On the chromatic number of intersection graphs of convex sets in the plane*

Seog-Jin Kim
Department of Mathematics
University of Illinois, Urbana, IL 61801, USA
skim12@math. uiuc.edu
Alexandr Kostochka
Department of Mathematics
University of Illinois, Urbana, IL 61801, USA
and
Institute of Mathematics, 630090 Novosibirsk, Russia
kostochk@math.uiuc.edu
Kittikorn Nakprasit
Department of Mathematics
University of Illinois, Urbana, IL 61801, USA
nakprasi@math.uiuc.edu

Submitted: Dec 10, 2002; Accepted: May 21, 2004; Published: Aug 19, 2004
MR Subject Classifications: 05C15, 05C35

Abstract

Let G be the intersection graph of a finite family of convex sets obtained by translations of a fixed convex set in the plane. We show that every such graph with clique number k is $(3 k-3)$-degenerate. This bound is sharp. As a consequence, we derive that G is $(3 k-2)$-colorable. We show also that the chromatic number of every intersection graph H of a family of homothetic copies of a fixed convex set in the plane with clique number k is at most $6 k-6$.

1 Introduction

The intersection graph G of a family \mathcal{F} of sets is the graph with vertex set \mathcal{F} where two members of \mathcal{F} are adjacent if and only if they have common elements. Asplund and Grünbaum [3] and Gyárfás and Lehel [11, 9] started studying many interesting problems

[^0]on the chromatic number of intersection graphs of convex figures in the plane. Many problems of this type can be stated as follows. For a class \mathcal{G} of intersection graphs and for a positive integer k, find or bound $f(\mathcal{G}, k)$ - the maximum chromatic number of a graph in \mathcal{G} with the clique number at most k. A number of results on the topic can be found in $[5,9,11,13]$.

Recently, several papers on intersection graphs of translations of a plane figure appeared. Akiyama, Hosono, and Urabe [2] considered $f(\mathcal{C}, k)$, where \mathcal{C} is the family of intersection graphs of unit squares on the plane with sides parallel to the axes. They proved that $f(\mathcal{C}, 2)=3$ and asked about $f(\mathcal{C}, k)$ and, more generally, about chromatic number of intersection graphs of unit cubes in \mathbb{R}^{d}. In connection with channel assignment problem in broadcast networks, Clark, Colbourn, and Johnson [4] and Gräf, Stumpf, and Weißenfels [6] considered colorings of graphs in the class \mathcal{U} of intersection graphs of unit disks in the plane. They proved that finding chromatic number of graphs in \mathcal{U} is an $N P$-complete problem. In [6, 18], and [17] polynomial algorithms are given implying that $f(\mathcal{U}, k) \leq 3 k-2$. Perepelitsa [18] also considered the more general family \mathcal{T} of intersection graphs of translations of a fixed compact convex figure in the plane. She proved that every graph in \mathcal{T} is $(8 k-8)$-degenerate, which implies that $f(\mathcal{T}, k) \leq 8 k-7$. She also considered intersection graphs of translations of triangles and boxes in the plane.

Recall that a graph G is called m-degenerate if every subgraph H of G has a vertex v of degree at most m in H. It is well known that every m-degenerate graph is $(m+1)$ colorable. In fact, the property of being m-degenerate is sufficiently stronger that being $(m+1)$-colorable. In particular, every m-degenerate is also $(m+1)$-list-colorable.

Our main result strengthens Perepelitsa's bound as follows.
Theorem 1 Let G be the intersection graph of translations of a fixed compact convex set in the plane with clique number $\omega(G)=k$. Then G is $(3 k-3)$-degenerate. In particular, the chromatic number and the list chromatic number of G do not exceed $3 k-2$.

The bound on degeneracy in Theorem 1 is sharp. In Section 5 , for every $k \geq 2$ we present the intersection graph G of a family of unit circles in the plane with $\omega(G)=k$ that is not $(3 k-4)$-degenerate.

The idea of the proof of Theorem 1 allows us to estimate the maximum degree of the intersection graph.

Theorem 2 Let G be the intersection graph of translations of a fixed compact convex set in the plane with $\omega(G)=k, k \geq 2$. Then the maximum degree of G is at most $6 k-7$.

This bound is also sharp.
Then we consider a more general setting: shrinking and blowing of the figures are now allowed.

Theorem 3 Let H be the intersection graph of a family F of homothetic copies of a fixed convex compact set D in the plane. If $\omega(H)=k, k \geq 2$, then H is $(6 k-7)$-degenerate. In particular, the chromatic number and the list chromatic number of H do not exceed $6 k-6$.

There is no upper bound on the maximum degree for intersection graphs of homothetic copies of a fixed convex set in the plane analogous to Theorem 2, since every star is a graph of this type.

