − x2 − y2 (respectively, an equality =, or inequality
with >), which is equivalent to that of the point (x, y, r2 − x2 − y2) = S∗ lies above
(respectively on, or below) the plane z = −2ax− 2by + a2 + b2 (which is the dual p∗

of p), as asserted.

Given a collection S = {S1, . . . , Sn} of n distinct discs in the plane, one can use
the above transformation to obtain a collection S∗ = {S∗

1 , . . . , S
∗
n} of n points in R

3,
such that any valid coloring of S∗ with respect to H+(S∗) with k colors induces a
coloring of the discs of S with the same set of k colors.

Remark. We note that the two coloring problems are not equivalent. Indeed, the
set of all planes in R

3 that are images (under the above transformation) of points in
the plane are such that they are all tangent to the paraboloid z = −x2 − y2. Since
we color the points in R

3 so that any positive halfspace is not monochromatic (not
only positive halfspaces bounded by planes which are tangent to the paraboloid), we
actually result in a coloring of a hypergraph with potentially more hyperedges than
the original hypergraph.

Lemma 3.1. Let P ⊂ R
3 be a finite set. Let H be the hypergraph induced by

H+(P ) (that is, H = (P,H+(P ))). Then χ(H) ≤ 4.

Proof. Recall that G(H) is the graph whose vertex set is P and whose edge set
is E = {h ∩ P | h ∈ H+ and |h ∩ P | = 2}. Thus G, contains the skeleton graph of
the upper convex hull of P , although G may contain additional edges. The rank of
the hypergraph H is 2. Indeed, every subset P ′ ∈ H+(P ) such that |P ′| > 2 must
contain an edge of E. To see this, let h ∈ H+ be a positive halfspace containing at
least three points of P . Without loss of generality, assume that the plane π bounding
h is in “general position” with respect to the points of P (i.e., no line passing through
two points of P is parallel to π). This can be achieved by a proper perturbation of π
such that the set of points above the perturbed plane does not change. Then, we can
translate π upwards keeping the translated plane π′ parallel to π until the positive
halfspace bounded by π′ contains exactly two points of P ′. By definition, these pair
of points form an edge in G, so the rank of H is indeed 2. By Lemma 2.4, it is enough
to color the vertices of G properly (i.e., such that no color class contains an edge). We
will show that G is a planar graph and by the Four-Color Theorem (see, e.g., [2, 3]) it
is four colorable. To show that G is planar, we project P onto the plane orthogonally
and draw the graph G using straight line segments to represent the edges. We want
to show that in this drawing there are no crossings. Assume to the contrary that
there are two edges e1 = (p1, q1), e2 = (p2, q2) whose projections cross. Let l be the
line parallel to the z-axis that passes through this crossing point. Since e1, e2 ∈ E
belong to G, there exists a plane π1 (respectively, π2) such that the positive halfspace
bounded by π1 (respectively, π2) contains only e1 (respectively, only e2). l must pass
through a point v1 on the line segment (in R

3) connecting p1, q1 and a point v2 on
the line segment connecting p2, q2. Assume without loss of generality that v1 is below
v2. See Figure 1 for an illustration. It is easy to see that π1 intersect l in a point
q that is below v1. Indeed, since p1 and q1 are above π1 (recall that p1 and q1 are
the only points of P above π1) then (by convexity) also the point v1 is above π1.
Thus q is also below v2. However, we know that both p2 and q2 lie below π1 (π1
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p1

q1
p2

q2

l

v1

v2

π1

q

Fig. 1. Illustration of the proof of Lemma 3.1 with the two edges e1, e2, whose projection cross.

The plane π1 must intersect l below v1 but above v2, a contradiction.

separates p1, q1 from the rest of the points in P ). This means that the line segment
connecting p2, q2 is also below π1 which means that v2 is below q, a contradiction.
Thus G is a planar graph and therefore four-colorable. This completes the proof of the
lemma.

Proof of Theorem 1.3. We use the above “lifting transformation” such that the
discs are transformed into points in R

3. By Lemma 3.1, there is a coloring of the
transformed points with four colors, such that any positive halfspace that contains
at least two of these points contains at least two points with distinct colors. We use
the same coloring for the preimages of the points and obtain a valid coloring for the
hypergraph H(D).

