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Abstract

Let G be the intersection graph of a finite family of convex sets obtained by
translations of a fixed convex set in the plane. We show that every such graph with
clique number k is (3k − 3)-degenerate. This bound is sharp. As a consequence,
we derive that G is (3k − 2)-colorable. We show also that the chromatic number of
every intersection graph H of a family of homothetic copies of a fixed convex set in
the plane with clique number k is at most 6k − 6.

1 Introduction

The intersection graph G of a family F of sets is the graph with vertex set F where
two members of F are adjacent if and only if they have common elements. Asplund and
Grünbaum [3] and Gyárfás and Lehel [11, 9] started studying many interesting problems

∗This work was partially supported by the NSF grants DMS-0099608 and DMS-00400498.
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on the chromatic number of intersection graphs of convex figures in the plane. Many
problems of this type can be stated as follows. For a class G of intersection graphs and for
a positive integer k, find or bound f(G, k) - the maximum chromatic number of a graph
in G with the clique number at most k. A number of results on the topic can be found
in [5, 9, 11, 13].

Recently, several papers on intersection graphs of translations of a plane figure ap-
peared. Akiyama, Hosono, and Urabe [2] considered f(C, k), where C is the family of
intersection graphs of unit squares on the plane with sides parallel to the axes. They
proved that f(C, 2) = 3 and asked about f(C, k) and, more generally, about chromatic
number of intersection graphs of unit cubes in R

d. In connection with channel assignment
problem in broadcast networks, Clark, Colbourn, and Johnson [4] and Gräf, Stumpf, and
Weißenfels [6] considered colorings of graphs in the class U of intersection graphs of unit
disks in the plane. They proved that finding chromatic number of graphs in U is an
NP -complete problem. In [6, 18], and [17] polynomial algorithms are given implying that
f(U , k) ≤ 3k − 2. Perepelitsa [18] also considered the more general family T of intersec-
tion graphs of translations of a fixed compact convex figure in the plane. She proved that
every graph in T is (8k − 8)-degenerate, which implies that f(T , k) ≤ 8k − 7. She also
considered intersection graphs of translations of triangles and boxes in the plane.

Recall that a graph G is called m-degenerate if every subgraph H of G has a vertex
v of degree at most m in H . It is well known that every m-degenerate graph is (m + 1)-
colorable. In fact, the property of being m-degenerate is sufficiently stronger that being
(m + 1)-colorable. In particular, every m-degenerate is also (m + 1)-list-colorable.

Our main result strengthens Perepelitsa’s bound as follows.

Theorem 1 Let G be the intersection graph of translations of a fixed compact convex set
in the plane with clique number ω(G) = k. Then G is (3k − 3)-degenerate. In particular,
the chromatic number and the list chromatic number of G do not exceed 3k − 2.

The bound on degeneracy in Theorem 1 is sharp. In Section 5, for every k ≥ 2 we
present the intersection graph G of a family of unit circles in the plane with ω(G) = k
that is not (3k − 4)-degenerate.

The idea of the proof of Theorem 1 allows us to estimate the maximum degree of the
intersection graph.

Theorem 2 Let G be the intersection graph of translations of a fixed compact convex set
in the plane with ω(G) = k, k ≥ 2. Then the maximum degree of G is at most 6k − 7.

This bound is also sharp.
Then we consider a more general setting: shrinking and blowing of the figures are now

allowed.

Theorem 3 Let H be the intersection graph of a family F of homothetic copies of a fixed
convex compact set D in the plane. If ω(H) = k, k ≥ 2, then H is (6k − 7)-degenerate.
In particular, the chromatic number and the list chromatic number of H do not exceed
6k − 6.
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There is no upper bound on the maximum degree for intersection graphs of homothetic
copies of a fixed convex set in the plane analogous to Theorem 2, since every star is a
graph of this type.

The results above yield some Ramsey-type bounds for geometric intersection graphs.
For a positive integer n and a family F of graphs, let r(F , n) denote the maximum r such
that for every G ∈ F on n vertices, either the clique number, ω(G), or the independence
number, α(G), is at least r. One can read Ramsey Theorem for graphs as the statement
that for the family G of all graphs, r(G, n) ∼ 0.5 log2 n. Larman, Matousek, Pach, and
Torocsik [15] proved that for the family P of intersection graphs of compact convex sets
in the plane, r(P, n) ≥ n0.2. Since χ(H) ≥ n

α(H)
for every n-vertex graph H , Theorem 3

yields that for every n-vertex intersection graph H of a family of homothetic copies of a
fixed convex compact set D in the plane, we have α(H)(6ω(H)− 7) ≥ n. It follows that
r(D, n) ≥

√
n/6 for the family D of intersection graphs of homothetic copies of a fixed

convex compact set in the plane. Similarly, Theorem 1 yields that r(T , n) ≥
√

n/3.
The structure of the paper is as follows. In the next section we introduce our tools.