The results above yield some Ramsey-type bounds for geometric intersection graphs. For a positive integer n and a family \mathcal{F} of graphs, let $r(\mathcal{F}, n)$ denote the maximum r such that for every $G \in \mathcal{F}$ on n vertices, either the clique number, $\omega(G)$, or the independence number, $\alpha(G)$, is at least r. One can read Ramsey Theorem for graphs as the statement that for the family \mathcal{G} of all graphs, $r(\mathcal{G}, n) \sim 0.5 \log _{2} n$. Larman, Matousek, Pach, and Torocsik [15] proved that for the family \mathcal{P} of intersection graphs of compact convex sets in the plane, $r(\mathcal{P}, n) \geq n^{0.2}$. Since $\chi(H) \geq \frac{n}{\alpha(H)}$ for every n-vertex graph H, Theorem 3 yields that for every n-vertex intersection graph H of a family of homothetic copies of a fixed convex compact set D in the plane, we have $\alpha(H)(6 \omega(H)-7) \geq n$. It follows that $r(\mathcal{D}, n) \geq \sqrt{n / 6}$ for the family \mathcal{D} of intersection graphs of homothetic copies of a fixed convex compact set in the plane. Similarly, Theorem 1 yields that $r(\mathcal{T}, n) \geq \sqrt{n / 3}$.

The structure of the paper is as follows. In the next section we introduce our tools. Theorems 1 and 2 are proved in Section 3. In Section 4 we prove Theorem 3. Section 5 is devoted to construction of extremal graphs.

2 Preliminaries

Given sets A and B of vectors and a real α, the set $\alpha(A+B)$ is defined as $\{\alpha(a+b) \mid a \in$ $A, b \in B\}$. When $B=\{b\}$, we sometimes write $A+b$ instead of $A+\{b\}$. Our first tool is the following lemma.

Lemma 4 Let A be a convex figure and $A^{\prime \prime}=A+s$ where s is a vector. Let P be a convex figure that intersects both A and $A^{\prime \prime}$. If $A^{\prime}=A+\alpha s, 0 \leq \alpha \leq 1$, then P intersects A^{\prime}.

Proof. Let $u \in A \cap P, u^{\prime \prime}=u+s, v^{\prime \prime} \in A^{\prime \prime} \cap P, v=v^{\prime \prime}-s$. So $v^{\prime \prime} \in A^{\prime \prime}, u \in A$, and the interval $\overline{u v^{\prime \prime}}$ is in P. Let $A^{\prime}=A+\alpha s, u^{\prime}=u+\alpha s$, and $v^{\prime}=v+\alpha s$. Then the interval $\overline{u^{\prime} v^{\prime}}$ is in A^{\prime} and must intersect the interval $\overline{u v^{\prime \prime}}$ in P.

Our second tool is an old result of Minkowski [16].
Lemma 5 (Minkowski [16]) Let K be a convex set in the plane. Then $(x+K) \cap(y+K) \neq$ \emptyset if and only if $\left(x+\frac{1}{2}[K+(-K)]\right) \cap\left(y+\frac{1}{2}[K+(-K)]\right) \neq \emptyset$.

A proof can be also found in [12]. Note that the set $\frac{1}{2}[K+(-K)]$ is centrally symmetric for every K. Hence without loss of generality, it is enough to prove Theorems 1, 2, and 3 for centrally symmetric convex sets. For handling these sets, the notion of Minkowski norm is quite useful.

Let K be a compact convex set on the plane, centrally symmetric about the origin. For every point x on the plane, we define the Minkowski norm

$$
\|x\|_{K}=\inf _{\lambda \geq 0}\{\lambda \in \mathbb{R}: x \in \lambda K\} .
$$

Note that $\left\{x:\|x\|_{K}=1\right\}$ is the boundary of K. It is easily checked that $u+K$ and $v+K$ intersect if and only if $\|u-v\|_{K} \leq 2$. The two lemmas below appear in [8]. We present their proofs, since they are very short.

Lemma 6 (Grünbaum [8]) Let x, y, z be different points belonging to the boundary of K, such that the origin O does not belong to the open half-plane determined by x and y that contains z. Then $\|x-z\|_{K} \leq\|x-y\|_{K}$.

Proof. If $x+y=0$, then $\|x-y\|_{K}=\|2 x\|_{K}=2$, since x is on the boundary of K. On the other hand, $\|x-z\|_{K} \leq\|x\|_{K}+\|z\|_{K}=2$. Hence $\|x-z\|_{K} \leq\|x-y\|_{K}$.

