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Abstract This paper considers a class of general dynamic programs which satisfies the mono tonicity and con-

traction assumption, and in which the sets of cost functions and policies are closed under the monotone contraction 

operators. This class of dynamic programs includes, piecewise linear, affine dynamic programs, partially observable 

Markov decision processes, and many sequential decision processes under uncertainty such as machine maintenance 

control models and search problems with incomplete infOImation. 

An algorithm based on generalized policy improvement has the property that it only generates cost functions 

and policies belonging to distinguished subsets of cost functions and policies, respectively. 

1. Introduction 

Special classes of dynamic programs were proposed by [5], [6], [12] and 

[16]. On the other hand, an algorithm for dynamic programs was developed in 

[16] (also, see [13].) This algorithm, called generalized policy improvement, 

includes policy improvement [2], [10] and successive approximation [1], [4] 

as special cases. This paper considers a class of dynamic programs, called 

closed, with the property that the generalized policy improvement algorithm 

stays within a certain "small" subset of cost functions and policies. In 

other words, the sets of cost functions and policies generated by the algo­

rithm are closed under the monotone contraction operators. Furthermore, it 

is possible to keep such sets within "distinguished small" subsets of the 

sets of all bounded cost functions and all stationary policies, respectively. 

This property is very important to dynamic programming from a computational 

aspect. The class of closed dynamic programs includes piecewise linear 

dynamic progralnming [16], affine dynamic programming [5], [6], partially ob­

servable Markov decision processes [7], [IS], [17] and many sequential 

decision processes with imperfect information such as machine maintenance 

models [17] and search models. The approximation of dynamic programs is 
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98 K. Sawaki 

analyzed by [19], [20], [11], which are different from our approach. This 

paper concerns with the method of constructing of £-optimal policy and cost. 

Closed dynamic programs are defined in Section 2. We also discuss 

conditions that ensure the existence of an £-optimal policy within the distin­

guished subset of policies and of an £-optimal cost within the distinguished 

subset of cost functions. An algorithm for finding an £-optimal policy and 

the proof of the convergence are given in Section 3. Examples, special cases 

of closed dynamic programs, are given in Section 4. In the closed dynamic 

program the distinguished subsets of cost functions and policies generated 

by the algorithm are easily stored in a computer even for uncountable state 

space dynamic programs. 

2. Closed Dynamic Programs 

First of all, we define the general class of dynamic programs which 

satisfy the monotone and contraction assumption of Denardo [4]. Secondly 

the class of closed dynamic programs is defined. The state space ~ is an 

arbitrary non-empty set. Let V be the set of all bounded real valued func­

tions on~. An element v of V is a cost function. The norm defined by 

I! vii = sup{ Iv(x) I :x£~} makes Va Banach space. For u and v in V we write u~v 

if u(x)~v(x) for each x£~. The norm of V is monotone in the sense that O~u$:v 

implies Ilullsllvll. For each x£~ there is a set A of actions. Let t.. be the 
x 

Cartesian product x A An element O£t.. is called a policy. The loss func-
x£~ x 

tion h is defined to be a mapping from U {x} x A x V into a real number. 

x£~ 
x 

In Markov decision processes the loss function h can be written as h(x,a,v) 

c(x,a) + Sf~v(y)q(dYlx,a) where c(x,a) is the one period cost, S the discount 

factor, v a terminal cost and q( ·Ix,a) the transition probability measure on 

~ when the pair (x,a) causes a transition to new state y. 

The loss function h is assumed to satisfy the contraction and mono­

tonicity assumptions as follows: 

The contraction assumption: For some S £ [0,1) Ih(x,a,u)-h(x,a,v) I ::: sllu-vll 
for each u, v£V, x£~, a£A

x
. 

The monotonicity assumption: For each x£~ and a£A
x

' h(x,a,u) S h(x,a,v) 

whenever u~v in V. 