Theorems 1 and 2 are proved in Section 3. In Section 4 we prove Theorem 3. Section 5
is devoted to construction of extremal graphs.

2 Preliminaries

Given sets A and B of vectors and a real α, the set α(A+B) is defined as {α(a+ b) | a ∈
A, b ∈ B}. When B = {b}, we sometimes write A + b instead of A + {b}. Our first tool
is the following lemma.

Lemma 4 Let A be a convex figure and A′′ = A + s where s is a vector. Let P be a
convex figure that intersects both A and A′′. If A′ = A + αs, 0 ≤ α ≤ 1, then P intersects
A′.

Proof. Let u ∈ A ∩ P , u′′ = u + s, v′′ ∈ A′′ ∩ P , v = v′′ − s. So v′′ ∈ A′′, u ∈ A, and the
interval uv′′ is in P . Let A′ = A + αs, u′ = u + αs, and v′ = v + αs. Then the interval
u′v′ is in A′ and must intersect the interval uv′′ in P .

Our second tool is an old result of Minkowski [16].

Lemma 5 (Minkowski [16]) Let K be a convex set in the plane. Then (x+K)∩(y+K) 6=
∅ if and only if (x + 1

2
[K + (−K)]) ∩ (y + 1

2
[K + (−K)]) 6= ∅.

A proof can be also found in [12]. Note that the set 1
2
[K+(−K)] is centrally symmetric

for every K. Hence without loss of generality, it is enough to prove Theorems 1, 2, and 3
for centrally symmetric convex sets. For handling these sets, the notion of Minkowski
norm is quite useful.

Let K be a compact convex set on the plane, centrally symmetric about the origin.
For every point x on the plane, we define the Minkowski norm
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‖x‖K = infλ≥0 {λ ∈ R : x ∈ λK} .

Note that {x : ‖x‖K = 1} is the boundary of K. It is easily checked that u + K and
v + K intersect if and only if ‖u − v‖K ≤ 2. The two lemmas below appear in [8]. We
present their proofs, since they are very short.

Lemma 6 (Grünbaum [8]) Let x, y, z be different points belonging to the boundary of K,
such that the origin O does not belong to the open half-plane determined by x and y that
contains z. Then ‖x − z‖K ≤ ‖x − y‖K.

Proof. If x + y = 0, then ‖x − y‖K = ‖2x‖K = 2, since x is on the boundary of K.
On the other hand, ‖x − z‖K ≤ ‖x‖K + ‖z‖K = 2. Hence ‖x − z‖K ≤ ‖x − y‖K .

If x + y 6= 0, find another triple of points x∗, y∗, z∗ such that x∗ + y∗ = 0 and the
triangle with vertices {x∗, y∗, z∗} is similar to {x, y, z}. We can check that z∗ is inside K,
hence ‖x∗ − z∗‖K ≤ ‖x∗ − y∗‖K . Therefore ‖x − z‖K ≤ ‖x − y‖K.

Lemma 7 (Grünbaum [8]) Let x, y, z, u be different points belonging to the boundary of
K, such that z and u belong to an open half-plane determined by x and y, while O belongs
to its complement. Then ‖z − u‖K ≤ ‖x − y‖K.

Proof. We may assume that the points are located in order x, u, z, y counterclockwise.
From Lemma 6, ‖z − u‖K ≤ ‖x − z‖K ≤ ‖x − y‖K .

3 Proofs of Theorems 1 and 2

It will be convenient to prove the following slightly refined version of Theorem 1 for
centrally symmetric sets.

Theorem 8 Let M = {Mi} be a set of translates of a centrally symmetric convex set in
the plane with given axes. If the clique number of the intersection graph G(M) of M is
k, then every highest member A of M intersects at most 3k − 3 other members.

Proof. For an arbitrary set S, define M(S) = {Mi ∈ M | S ∩ Mi 6= ∅}. Let A
be a highest member of M. For convenience, we assume that the center of A is the
origin O = (0, 0). Let z be the rightmost point on the X-axis that belongs to A. If
z = (0, 0), then A is an interval with the center O and G is an interval graph. So, we
assume z 6= (0, 0). Let B = A − 2z and C = A + 2z. Since A is convex and centrally
symmetric, B and C touch A but have no common interior points with A. Note that B
and C may or may not belong to M.