If $x+y \neq 0$, find another triple of points x^{*}, y^{*}, z^{*} such that $x^{*}+y^{*}=0$ and the triangle with vertices $\left\{x^{*}, y^{*}, z^{*}\right\}$ is similar to $\{x, y, z\}$. We can check that z^{*} is inside K, hence $\left\|x^{*}-z^{*}\right\|_{K} \leq\left\|x^{*}-y^{*}\right\|_{K}$. Therefore $\|x-z\|_{K} \leq\|x-y\|_{K}$.

Lemma 7 (Grünbaum [8]) Let x, y, z, u be different points belonging to the boundary of K, such that z and u belong to an open half-plane determined by x and y, while O belongs to its complement. Then $\|z-u\|_{K} \leq\|x-y\|_{K}$.

Proof. We may assume that the points are located in order x, u, z, y counterclockwise. From Lemma 6, $\|z-u\|_{K} \leq\|x-z\|_{K} \leq\|x-y\|_{K}$.

3 Proofs of Theorems 1 and 2

It will be convenient to prove the following slightly refined version of Theorem 1 for centrally symmetric sets.

Theorem 8 Let $\mathcal{M}=\left\{M_{i}\right\}$ be a set of translates of a centrally symmetric convex set in the plane with given axes. If the clique number of the intersection graph $G(\mathcal{M})$ of \mathcal{M} is k, then every highest member A of \mathcal{M} intersects at most $3 k-3$ other members.

Proof. For an arbitrary set S, define $\mathcal{M}(S)=\left\{M_{i} \in \mathcal{M} \mid S \cap M_{i} \neq \emptyset\right\}$. Let A be a highest member of \mathcal{M}. For convenience, we assume that the center of A is the origin $O=(0,0)$. Let z be the rightmost point on the X-axis that belongs to A. If $z=(0,0)$, then A is an interval with the center O and G is an interval graph. So, we assume $z \neq(0,0)$. Let $B=A-2 z$ and $C=A+2 z$. Since A is convex and centrally symmetric, B and C touch A but have no common interior points with A. Note that B and C may or may not belong to \mathcal{M}.

The following three claims are crucial for our proof.
Claim 3.1 Let $\mathcal{M}_{1}(A)=\mathcal{M}(A) \cap \mathcal{M}(B)$. Then every two members of $\mathcal{M}_{1}(A)$ intersect.

Claim 3.2 Let $\mathcal{M}_{2}(A)=\mathcal{M}(A) \cap \mathcal{M}(C)$. Then every two members of $\mathcal{M}_{2}(A)$ intersect.
Claim 3.3 Let $\mathcal{M}_{3}(A)=\mathcal{M}(A)-\mathcal{M}(B)-\mathcal{M}(C)$. Then every two members of $\mathcal{M}_{3}(A)$ intersect.

Indeed, $\mathcal{M}(A)=\mathcal{M}_{1}(A) \cup \mathcal{M}_{2}(A) \cup \mathcal{M}_{3}(A)$. If Claims 3.1, 3.2, and 3.3 hold, then, since $\omega(G)=k,\left|\mathcal{M}_{i}(A)\right| \leq k-1$ for $i=1,2,3$, and hence A intersects at most $3 k-3$ members of \mathcal{M}. Therefore, we need only to prove the claims.

Let L be a supporting line for A at $(-z, 0)$, i.e. a line passing through $(-z, 0)$ and having no common points with the interior of A. Such a line exists, since A is convex. If $(-z, 0)$ is a corner of A, then L is not unique. Furthermore, since A is centrally symmetric, L is also a supporting line for B. Below, we will use the (not necessary orthogonal) coordinate system with the same origin and the X-axis as we used above, but whose Y-axis is parallel to L. We scale the new Y-axis so that the new y-coordinate of every point is the same as the old one.

Proof of Claim 3.1. Let $L_{A}=L+z$ and $L_{B}=L-z$ be the straight lines that are parallel to L and pass through the center $(0,0)$ of A and the center $-2 z$ of B, respectively. Note that L_{A} is the new y-axis. Let S be the strip between L_{A} and L_{B} on the plane.

Let U and V be in $\mathcal{M}_{1}(A), U=u+A$ and $V=v+A, u=\left(x_{u}, y_{u}\right), v=\left(x_{v}, y_{v}\right)$. Without loss of generality, we may assume that $x_{u} \geq x_{v}$. Note that u and v are in the strip S.