Remark. It is not clear how to obtain a different proof of Theorem 1.3 without
the lifting transformation. The major problem is that H(D) may have rank greater
than two. Indeed, if a point p is contained in at least three discs of D, it does not
necessarily imply that two of those discs have a point common only to them. This is
illustrated in Figure 2. In section 5 we obtain a general upper bound on the chromatic
number of regions with low union complexity. Discs are an example of such regions.
Therefore, section 5 provides a different way to obtain an upper bound. However,
the method we develop in section 5 will only imply an upper bound of six on the
chromatic number of discs.

4. Axis-parallel rectangles. In this section we deal with coloring axis-parallel
rectangles. We show that any hypergraph that is induced by a family of n axis-parallel
rectangles admits an O(logn) coloring. This bound is asymptotically tight.

We show that the maximum number of colors f(n) needed to color n axis-parallel
rectangles satisfies the recursion f(n) ≤ 8+f(n2 ), and thus implies the asserted bound.
We start with a lemma concerning a restricted case when all rectangles of R intersect
some vertical line.

Lemma 4.1. Let R be a finite family of axis-parallel rectangles all of which
intersect some vertical line l. Then χ(H(R)) ≤ 8.

Proof. We assume that the rectangles are in general position in the sense that no
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d2

d1

d3

Fig. 2. An example of a set D of six discs (taken from [16]) whose induced hypergraph H(D)
has rank three; there is a point covered only by the three discs d1, d2, and d3. However, there is no

point that is covered by two of those discs and no other disc. Note that not every coloring of the

Delaunay graph G(H(D)) induces a valid coloring of H(D). Indeed in a coloring of G(H(D)), the

discs d1, d2, d3 might get the same color. However, then we would have the hyperedge {d1, d2, d3}
monochromatic.

two vertical (or two horizontal) sides share a point. This can be achieved by a small
perturbation which does not decrease the number of colors needed. It is easily seen
that in this case the hypergraph H = H(R) has rank two. Therefore, by Lemma 2.4,
it is enough to show that χ(G(H)) ≤ 8. We will show that G = G(H) is 7-degenerate
and therefore by Lemma 2.6 is 8-colorable. It is sufficient to argue that the average
degree of every (vertex-induced) subgraph of G is less than 8. Let p be a point that
is covered by exactly two rectangles r1, r2 ∈ R. Assume without loss of generality
that p is to the right of l (see Figure 3). We will charge the pair r1, r2 to one of the
horizontal sides of one of the rectangles of R so that each horizontal side is charged
at most twice. We translate p to the right until it reaches a vertical side of one of
the rectangles r1, r2. Assume without loss of generality that this is the side of r1.
Then we move downward until we reach a horizontal side e of some rectangle at a
point p′. The important fact is that the horizontal line segment connecting the line
l to the point p′ is contained in r1 ∩ r2 (we consider the rectangles in R as closed
regions). We charge the pair r1, r2 to e. We show that to the right of l at most one
charge can occur at such a side. There are two cases to consider: The side e is an
upper horizontal side of some rectangle r3 (note that it cannot be a lower horizontal
side of r3 since then p would have belonged to r1 ∩ r2 ∩ r3). Indeed, assume that
e is charged twice to the right of l and that the other charge can occur at a point
p′′. Assume without loss of generality that p′′ is to the left of p′. It is easily seen
that p′′ belongs to r1 ∩ r2 and therefore could not belong to any other rectangle of R.
The second case is when e is a lower horizontal side of either r1 or r2. In a similar
manner it is easily seen that such a side can be charged at most once to the right of
l. Altogether we charge each horizontal side of a rectangle in R at most once to the



682 SHAKHAR SMORODINSKY

right of l. A symmetric argument implies that every horizontal side of a rectangle in
R is charged at most once to the left of l. Altogether we have at most 4n charges.
We have just shown that G(H) has at most 4n edges. As a matter of fact, G has at
most 4n − 4 edges since the uppermost (respectively, the lowermost) horizontal side
of the rectangles in R cannot be charged. Thus, the average degree of G is at most
8 − 8

n
and therefore there must exist a vertex with degree at most 7. Obviously, this

charging scheme works for any subgraph of G as well. Thus G is 7-degenerate. By
Lemmas 2.6 and 2.4, H is 8-colorable, as asserted.