The following three claims are crucial for our proof.

Claim 3.1 Let M1(A) = M(A)∩M(B). Then every two members of M1(A) intersect.
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Claim 3.2 Let M2(A) = M(A)∩M(C). Then every two members of M2(A) intersect.

Claim 3.3 Let M3(A) = M(A) −M(B) −M(C). Then every two members of M3(A)
intersect.

Indeed, M(A) = M1(A) ∪M2(A) ∪ M3(A). If Claims 3.1, 3.2, and 3.3 hold, then,
since ω(G) = k, |Mi(A)| ≤ k − 1 for i = 1, 2, 3, and hence A intersects at most 3k − 3
members of M. Therefore, we need only to prove the claims.

Let L be a supporting line for A at (−z, 0), i.e. a line passing through (−z, 0) and
having no common points with the interior of A. Such a line exists, since A is convex.
If (−z, 0) is a corner of A, then L is not unique. Furthermore, since A is centrally
symmetric, L is also a supporting line for B. Below, we will use the (not necessary
orthogonal) coordinate system with the same origin and the X-axis as we used above,
but whose Y -axis is parallel to L. We scale the new Y -axis so that the new y-coordinate
of every point is the same as the old one.

Proof of Claim 3.1. Let LA = L + z and LB = L − z be the straight lines that are
parallel to L and pass through the center (0, 0) of A and the center −2z of B, respectively.
Note that LA is the new y-axis. Let S be the strip between LA and LB on the plane.

Let U and V be in M1(A), U = u + A and V = v + A, u = (xu, yu), v = (xv, yv).
Without loss of generality, we may assume that xu ≥ xv. Note that u and v are in the
strip S.

Case 1. yu ≥ yv. Let Lu = LA + u. This line passes through u and is parallel to L.
Similarly, Lv = LA + v passes through v and is parallel to L. Let u′ (respectively, v′) be
the intersection point of the x-axis and Lu (respectively, Lv) and U ′ = A+u′ (respectively,
V ′ = A + v′). Since U ′ and V ′ are between A and B, by Lemma 4, U ′ and V ′ intersect
V and each other. Let u′′ be the point on Lu with the y-coordinate equal to yv and
U ′′ = A + u′′. Since U ′ intersects V ′, U ′′ intersects V . But U is located between U ′ and
U ′′ (or coincides with U ′′ if yu = yv). Therefore, Lemma 4 implies that U intersects V .

Case 2. yu < yv. Repeating the proof of Case 1 with roles of A and B switched yields
this case.

The proof of Claim 3.2 is the same (with C in place of B).

Proof of Claim 3.3. Let A∗ = 2A, B∗ = A∗ − 2z, and C∗ = A∗ + 2z. Let s = (xs, ys)
be a lowest intersection point of A∗ and B∗. Since A∗ = B∗ + 2z and C∗ = A∗ + 2z, the
point w = s − 2z belongs to B∗ and the point t = s + 2z is an intersection point of A∗

and C∗. Furthermore, ‖s − t‖A = ‖s − w‖A = 2.
Let W denote the figure bounded by the straight line segment from O to s, the arc

of the boundary of A∗ from s to t, denoted by R2, and the straight line segment t to
O (see Fig. 2). We will prove now that W contains all the points of A∗ − (B∗ ∪ C∗)
with non-positive y-coordinates. Indeed, suppose that A∗ − (B∗ ∪ C∗) contains a point
u = (xu, yu) with yu ≤ 0 on the left of the line ls passing through O and s. Then, by the
definition of B∗, the point u′ = u − 2z belongs to B∗.
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Figure 1: The intersection of boundaries of A∗ and B∗.

CASE 1. yu < ys. Then the straight line segment I1 from u′ to s is contained in B∗

and the straight line segment I2 from u to O−2z is contained in A∗. Moreover, I2 crosses
I1, and their crossing point, u∗, has the y-coordinate less than s (since it belongs to I1).
But u∗ ∈ A∗ ∩ B∗, a contradiction to the choice of s.

CASE 2. ys ≤ yu ≤ 0. Let u′′ be the intersection point of ls and the line y = yu. Since
u′′ is between O and s on ls, it belongs to B∗. Therefore, all points on the interval between
u′ and u′′ belong to B∗. In particular, u ∈ B∗, a contradiction to u ∈ A∗ − (B∗ ∪ C∗).