We define two operators H5 for o£t.. and H* as follows: 

Wov)(x) = h(x,o(x) ,v) , x£~, v£V, 

and 
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inf HaV(X) , xe:rI, ve:V. 

ae:t:, 

Assume that for each ve:V therp. is some 8e:t:, such that H5v = inf H aV' Denardo 
ae:t:, 

[4] gives a useful sufficient condition for this to hold. An operator H : V 
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-+ V is monotone if u ~ v implies Hu !> H v, and is a contraction if for some 

Se: [0,1), IIHU -Hvll :::sllu-vll for each u, v in V. Denardo [4] verifies under 

the monotone contraction assumption that H * and Ho are monotone contraction 

operators. 

By Banach's fixed point theorem for contraction operators, for each 0 e: t:, 

there is a unique v 0 e: V such that H 0 v 0 = v 0' which is called the cost of the 

policy a. Similarly, v* is called the optimal cost if H *v* = v*. If v 0 == 

v*, then the policy 0 is called optimal. If 11 v - v*11 ~ e:, then v is an e:­

optimal cost function. The dynamic programs defined so far, together with 

the assumption imposed are called the general class of dynamic programs 

(abbreviated by GDP). The class of closed dynamic programs (abbreviated by 

CDP) is a subclass of GDP which has a subset of cost functions V' C V and 

subset of policies t:,' C t:, which satisfy the following two conditions: 

(i) H aV e: V' whenever 0 e: t:,' and v e: V', 

(ii) if ve: V', then there exists some 0 e: t:,' such thatHav =H*V. 

The reason why the dynamic program is called closed is because it is closed 

under operators Ho' H *. Elements of V' and t:,' are called closed cost func­

tions and closed policies, respectively. In this paper we explore how GDP 

can be approximated by CDP, that is, CDP ~lways possesses an e:-optimal cost 

and e:-optimal policies to the optimal cost and optimal policy of GDP, respec­

tively. In the following section an algorithm is developed to generate a 

sequence of e:-optimal costs staying within CDP. 

3. The Generalized Policy Improvement A"lgorithm for COP 

GDP may be defined by the triple {r1,t:"v}. Similarly, CDP is defined by 

the triple {rI,6',V'}, where t:,' and V' may be distinguished subsets of t:, and 

V, respectively. In this section we develop an algorithm which enables us to 

preserve cost functions and policies within V' and t:,', respectively. 

Lemma 1. For 
n n 

that Ho v = Hkv , 

n 

depending on n, is 

If 
I) 

v e: (i) 

a given GDP {rI,6,V} and CDP 
. n+l k n n 

and defl.ne v = Ho 17 ,v e: 
n 

{r1,t:,',V'}, define 0 e: 6 such 
n 

V, n=0,1,2, ... , where k, 

a number of iterations of q 0 to be applied. 
n 

V' then 0 6' and 
n+l 

v' for n=O, 1 ,2, ... e: v e: , 
n 
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100 K. Sawaki 

(ii) If there exists vO E V' satisfying vO ~ H*VO, then {vn} 1S a 

decreasing sequence in V' and v
n 

~ v* E V. 

Proof: (i) The proof is by induction on n. From the condition (ii) of 

if ° v' exists a policy ° ° CDP, v E , then there 6
0 

E t; I such that H 6 v = H *v 

0 
v' t;' 

1 = Hk v
O k-l ° 0 

by using For such v E and 00 E , we have v 
6

O 
= Ho (Ho v ) E v' 

° 0 
the condition (i) of CDP in a sequential fashion on k. Suppose that 

n 
v' . v E 

Then, by the same argument as in the step n = 0, there exists a policy on E 

n n n n+l k n 
such that Ho v H*V For such 0 E t;' and V E v' , we have V = Ho V 

n 
n 

V' by using the condition ( i) of CDP. 

(i1.) First, we shall show by induction on n that v
n 

:: Ho v
n 

for 

For n = 0 we have v
O 

> H 1'0 - * 
o 

Ho v E V'. 

o 

n 

Assume for n > ° that 

k n k n k n 

n 

n=O, 1 ,2, ... 

v
n 

~ Ho vn. 

n 

For (n+l) we obtain v
n

+
1 

-- Ho v ~ Ho (Ho v) = H 0 (H 0 v) HO 
n 

n+l > n+l 
v _ R*V 

n+l 
Ho v 

n+l 

n < n 
~ Ho v - v 

n 

n n n n n 

So, we have v
n 

> Ho v
n 

for all n. 
n 

Therefore, 
n+l 

v 

which implies that {vn} is a decreasing sequence. Hence, v
n 

t;' 

E: 

~ vn +l k n k n 
=Ho v ?:H*v. 

k n * For a fixed n H * v converges pointwise to v as k ->- '" 

n 

Consequently, v
n ~ v* E: V. The way of constructing of v

n 
guarantees that 

v
n 

E: v', but the limit v* may not belong to v'. (Q.E.D.) 