Proof of Theorem 1.4. Let l be a vertical line such that at most n/2 of the
rectangles in R lie fully to the right of l and at most n/2 rectangles of R lie fully
to its left. Let R′ (respectively, R′′) denote the subset of rectangles that lie to the
right (respectively, to the left) of l. Let Rl denote the subset of rectangles in R that
intersect the line l. Let f(n) denote the maximum number of colors needed to color a
family of n axis-parallel rectangles in the plane. We color (separately) the rectangles
in Rl with eight colors and recursively color the set R′ and R′′ using the same set of
colors but keeping this set disjoint from the colors used to color Rl. Thus f(n) obeys
the recursive relation

f(n) ≤ 8 + f(n/2),

which is easily seen to imply that f(n) ≤ 8 log n. This completes the proof of the
theorem.

p

l

q

r1

r2

p′p′′

Fig. 3. Illustration of the charging scheme in the proof of Lemma 4.1. Note that here the

Delaunay graph of the four rectangles is the clique K4, so any coloring must use at least four colors.

5. Chromatic number of regions with low-union complexity. In this sec-
tion we show a relation between the chromatic number of a hypergraph induced by
a finite family of regions R to the union complexity of R. For example, we show
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that if R is a family of planar simple Jordan regions such that any finite subset of
R has linear union complexity, then there exists a constant c = c(R) such that any
hypergraph induced by a finite subset of R is c colorable. Thus, for example, since
pseudo-discs have linear union complexity (see, e.g., [11]), there is a constant c such
that any family of pseudo-discs can be colored with c colors.

Lemma 5.1. Let R be a set of n regions and let U : N → N be a function such
that U(m) is the maximum complexity of any k regions in R over all k ≤ m, for
1 ≤ m ≤ n. Then, the Delaunay graph G of the hypergraph H = H(R) has a vertex

with degree at most O(U(n)
n

).

Proof. Let A(R) denote the arrangement of the boundary curves of the regions
in R and let F2 denote the set of faces of A(R) that are contained in exactly two
regions of R. Obviously, the number of edges in G is bounded by |F2|. We may
assume that the regions of R are in general position, in the sense that no three
distinct boundaries pass through a common point. This can be enforced by a slight
perturbation of the curves, which does not decrease |F2|. Let S≤2(R) be the set of
vertices of the arrangement A(R) that lie in the interior of at most 2 regions of R.
By the analysis of Clarkson and Shor [5], we have |S≤2(R)| = O(U(n)). We charge
a face f ∈ F2 to one of the vertices on the boundary ∂f , if ∂f has vertices. Thus,
the only faces unaccountable for by this charging scheme are the faces that have no
vertices on their boundary. However, the number of such faces is only O(n), as we
can charge such a face to the region of R that forms its outer boundary. It is easily
seen that in this charging scheme a vertex is charged at most four times, since it can
belong to the boundary of at most four faces. Note also that every charged vertex
is contained in at most two regions of R and therefore belongs to S≤2(R). Thus
E(G) ≤ |F2| ≤ 4 · S≤2(R) + n = O(U(n) + n). Thus, the average degree of G is

O(U(n)
n

+ 1) and therefore G must contain a vertex with degree at most O(U(n)
n

) as
asserted.

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 5.1 there exists a constant c such that the

Delaunay graph G of H(R) has a vertex with degree at most c · U(n)
n

. We prove that

χ(H(R)) ≤ c · U(n)
n

+1. The proof is by induction on n. Let r ∈ R be a region with at

most c · U(n)
n

neighbors in G. By the induction hypothesis, the hypergraph H(R\{r})
is c · U(n−1)

n−1 + 1 ≤ c · U(n)
n

+ 1-colorable (by our monotonicity assumption on U(n)
n

).