Similarly, A∗ − (B∗ ∪ C∗) cannot contain points with non-positive y-coordinates on
the right of the line lt passing through O and t.

Let U, V ∈ M3(A), U = u + A, V = v + A, u = (xu, yu), v = (xv, yv). Then by
definition, yu ≤ 0, and yv ≤ 0, and by the above, u, v ∈ W . As it was pointed out in
Section 2, proving that U and V intersect is equivalent to proving that ‖u − v‖A ≤ 2.

Let u, v ∈ W and let lu (respectively, lv) be the straight lines passing through O and
u (respectively, v). Since B∗ and C∗ are convex, the lines lu and lv must pass between
the straight line ls and the straight line lt (see Fig. 2). Since R2 connects s with t, we
conclude that lines lu and lv intersect R2. Let u′ (respectively, v′) be the intersection point
of lu (respectively, lv) and R2. By Lemmas 6 and 7, ‖u′ − v′‖A ≤ ‖s − t‖A = ‖2z‖A = 2.
Hence u′ + A and v′ + A intersect (and both intersect A). Since v is between O and v′ on
lv, Lemma 4 yields that u′ + A intersects v + A. Now, since u is between O and u′ on lu,
the same lemma yields that v + A intersects u + A. This proves the claim and thus the
theorem.

Clearly, Theorem 8 implies Theorem 1. Now we also derive Theorem 2.

Proof of Theorem 2. Let A be a member of a set M = {Mi} of translates of a
centrally symmetric convex set in the plane such that the clique number of the intersection
graph H(M) of M is k. We want to prove that A intersects at most 6k−7 other members
of M. Let B ∈ M intersect A. Choose a coordinate system on the plane so that the center
of A is the origin and the center of B lies on the x-axis. Let M+ (respectively, M−) be
the family of members of M with a nonnegative (respectively, non-positive) y-coordinate.
Then A is a highest member of M− and a lowest member of M+. By Theorem 8, A has
at most 3k−3 neighbors in each of M− and M+. Moreover, B was counted in both sets.
This proves the theorem.
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Figure 2: M3(A) = M(A) −M(B) −M(C)

4 Intersection graphs of convex sets with different

sizes

In this section, we study a more general case. Two convex sets K, D on the plane are
called homothetic if K = x + λD for a point x on the plane and some λ > 0. We consider
intersection graphs of families of homothetic copies of a fixed compact convex set. Any
intersection graph of a family of different sized circles is a special example. Note that
Lemma 5 does not need to hold in this more general case.

The following easy observation is quite useful for our purposes.

Lemma 9 Let U be a convex set containing the origin. For each v ∈ U and 0 ≤ λ ≤ 1,
the set W (U, v, λ) = (1 − λ)v + λU is contained in U and contains v.

Proof. By the definition, W (U, v, λ) = {v + λ · (u − v) | u ∈ U}.
Let u ∈ U . Since v+0·(u−v) = v ∈ U , v+1·(u−v) = u ∈ U , and U is convex, we have

v+λ · (u−v) ∈ U for every 0 ≤ λ ≤ 1. On the other hand, v = v+λ · (v−v) ∈ W (U, v, λ)
for every 0 ≤ λ ≤ 1.

Proof of Theorem 3. Let Z be a smallest homothetic copy of D in F . Let F (Z) be
the set of members of F intersecting Z. For every U ∈ F (Z), let λ(U) be the positive real
such that Z = u+λ(U)U for some u. For every U ∈ F (Z), choose a point z(U) ∈ Z∩U and
denote U∗ = W (U, z(U), λ(U)) = (1−λ(U))z(U)+λ(U)U . Note that U∗ is a translate of
Z. By Lemma 9, the intersection graph G of the family F ∗(Z) = {Z}∪ {U∗ | U ∈ F (Z)}
is a subgraph of H . In particular, the clique number of G is at most k. Moreover, because
of the choice of z(U), degG(Z) = degH(Z). Since F ∗(Z) consists of translates of Z,
Theorem 2 implies that degG(Z) ≤ 6k − 7.

Remark. It is known that the maximum degree of any intersection graph of transla-
tions of a box in the plane with clique number k is at most 4k − 4. Repeating the proof
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of Theorem 3 for this special case, we obtain that every intersection graph of homothetic
copies of a box in the plane with clique number k is (4k − 4)-degenerate.