Case 1. $y_{u} \geq y_{v}$. Let $L_{u}=L_{A}+u$. This line passes through u and is parallel to L. Similarly, $L_{v}=L_{A}+v$ passes through v and is parallel to L. Let u^{\prime} (respectively, v^{\prime}) be the intersection point of the x-axis and L_{u} (respectively, L_{v}) and $U^{\prime}=A+u^{\prime}$ (respectively, $V^{\prime}=A+v^{\prime}$. Since U^{\prime} and V^{\prime} are between A and B, by Lemma $4, U^{\prime}$ and V^{\prime} intersect V and each other. Let $u^{\prime \prime}$ be the point on L_{u} with the y-coordinate equal to y_{v} and $U^{\prime \prime}=A+u^{\prime \prime}$. Since U^{\prime} intersects $V^{\prime}, U^{\prime \prime}$ intersects V. But U is located between U^{\prime} and $U^{\prime \prime}$ (or coincides with $U^{\prime \prime}$ if $y_{u}=y_{v}$). Therefore, Lemma 4 implies that U intersects V.

Case 2. $y_{u}<y_{v}$. Repeating the proof of Case 1 with roles of A and B switched yields this case.

The proof of Claim 3.2 is the same (with C in place of B).
Proof of Claim 3.3. Let $A^{*}=2 A, B^{*}=A^{*}-2 z$, and $C^{*}=A^{*}+2 z$. Let $s=\left(x_{s}, y_{s}\right)$ be a lowest intersection point of A^{*} and B^{*}. Since $A^{*}=B^{*}+2 z$ and $C^{*}=A^{*}+2 z$, the point $w=s-2 z$ belongs to B^{*} and the point $t=s+2 z$ is an intersection point of A^{*} and C^{*}. Furthermore, $\|s-t\|_{A}=\|s-w\|_{A}=2$.

Let W denote the figure bounded by the straight line segment from O to s, the arc of the boundary of A^{*} from s to t, denoted by R_{2}, and the straight line segment t to O (see Fig. 2). We will prove now that W contains all the points of $A^{*}-\left(B^{*} \cup C^{*}\right)$ with non-positive y-coordinates. Indeed, suppose that $A^{*}-\left(B^{*} \cup C^{*}\right)$ contains a point $u=\left(x_{u}, y_{u}\right)$ with $y_{u} \leq 0$ on the left of the line l_{s} passing through O and s. Then, by the definition of B^{*}, the point $u^{\prime}=u-2 z$ belongs to B^{*}.

Figure 1: The intersection of boundaries of A^{*} and B^{*}.

CASE 1. $y_{u}<y_{s}$. Then the straight line segment I_{1} from u^{\prime} to s is contained in B^{*} and the straight line segment I_{2} from u to $O-2 z$ is contained in A^{*}. Moreover, I_{2} crosses I_{1}, and their crossing point, u^{*}, has the y-coordinate less than s (since it belongs to I_{1}). But $u^{*} \in A^{*} \cap B^{*}$, a contradiction to the choice of s.

CASE 2. $y_{s} \leq y_{u} \leq 0$. Let $u^{\prime \prime}$ be the intersection point of l_{s} and the line $y=y_{u}$. Since $u^{\prime \prime}$ is between O and s on l_{s}, it belongs to B^{*}. Therefore, all points on the interval between u^{\prime} and $u^{\prime \prime}$ belong to B^{*}. In particular, $u \in B^{*}$, a contradiction to $u \in A^{*}-\left(B^{*} \cup C^{*}\right)$.

Similarly, $A^{*}-\left(B^{*} \cup C^{*}\right)$ cannot contain points with non-positive y-coordinates on the right of the line l_{t} passing through O and t.

Let $U, V \in \mathcal{M}_{3}(A), U=u+A, V=v+A, u=\left(x_{u}, y_{u}\right), v=\left(x_{v}, y_{v}\right)$. Then by definition, $y_{u} \leq 0$, and $y_{v} \leq 0$, and by the above, $u, v \in W$. As it was pointed out in Section 2, proving that U and V intersect is equivalent to proving that $\|u-v\|_{A} \leq 2$.

Let $u, v \in W$ and let l_{u} (respectively, l_{v}) be the straight lines passing through O and u (respectively, v). Since B^{*} and C^{*} are convex, the lines l_{u} and l_{v} must pass between the straight line l_{s} and the straight line l_{t} (see Fig. 2). Since R_{2} connects s with t, we conclude that lines l_{u} and l_{v} intersect R_{2}. Let u^{\prime} (respectively, v^{\prime}) be the intersection point of l_{u} (respectively, l_{v}) and R_{2}. By Lemmas 6 and $7,\left\|u^{\prime}-v^{\prime}\right\|_{A} \leq\|s-t\|_{A}=\|2 z\|_{A}=2$. Hence $u^{\prime}+A$ and $v^{\prime}+A$ intersect (and both intersect A). Since v is between O and v^{\prime} on l_{v}, Lemma 4 yields that $u^{\prime}+A$ intersects $v+A$. Now, since u is between O and u^{\prime} on l_{u}, the same lemma yields that $v+A$ intersects $u+A$. This proves the claim and thus the theorem.