We need to choose a color (out of the c · U(n)
n

+ 1 colors that are available for us) for
r such that the coloring of R is valid. Obviously, points that are not covered by r are
not affected by the coloring of r. Note also that any point p ∈ r that is contained in
at least two regions of R \ r is not affected by the color of r since by induction the
set of regions in R \ {r} containing such points is nonmonochromatic. We thus only
need to color r with a color that is different from the colors of all regions r′ ∈ R \ r
for which there is a point p that is contained only in r∩ r′. However, by our choice of

r, there are at most c · U(n)
n

such regions. Thus we can assign to r a color among the

c · U(n)
n

+ 1 colors available to us and keep the coloring of R proper. This completes
the inductive step. As for the algorithmic perspective, we briefly sketch the simple
ideas behind it. Here, we do not attempt to optimize the efficiency of the algorithm.
Assume a model of computation as in [15] in which computing the intersection points
of any pair of regions in R, and a few similar operations, can be performed in constant
time. One can compute the arrangement A(R) using standard methods as in [15].
In addition, one can compute in polynomial time, for each face f of the arrangement
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A(R), its depth d(f) which is the number of ranges in R containing f . Next, we
compute the graph G(H(R)). Note that the edges of G(H(R)) consist of all pairs of
regions (r1, r2) whose intersection contains a face of depth two. This can be done by
checking for each face f of the arrangement and each region r ∈ R whether f ⊂ r.
This takes time which is proportional to A(R) ·n. Let r ∈ R be a vertex of minimum
degree in G(H(R)). We update the depth of the faces of the arrangement A(R\{r})
and construct G(H(R\{r})) and color R\{r}, recursively. This can be done in total
time proportional to the sum

∑n

i=1 if(i), where f(i) is the maximum complexity of
the arrangement of any i regions in R. Thus if f is polynomial then the total running
time is polynomial in n. See Algorithm 1 for a pseudo-code.

Algorithm 1. Color(R): Color the hypergraph H(R).

1: Order the elements of R: Compute a permutation R = {r1, . . . , rn} such
that the degree of ri in the Delaunay graph G(H({r1, . . . , ri})) is bounded

by c · U(i)
i

, for i = {1, . . . , n}.
2: Color the elements: For(i = 2; i ≤ n; i++) ri ← A color different from its

neighbors in G(H({r1, . . . , ri})).

6. Application to conflict-free colorings. Among other results, Even et al.
[7] proved that any set of n discs in the plane can be CF-colored with O(logn) col-
ors and that this bound is tight in the worst case. They also provide a deterministic
polynomial time algorithm for coloring a given collection of n discs with only O(logn)
colors. Har-Peled and Smorodinsky [9] extended this result to any family of regions
with linear union complexity. For example, they provide a randomized algorithm for
CF-coloring any family of n pseudo-discs with O(logn) colors with high probability.
In particular, this randomized algorithm serves as a probabilistic proof that a CF-
coloring of any family of n pseudo-discs with only O(logn) colors exists. One of the
open problems left in [9] is to obtain a deterministic framework for CF-colorings any
family of regions with linear union complexity. As an application of Theorem 1.2 and
Algorithm 1, we provide such a framework. Our algorithm outperforms the one used
in [9] by being deterministic and conceptually simpler. The number of colors used in
our algorithm for CF-coloring the given regions depends on their union complexity.

Algorithm 2 CF-Color(R): CF-Color the hypergraph H(R).

1: i ← 0: i denotes an unused color
2: while R �= ∅
3: Increment: i ← i + 1
4: Color the hypergraph H(R): find a coloring χ of H(R) with “few” colors,

using (in most cases) Algorithm 1
5: R′ ← Largest color class of χ
6: Color: f(x) ← i for all x ∈ R′

7: Prune: R ← R \R′

8: end while

Theorem 6.1. Algorithm 2 outputs a valid CF-coloring of R.
Proof. For a point p ∈ ∪r∈Rr, let i be the maximal index (color) for which there

is a region r ∈ R that contains p and is colored with i. We claim that there is exactly
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Table 1
Summary of relation between the union complexity of the underlying objects R, the chromatic

number H(R), and its CF-chromatic number.

Type of regions U(n) χ(H(R)) χCF (H(R))
pseudo-discs, etc. O(n) O(1) O(logn)

convex fat regions, etc. O(n1+δ) O(nδ) O(nδ)

Axis-parallel rectangles Θ(n2) O(logn) O(log2 n)

one such region. Indeed, assume to the contrary that there is another such region
r′. Consider the i′th iteration where some of the regions of R were colored with i
(including r and r′). Since r and r′ belong to an independent set, there must have
been a third region r′′ containing p that wasn’t colored in the i′th iteration. This
means that the color of r′′ is greater than i, a contradiction to the maximality of i.
This completes the proof of the theorem.