5 Constructions

Our first example shows that the bound on the maximum degree in Theorem 2 is sharp.

Example 1. Let K be the unit circle whose center is the origin in the plane. Let K2

be the circle of radius 2 whose center is the origin. For 0 ≤ i ≤ 6k − 8, let vi be the
point on the boundary of K2 with the polar coordinates (2, i 2π

6k−7
). Let Ai = K + vi for

0 ≤ i ≤ 6k − 8. Then K intersects Ai for all i. Observe that Ai intersects Aj if and only
if |i− j| ≤ k− 2 (mod 6k− 7). It follows that the clique number of the intersection graph
G of the family {K} ∪ {Ai : 0 ≤ i ≤ 6k − 8} is k and the degree of K in G is 6k − 7.

Example 2. Fix a positive real R. For a positive integer m, let F ′
m = {(R, i

m−1/2
) : i =

0,±1,±2, . . .}, F ′′
m = {(R−

√
3, i

m−1/2
) : i = 0,±1,±2, . . .}, and Fm = F ′

m∪F ′′
m. In other

words, we choose an infinite number of points on the vertical lines x = R and x = R−
√

3.
A part of F ′

m ∪ F ′′
m is drawn on Figure 3 (left). Let Cm be the family of unit circles in the

plane with the set of centers F ′
m ∪ F ′′

m and let Gm be the intersection graph of Cm. It is
convenient to view Gm as the graph with the vertex set F ′

m ∪ F ′′
m such that two points u

and v are adjacent if and only if the (Euclidean) distance ρ(u, v) is at most 2. We derive
some properties of Gm in a series of claims.

The first claim is evident.

Claim 5.1 ρ((R, y1), (R −
√

3, y2)) ≤ 2 if and only if |y1 − y2| ≤ 1.

This simple fact and the definition of Fm imply the next claim.

Claim 5.2 If (R, y1) ∈ F ′
m, then the maximum (respectively, minimum) y2 such that

(R −
√

3, y2) ∈ F ′′
m and ρ((R, y1), (R −

√
3, y2)) ≤ 2 is y2 = y1 + 1 − 1

2m−1
(respectively,

y2 = y1 − 1 + 1
2m−1

).

It follows that every u ∈ Fm has 2(2m − 1) neighbors on the same vertical line and
2m − 1 neighbors on the other vertical line. Thus, we have

Claim 5.3 For every u ∈ Fm, degGm
(u) = 6m − 3.

Let Q ⊂ Fm be a maximum clique in Gm, Q1 = Q ∩ F ′
m, Q2 = Q ∩ F ′′

m. Suppose that
the lowest point vi in Qi, i = 1, 2, has the y-coordinate yi, and the highest point ui in Qi

has the y-coordinate yi +
si

m−1/2
. Then |Q| = s1 +s2 +2. On the other hand, by Claim 5.2,

we have

y2 ≥ y1 +
s1

m − 1/2
− 1 +

1

2m − 1
and y1 ≥ y2 +

s2

m − 1/2
− 1 +

1

2m − 1
.
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Summing the last two inequalities we get

0 ≥ s1 + s2 + 1

m − 1/2
− 2,

i.e., s1 + s2 + 1 ≤ 2m − 1. Hence, we have

Claim 5.4 ω(Gm) ≤ 2m.

Thus, for every even k, the graph Gk/2 is a (3k − 3)-regular intersection graph of unit
circles with clique number k. A bad side of Gk/2 is that it is an infinite graph. In order to
obtain a finite graph with properties of Gk/2, we first add one more observation on Gm.

√
3

√
3

2

2

2

1

p
pqq

TR(F
′
m)TR−√

3(F
′′
m)F

′
mF

′′
m

S
′
mS

′′
m

1
m−1/2

Figure 3: A fragment of F4 (left) and S4 (right)

Claim 5.5 Let u ∈ F ′
m, v ∈ F ′′

m. If ρ(u, v) ≤ 2, then ρ(u, v) < 2 − 1
8m

. If ρ(u, v) > 2,
then ρ(u, v) ≥ 2 + 1

8m
for m ≥ 2.

Proof. Assume that ρ(u, v) ≤ 2. Then by Claim 5.2,

2 − ρ(u, v) ≥ 2 −

√
3 +

(
1 − 1

2m − 1

)2

=
4 − 3 −

(
1 − 1

2m−1

)2

2 +
√

3 +
(
1 − 1

2m−1

)2
(1)

≥ 1

4

(
2

2m − 1
− 1

(2m − 1)2

)
≥ 1

4

(
1

2m − 1

)
>

1

8m
. (2)
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The calculations for the second inequality are very similar.