Clearly, Theorem 8 implies Theorem 1. Now we also derive Theorem 2.
Proof of Theorem 2. Let A be a member of a set $\mathcal{M}=\left\{M_{i}\right\}$ of translates of a centrally symmetric convex set in the plane such that the clique number of the intersection graph $H(\mathcal{M})$ of \mathcal{M} is k. We want to prove that A intersects at most $6 k-7$ other members of \mathcal{M}. Let $B \in \mathcal{M}$ intersect A. Choose a coordinate system on the plane so that the center of A is the origin and the center of B lies on the x-axis. Let \mathcal{M}^{+}(respectively, \mathcal{M}^{-}) be the family of members of \mathcal{M} with a nonnegative (respectively, non-positive) y-coordinate. Then A is a highest member of \mathcal{M}^{-}and a lowest member of \mathcal{M}^{+}. By Theorem 8, A has at most $3 k-3$ neighbors in each of \mathcal{M}^{-}and \mathcal{M}^{+}. Moreover, B was counted in both sets. This proves the theorem.

Figure 2: $\mathcal{M}_{3}(A)=\mathcal{M}(A)-\mathcal{M}(B)-\mathcal{M}(C)$

4 Intersection graphs of convex sets with different sizes

In this section, we study a more general case. Two convex sets K, D on the plane are called homothetic if $K=x+\lambda D$ for a point x on the plane and some $\lambda>0$. We consider intersection graphs of families of homothetic copies of a fixed compact convex set. Any intersection graph of a family of different sized circles is a special example. Note that Lemma 5 does not need to hold in this more general case.

The following easy observation is quite useful for our purposes.
Lemma 9 Let U be a convex set containing the origin. For each $v \in U$ and $0 \leq \lambda \leq 1$, the set $W(U, v, \lambda)=(1-\lambda) v+\lambda U$ is contained in U and contains v.

Proof. By the definition, $W(U, v, \lambda)=\{v+\lambda \cdot(u-v) \mid u \in U\}$.
Let $u \in U$. Since $v+0 \cdot(u-v)=v \in U, v+1 \cdot(u-v)=u \in U$, and U is convex, we have $v+\lambda \cdot(u-v) \in U$ for every $0 \leq \lambda \leq 1$. On the other hand, $v=v+\lambda \cdot(v-v) \in W(U, v, \lambda)$ for every $0 \leq \lambda \leq 1$.

Proof of Theorem 3. Let Z be a smallest homothetic copy of D in F. Let $F(Z)$ be the set of members of F intersecting Z. For every $U \in F(Z)$, let $\lambda(U)$ be the positive real such that $Z=u+\lambda(U) U$ for some u. For every $U \in F(Z)$, choose a point $z(U) \in Z \cap U$ and denote $U^{*}=W(U, z(U), \lambda(U))=(1-\lambda(U)) z(U)+\lambda(U) U$. Note that U^{*} is a translate of Z. By Lemma 9, the intersection graph G of the family $F^{*}(Z)=\{Z\} \cup\left\{U^{*} \mid U \in F(Z)\right\}$ is a subgraph of H. In particular, the clique number of G is at most k. Moreover, because of the choice of $z(U), \operatorname{deg}_{G}(Z)=\operatorname{deg}_{H}(Z)$. Since $F^{*}(Z)$ consists of translates of Z, Theorem 2 implies that $\operatorname{deg}_{G}(Z) \leq 6 k-7$.

Remark. It is known that the maximum degree of any intersection graph of translations of a box in the plane with clique number k is at most $4 k-4$. Repeating the proof
of Theorem 3 for this special case, we obtain that every intersection graph of homothetic copies of a box in the plane with clique number k is $(4 k-4)$-degenerate.

5 Constructions

Our first example shows that the bound on the maximum degree in Theorem 2 is sharp.
Example 1. Let K be the unit circle whose center is the origin in the plane. Let K_{2} be the circle of radius 2 whose center is the origin. For $0 \leq i \leq 6 k-8$, let v_{i} be the point on the boundary of K_{2} with the polar coordinates $\left(2, i \frac{2 \pi}{6 k-7}\right)$. Let $A_{i}=K+v_{i}$ for $0 \leq i \leq 6 k-8$. Then K intersects A_{i} for all i. Observe that A_{i} intersects A_{j} if and only if $|i-j| \leq k-2(\bmod 6 k-7)$. It follows that the clique number of the intersection graph G of the family $\{K\} \cup\left\{A_{i}: 0 \leq i \leq 6 k-8\right\}$ is k and the degree of K in G is $6 k-7$.