An algorithm for approximating the fixed point v* of H in finite steps 

is presented. A terminal criterion is given by 

(1) Ilv-Hvll ~ (l-13h implies Ilv-v*ll:s: E: 

where 13 is a contraction coefficient of operator H. An upper bound on the 

number of iterations starting from v required to obtain an E:-approximation 

to v* can be derived from (1), namely, 

(2) 11 v - Rvll ;;; (1 - 13) l13
n 

imp lies 11 Hnv - vii ~ E. 

Lemma 2. Ilv* _vnll ~ (1-13)E:/26 implies Ilv*- Vo 11 ~ E. 

Proof: 11 v* - Vo 11 

n 

n 

IIH*v* - Ho Vo 11 

n n 

:: IIH*V* - Ho vnll + IIHo v
n 

-Ho v*11 + IIHo v* - Ho Vo 11 

n n n n n n 

:: 13l1v* _vnll + 13l1v
n

- v*1I + 13l1v*- Vo 
n 

n 
where we use the equality Ho v Arranging the above inequality, 

n 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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we have 

Ilv* -V
o 

11 :: 1 ~i3i3 Ilv*- vnll :: £. (Q.E.D.) 

n 

Putting equations (1), (2) and lenmlli 2 together in restating the stopping 

rule in terms of n, we have 

IIJfv - vii :: £ for 
2 

n > log ---..U:....:lh / log i3. 
213llv -Hvll 

If Ho is applied for 0 £ 6 ' , then the method of generating v
n 

is a policy 

improvement part. If I{* is applied, then the method is a successive approxi­

mation part. In CDP either g* or Ho is applied. Thus the following algorithm 

is called generalized policy improvement. 

Algorithm: o 0 
Start with Vo £ v' satisfying, v ;;;; H*v • Set n o. 

1 Find 6 6 ' such that 
n n 

step £ Ho v = H*v • 
n 

n 

Step 2 If Ilv
n 

-Ho vnll :;; (1 - 13) £ , then go to Step 4. 
n 

n+l 
k 

n n 
Step 3 Otherwise, choose some positive integer k and evaluate v - Ho v n 

Il 

Increment n by 1 and go to Step 1. 

Step 4 on is an £-optimal closed policy, and H*V
n 

and v
n 

are £-optima1 closed 

f ' F h n > n > * cost unctLons. urt ermore, v = H*v = v 

In CDP the algorithm provides a procedure of approximating either vii or v* by 

iterating Ho or H*, respectively, until (1) is satisfied. If v £ V', then 
n n 

R*v (. V' for each n. If 0 £ 6 ' , thenHliv £ V' for each n. Such algorithm 

involves only functions in V' and policies in 6 I. 

Lemma 3. Let {v
n

} be a sequence of closed cost functions generated by 

Further-
, n n n > 

the algorithm and defLne on by H Ii v = H'kv. Then, v = vii ;;;; v* 

n n 

more, if Ilv
n 

- vn+lll ~ (1- 13h, 0 is 
n 

an c-optimal closed policy. 

Proof: Let n be arbitrary but fixed. From the proof for lemma 1 (ii) 

and the monotonicity of El, we have 

k k 
n ::: n n 

~ 
H n n for each k v Hc v * v n 

n 

k k 

S
. n n 
Lnce Ho v ->- Vo 

n n 
and H * v ->- v* as k ->- 00 and n is arbitrary, we obtain 

n 
n n 

n 
v ~ Vs ~ v* for all n. 

n 

On the other hand, we have 
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102 K. Sawaki 

::: 11 v
n 

- He v n 11 + 811 v n - v* 11 
n 

k 

::: Ilvn-H/vnll + 811v
n

- v*11 
n 

for each k 
n 

because v
n 

~ Ho v
n 

n 

Thus, 
k 

(1-8)llvn-v*ll~ IIvn-Honvnll 

n 

Cl - 8)£, which implies that 
n . 

v 1S £-optimal. So is Vo because 
n 

Vo is smaller than v
n

' The way of constructing 
n 

be closed for finite number of n. 

vn and on preserves them to 

(Q.E.D.) 