Now, let N be a big positive integer (say, N = 106) and R = (2m−1)N
π

. Con-
sider the transformation T of the plane moving every point with Cartesian coordinates
(x, y) into the point with polar coordinates (|x|, y

R
). For every positive x0, the func-

tion Tx0(y) = T (x0, y) is a periodic function with period πR = (2m − 1)N mapping
the line x = x0 onto the circle x2 + y2 = x2

0. Let S ′
m = T (F ′

m) = TR(F ′
m) and

S ′′
m = T (F ′′

m) = TR−√
3(F

′′
m). Then

S ′
m =

{(
R cos

2πj

(2m − 1)2N
, R sin

2πj

(2m − 1)2N

)
: j = 0, 1, . . . , (2m − 1)2N

}
and

S ′′
m =

{(
(R −

√
3) cos

2πj

(2m − 1)2N
, (R −

√
3) sin

2πj

(2m − 1)2N

)
: j = 0, . . . , (2m − 1)2N

}
.

We claim that the intersection graph Hm of unit circles with centers in Sm = S ′
m ∪S ′′

m

is also (6m − 3)-regular and has clique number 2m. The reason for this is that if two
points in Fm are ‘far’ (i.e., on distance more than 2) and the corresponding points in
Sm do not coincide, then these corresponding points also are ‘far’ apart, and that if two
points in Fm are ‘close’, then the distance between them in Sm is almost the same. It
is enough to consider situations with points p = (R, 0) and q = (R −

√
3, 0) (see Fig.3

(right)). Recall that T (p) = p and T (q) = q.
Let B be the box {(x, y) : R −

√
3 ≤ x ≤ R; −3 ≤ y ≤ 3}. We want to prove that

for every point u ∈ B ∩ Fm, the distance from u to p (respectively, q) is at most 2 if and
only if the distance from T (u) to p (respectively, q) is at most 2. Let s = (x0, y0) be a
point in B. Then T (s) = (x0 cos y0

R
, x0 sin y0

R
). Observe that

x0 − x0 cos
y0

R
= 2x0 sin2 y0

2R
≤ 2R

(
3

2R

)2

≤ 9

2R
<

1

20m
.

Similarly, y0 − x0 sin y0

R
= (y0 − x0

y0

R
) + x0(

y0

R
− sin y0

R
),

|y0 − x0
y0

R
| ≤ |y0|(R − R + 2)

R
≤ 6

R
<

1

40m
and

∣∣∣x0(
y0

R
− sin

y0

R
)
∣∣∣ ≤ x0

∣∣∣∣(y0

R

)3
/

6

∣∣∣∣ ≤ R
27

6R3
<

1

40m
.

Therefore, for every b ∈ B, the distance between b and T (b) is less than 1
10m

.

Let q = (R−
√

3, 0). For each b ∈ B ∩Fm − p, the distance from q to T (b) is less than
the distance from q to b. Hence the degree of q in Hm is at least as big as in Gm. On the
other hand, since the distance between b and T (b) is less than 1

10m
, Claim 5.5 yields that

q gets in Hm no new neighbor from B ∩ Fm.
The case for p = (R, 0) is very similar. T moves the points in B ∩ F ′′

m slightly away
from p, but Claim 5.5 helps us again.

For every even k, this gives a finite graph Hk/2 that is a (3k − 3)-regular intersection
graph of unit circles with clique number k.
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Example 3. Fix a positive real R. For a positive integer m, let M ′
m = {(R, i+1/2

m
) :

i = 0,±1,±2, . . .}, M ′′
m = {(R −

√
3, i

m
) : i = 0,±1,±2, . . .}, and Mm = M ′

m ∪ M ′′
m.

This family is similar to Fm in Example 2, but the denominator for the y-coordinates
of points is different and points in M ′

m are shifted by 1
2m

with respect to points in M ′′
m.

Essentially repeating the argument of Example 2, we can see that the clique number of
the intersection graph G′

m of unit circles with centers in Mm is 2m + 1 and that G′
m

is 6m-regular. Then exactly as in Example 2, we obtain from G′
m a finite 6m-regular

intersection graph of unit circles in the plane with clique number 2m+1. This shows that
the bound of Theorem 1 is tight.

Remark. We don’t know whether the bound of Theorem 3 is tight or not.
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