Example 2. Fix a positive real R. For a positive integer m, let $F_{m}^{\prime}=\left\{\left(R, \frac{i}{m-1 / 2}\right): i=\right.$ $0, \pm 1, \pm 2, \ldots\}, F_{m}^{\prime \prime}=\left\{\left(R-\sqrt{3}, \frac{i}{m-1 / 2}\right): i=0, \pm 1, \pm 2, \ldots\right\}$, and $F_{m}=F_{m}^{\prime} \cup F_{m}^{\prime \prime}$. In other words, we choose an infinite number of points on the vertical lines $x=R$ and $x=R-\sqrt{3}$. A part of $F_{m}^{\prime} \cup F_{m}^{\prime \prime}$ is drawn on Figure 3 (left). Let \mathcal{C}_{m} be the family of unit circles in the plane with the set of centers $F_{m}^{\prime} \cup F_{m}^{\prime \prime}$ and let G_{m} be the intersection graph of \mathcal{C}_{m}. It is convenient to view G_{m} as the graph with the vertex set $F_{m}^{\prime} \cup F_{m}^{\prime \prime}$ such that two points u and v are adjacent if and only if the (Euclidean) distance $\rho(u, v)$ is at most 2. We derive some properties of G_{m} in a series of claims.

The first claim is evident.
Claim $5.1 \rho\left(\left(R, y_{1}\right),\left(R-\sqrt{3}, y_{2}\right)\right) \leq 2$ if and only if $\left|y_{1}-y_{2}\right| \leq 1$.
This simple fact and the definition of F_{m} imply the next claim.
Claim 5.2 If $\left(R, y_{1}\right) \in F_{m}^{\prime}$, then the maximum (respectively, minimum) y_{2} such that $\left(R-\sqrt{3}, y_{2}\right) \in F_{m}^{\prime \prime}$ and $\rho\left(\left(R, y_{1}\right),\left(R-\sqrt{3}, y_{2}\right)\right) \leq 2$ is $y_{2}=y_{1}+1-\frac{1}{2 m-1} \quad$ (respectively, $\left.y_{2}=y_{1}-1+\frac{1}{2 m-1}\right)$.

It follows that every $u \in F_{m}$ has $2(2 m-1)$ neighbors on the same vertical line and $2 m-1$ neighbors on the other vertical line. Thus, we have

Claim 5.3 For every $u \in F_{m}, \operatorname{deg}_{G_{m}}(u)=6 m-3$.
Let $Q \subset F_{m}$ be a maximum clique in $G_{m}, Q_{1}=Q \cap F_{m}^{\prime}, Q_{2}=Q \cap F_{m}^{\prime \prime}$. Suppose that the lowest point v_{i} in $Q_{i}, i=1,2$, has the y-coordinate y_{i}, and the highest point u_{i} in Q_{i} has the y-coordinate $y_{i}+\frac{s_{i}}{m-1 / 2}$. Then $|Q|=s_{1}+s_{2}+2$. On the other hand, by Claim 5.2, we have

$$
y_{2} \geq y_{1}+\frac{s_{1}}{m-1 / 2}-1+\frac{1}{2 m-1} \quad \text { and } \quad y_{1} \geq y_{2}+\frac{s_{2}}{m-1 / 2}-1+\frac{1}{2 m-1} .
$$

Summing the last two inequalities we get

$$
0 \geq \frac{s_{1}+s_{2}+1}{m-1 / 2}-2
$$

i.e., $s_{1}+s_{2}+1 \leq 2 m-1$. Hence, we have

Claim 5.4 $\omega\left(G_{m}\right) \leq 2 m$.
Thus, for every even k, the graph $G_{k / 2}$ is a $(3 k-3)$-regular intersection graph of unit circles with clique number k. A bad side of $G_{k / 2}$ is that it is an infinite graph. In order to obtain a finite graph with properties of $G_{k / 2}$, we first add one more observation on G_{m}.

Figure 3: A fragment of F_{4} (left) and S_{4} (right)

Claim 5.5 Let $u \in F_{m}^{\prime}, v \in F_{m}^{\prime \prime}$. If $\rho(u, v) \leq 2$, then $\rho(u, v)<2-\frac{1}{8 m}$. If $\rho(u, v)>2$, then $\rho(u, v) \geq 2+\frac{1}{8 m}$ for $m \geq 2$.