Remark. Algorithm 2 yields a CF-coloring of regions with “low” union complexity
with only “few colors” in the following sense: If R has union complexity bounded by

U(n), then by Theorem 1.2, H(R) can be colored with O(U(n)
n

) colors. So the largest

color class is at least n
2

U(n) by the pigeonhole principle. Thus, in the prune step of

Algorithm 2 we discard at least this many regions so, in total, Algorithm 2 does only

few iterations. This depends on the function n
2

U(n) . Table 1 summarizes the relation

between the union complexity of the underlying objects, the chromatic number of
the induced hypergraph, and its CF-chromatic number. The bounds given on the
chromatic number and the CF-chromatic number are also bounds on the numbers of
colors produced by Algorithms 1 and 2, respectively.

Theorem 6.2. Let R be a set of n axis-parallel rectangles. Then Algorithm 2
applied to R, provides a CF-coloring of R with O(log2 n) colors in polynomial-time.

Remark. Note that the union complexity of n rectangles can be quadratic. Thus,
we cannot apply Theorem 1.2 directly to R, since we would obtain a coloring of H(R)
with potentially n colors. Thus, in the prune step of Algorithm 2 we might discard
only a constant number of rectangles and the algorithm might use linear number
of colors. The bound on the chromatic number of H(R) is asymptotically tight as
already mentioned. However, it is not clear that the bound O(log2 n) on the CF-
chromatic number of R is asymptotically tight. Maybe one can get better bounds.
We leave this as an open problem.

Proof. By Theorem 1.4, we can color H(R) with O(log |R|) colors. Thus, in

each prune step of Algorithm 2 we discard at least Ω( |R|
log|R| ) rectangles. It is easily

seen that the total number of iterations (which is the number of colors used by the
algorithm) will be O(log2 n).

Definition 6.3 (see [11]). A family R of Jordan regions in the plane is called a
family of pseudo-discs if the boundaries of each pair of them intersect at most twice.

Theorem 6.4. Let R be a family of n pseudo-discs. Then Algorithm 2 applied
to R provides a CF-coloring with O(logn) colors in polynomial-time.

Proof. The complexity of the union of any m regions of R is O(m) (see [11]).
By Theorem 1.2, there is a constant c such that Algorithm 1 provides a coloring χ of
H(R) with ≤ c colors. Such a coloring can be computed in polynomial-time. In the

prune step of Algorithm 2 we discard at least |R|
c

regions. Thus, Algorithm 2 provides

a CF-coloring of R with only log n

log c

c−1

colors in polynomial-time.
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7. Discussion and open problems. Naturally, the problems addressed in this
paper have analogous versions in higher dimensions. For example, what is the min-
imum number of colors that always suffice to color any hypergraph induced by any
set B of n balls in R

3? Unfortunately, the complexity of the union of n balls could be
quadratic already in R

3, and we cannot apply the methods developed in this paper
directly. Moreover, for d ≥ 4 and any n > 1, there exist families of n balls in Rd

that are pairwise touching and therefore require n distinct colors for any proper col-
oring of H(R) as any two balls contain a point witnessing the fact that the two balls
must be colored with distinct colors. The best upper bound known for CF-coloring
any set of n balls in R

3 is the trivial bound n. It is interesting to relax the CF-
coloring requirements as follows: what is the minimum number of colors needed to
color any hypergraph induced by a set B of n balls in R

3 such that every hyperedge
of cardinality at least 3 is nonmonochromatic. It is easily seen that this number is
bounded by O(

√
n) since the maximum degree of any element is bounded by O(n)

in the 3-uniform hypergraph consisting of all hyperedges of H(B) with cardinality 3.
However, we conjecture that fewer colors are enough. This relates to the notion of
2-CF-coloring studied in [9]. Any improvement over the O(

√
n) bound would imply a

better bound on 2-CF-coloring of balls in R
3. Here, we omit the detailed description

of this relation.

Another open problem is to bound the chromatic number of any hypergraph
induced by n axis-parallel boxes in R

d (for d > 2). We conjecture that O(logd−1 n)
colors always suffice.
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