Proof. Assume that $\rho(u, v) \leq 2$. Then by Claim 5.2,

$$
\begin{align*}
2-\rho(u, v) & \geq 2-\sqrt{3+\left(1-\frac{1}{2 m-1}\right)^{2}}=\frac{4-3-\left(1-\frac{1}{2 m-1}\right)^{2}}{2+\sqrt{3+\left(1-\frac{1}{2 m-1}\right)^{2}}} \tag{1}\\
& \geq \frac{1}{4}\left(\frac{2}{2 m-1}-\frac{1}{(2 m-1)^{2}}\right) \geq \frac{1}{4}\left(\frac{1}{2 m-1}\right)>\frac{1}{8 m} \tag{2}
\end{align*}
$$

The calculations for the second inequality are very similar.
Now, let N be a big positive integer (say, $N=10^{6}$) and $R=\frac{(2 m-1) N}{\pi}$. Consider the transformation T of the plane moving every point with Cartesian ${ }^{\pi}$ coordinates (x, y) into the point with polar coordinates $\left(|x|, \frac{y}{R}\right)$. For every positive x_{0}, the function $T_{x_{0}}(y)=T\left(x_{0}, y\right)$ is a periodic function with period $\pi R=(2 m-1) N$ mapping the line $x=x_{0}$ onto the circle $x^{2}+y^{2}=x_{0}^{2}$. Let $S_{m}^{\prime}=T\left(F_{m}^{\prime}\right)=T_{R}\left(F_{m}^{\prime}\right)$ and $S_{m}^{\prime \prime}=T\left(F_{m}^{\prime \prime}\right)=T_{R-\sqrt{3}}\left(F_{m}^{\prime \prime}\right)$. Then
$S_{m}^{\prime}=\left\{\left(R \cos \frac{2 \pi j}{(2 m-1)^{2} N}, R \sin \frac{2 \pi j}{(2 m-1)^{2} N}\right): j=0,1, \ldots,(2 m-1)^{2} N\right\}$ and
$S_{m}^{\prime \prime}=\left\{\left((R-\sqrt{3}) \cos \frac{2 \pi j}{(2 m-1)^{2} N},(R-\sqrt{3}) \sin \frac{2 \pi j}{(2 m-1)^{2} N}\right): j=0, \ldots,(2 m-1)^{2} N\right\}$.
We claim that the intersection graph H_{m} of unit circles with centers in $S_{m}=S_{m}^{\prime} \cup S_{m}^{\prime \prime}$ is also $(6 m-3)$-regular and has clique number $2 m$. The reason for this is that if two points in F_{m} are 'far' (i.e., on distance more than 2) and the corresponding points in S_{m} do not coincide, then these corresponding points also are 'far' apart, and that if two points in F_{m} are 'close', then the distance between them in S_{m} is almost the same. It is enough to consider situations with points $p=(R, 0)$ and $q=(R-\sqrt{3}, 0)$ (see Fig. 3 (right)). Recall that $T(p)=p$ and $T(q)=q$.

Let B be the box $\{(x, y): R-\sqrt{3} \leq x \leq R ;-3 \leq y \leq 3\}$. We want to prove that for every point $u \in B \cap F_{m}$, the distance from u to p (respectively, q) is at most 2 if and only if the distance from $T(u)$ to p (respectively, q) is at most 2 . Let $s=\left(x_{0}, y_{0}\right)$ be a point in B. Then $T(s)=\left(x_{0} \cos \frac{y_{0}}{R}, x_{0} \sin \frac{y_{0}}{R}\right)$. Observe that

$$
x_{0}-x_{0} \cos \frac{y_{0}}{R}=2 x_{0} \sin ^{2} \frac{y_{0}}{2 R} \leq 2 R\left(\frac{3}{2 R}\right)^{2} \leq \frac{9}{2 R}<\frac{1}{20 m} .
$$

Similarly, $y_{0}-x_{0} \sin \frac{y_{0}}{R}=\left(y_{0}-x_{0} \frac{y_{0}}{R}\right)+x_{0}\left(\frac{y_{0}}{R}-\sin \frac{y_{0}}{R}\right)$,

$$
\begin{gathered}
\left|y_{0}-x_{0} \frac{y_{0}}{R}\right| \leq \frac{\left|y_{0}\right|(R-R+2)}{R} \leq \frac{6}{R}<\frac{1}{40 m} \quad \text { and } \\
\left|x_{0}\left(\frac{y_{0}}{R}-\sin \frac{y_{0}}{R}\right)\right| \leq x_{0}\left|\left(\frac{y_{0}}{R}\right)^{3} / 6\right| \leq R \frac{27}{6 R^{3}}<\frac{1}{40 m}
\end{gathered}
$$

Therefore, for every $b \in B$, the distance between b and $T(b)$ is less than $\frac{1}{10 m}$.
Let $q=(R-\sqrt{3}, 0)$. For each $b \in B \cap F_{m}-p$, the distance from q to $T(b)$ is less than the distance from q to b. Hence the degree of q in H_{m} is at least as big as in G_{m}. On the other hand, since the distance between b and $T(b)$ is less than $\frac{1}{10 m}$, Claim 5.5 yields that q gets in H_{m} no new neighbor from $B \cap F_{m}$.

The case for $p=(R, 0)$ is very similar. T moves the points in $B \cap F_{m}^{\prime \prime}$ slightly away from p, but Claim 5.5 helps us again.

For every even k, this gives a finite graph $H_{k / 2}$ that is a $(3 k-3)$-regular intersection graph of unit circles with clique number k.

Example 3. Fix a positive real R. For a positive integer m, let $M_{m}^{\prime}=\left\{\left(R, \frac{i+1 / 2}{m}\right)\right.$: $i=0, \pm 1, \pm 2, \ldots\}, M_{m}^{\prime \prime}=\left\{\left(R-\sqrt{3}, \frac{i}{m}\right): i=0, \pm 1, \pm 2, \ldots\right\}$, and $M_{m}=M_{m}^{\prime} \cup M_{m}^{\prime \prime}$. This family is similar to F_{m} in Example 2, but the denominator for the y-coordinates of points is different and points in M_{m}^{\prime} are shifted by $\frac{1}{2 m}$ with respect to points in $M_{m}^{\prime \prime}$. Essentially repeating the argument of Example 2, we can see that the clique number of the intersection graph G_{m}^{\prime} of unit circles with centers in M_{m} is $2 m+1$ and that G_{m}^{\prime} is $6 m$-regular. Then exactly as in Example 2, we obtain from G_{m}^{\prime} a finite $6 m$-regular intersection graph of unit circles in the plane with clique number $2 m+1$. This shows that the bound of Theorem 1 is tight.

Remark. We don't know whether the bound of Theorem 3 is tight or not.

References

[1] P.K. Agarwal and J. Pach, Combinatorial Geometry, John Wiley \& Sons. Inc., 1995.
[2] J. Akiyama, K. Hosono, and M. Urabe, Some combinatorial problems, Discrete Math. 116 (1993) 291-298.
[3] E. Asplund and B. Grünbaum, On a coloring problem, Math. Scand. 8 (1996) 181188.
[4] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math. 86 (1990), 165-177.
[5] M. Golumbic, Algorithmic graph theory and perfect graphs. Academic Press, 1980.
[6] A. Gräf, M. Stumpf, and G. Weißenfels, On Coloring Unit Disk Graphs, Algorithmica 20 (1998) 277-293.
[7] B. Grünbaum, On a Conjecture of H. Hadwiger, Bull. Res. Counc. of Israel, 7F (1957), 215-219.
[8] B. Grünbaum, Borsuk's Partition Conjecture in Minkowski Planes, Bull. Res. Counc. of Israel, 7F, (1957), 25-30.
[9] A. Gyárfás, Problems from the world surrounding perfect graphs. Proceedings of the International Conference on Combinatorial Analysis and its Applications (Pokrzywna, 1985). Zastos. Mat. 19 (1987), 413-441 (1988).
[10] A. Gyárfás, On the chromatic number of multiple interval graphs and overlap graphs, Discrete Math. 55 (1985), 161-166.
[11] A. Gyárfás, J. Lehel, Covering and coloring problems for relatives of intervals, Discrete Math. 55 (1985), 167-180.
[12] H. Hadwiger and H. Debrunner, Combinatorial geometry in the plane, Holt, Rinehart and Winston, New York, 1964.
[13] A. Kostochka, On upper bounds on the chromatic numbers of graphs, Transactions of the Institute of Mathematics (Siberian Branch of the Academy of Sciences of USSR), 10 (1988), 204-226 (in Russian).
[14] A.V. Kostochka and I.G. Perepelitsa, Coloring intersection graphs of boxes on the plane, Discrete Math. 220 (2000) 243-249.
[15] D. Larman, J. Matousek, J. Pach, and J. Torocsik, A Ramsey-Type Result for Convex Sets, Bull. London Math. Soc. 26 (1994) 132-136.
[16] H. Minkowski, Dichteste gitterformige Lagerung kongruenter Körper, Nachr. der K. es. der Wiss. zu Göttingen, Math. Phys. Kl., (1904), 311-355.
[17] R. Peeters, On coloring j-unit sphere graphs, FEW 512, Department of Economics, Tilburg University, 1991.
[18] I.G. Perepelitsa, Bounds on the chromatic number of intersection graphs of sets in the plane, Discrete Math., 262 (2003) 221-227.

[^0]: *This work was partially supported by the NSF grants DMS-0099608 and DMS-00400498.