From lemmas 1, 3 we may conclude that the algorithm converges. This 

argument verifies the following theorem. 

Theorem 1. CDP has c-optimal closed cost functions and E-optimal closed 

policies, provided that there exists some Vo E v' such that V o ;;;; H*V
O

. 

Remarks: (i) If k = 1 for each n, then the algorithm reduces to suc­
n 

cessive approximation and Step 1 is to evaluate H*v
n

• If in Step 3 lim H~ v
n 

n+l n+l = v can be evaluated, then v = Vo 

k-+<x> n 

and the algorithm is policy improve-

n+l n 
ment. In that case, however, v may not belong to V' because v'is not 

necessarily closed in V, and so Vo is not necessarily in V' even if ° E /:;. 

Therefore, in the algorithm we must choose a finite number of k for each 
n 

step n in order to keep v
fl 

staying only in v'. 

(ii) To start the algorithm we must find vO E V' satisfying vO ;;;; H*VO. In 

the appendix we discuss how to find such function vO for the three examples 

of CDP. 

4. Special Classes of Closed Dynamic Programs 

For a given GDP we formulate CDP and then discuss the relationship be­

tween them. The algorithm shows how to nicely generate closed cost functions 

for CDP and how GDP can be approximated by CDP in finite iterations. In this 

context, someone may raise a question how large the class of CDP is. This 

section will give you an answer by showing several examples of CDP. 

4.1. Piecewise dynamic programs 

A finite collection B = {B
l

,B
2

, ... ,Bm} of subsets of n is a partition 

of n if B. n B. = <p for i " j and BB. = n. The product of two partitions 
1. ] i=1 1. 
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n 
defined inductively by x p, = P 

i=l ~ n 

n-l 
x x P .• 

i=l ~ 
A function v E: V is called piece-

wise if there exists a partition {B
l

,B
2

, ... ,B
m

} of ~, a subset V' of V and a 

vector of functions {v
l
,v

2
' ... ,vm} such that vex) = vi(x) on each Bi and each 

vi E V'. A policy 6 E A is called piecewise if there exists a partition 

{B
l

,B
2

, ... ,B
m

} of ~ and a set of actions {a
l

,a
2

, ... ,a
m

} such that 6(x) = a
i 

on each B, and a, E n A , i=1,2, ... ,m, A piecewise dynamic program is a 
~ ~ XEB, x 

~ 

closed dynamic program with v' as the set of piecewise functions in V and A I 

as the set of piecewise policies in A. A piecewise linear dynamic program 

[16] is an example of the piecewise dynamic program and hence of CDP if we 

take v' as the set of piecewise linear functions, A' as the set of piecewise 

constant policies and each cell of a partition B, as a convex polyhedron. 
~ 

The paper by Denardo and Rothblum [5] discuss piecewise dynamic programs with 

v' as the set of affine functions in V and A' as the set of constant policies 

~n A. Finite states Markov decision processes are piecewise dynamic programs 

with v' as the set of finite numbers, A' as the set of piecewise constant 

policies and each cell B, of a partition as a singleton subset. Another 
1. 

example, which has theoretical interest, arises when Ax = A for all x E ~ 

where A is a measurable space, v'is the set of Borel measurable functions 

~n V, and A' is the set of measurable policies in A. 

The next theorem provides a sufficient condition for a general dynamic 

program to be a piecewise (closed) dynamic program. 

Theorem 2. Suppose that GDP has the property that for each x E ~, Ax is 

the same finite set A = (a
l

,a
2

, ... ,a
p

). Let V' be the set of piecewise cost 

functions and let A' be the set of piecewise policies. If h(·,a,v) E V' for 

each a E A and v E V', then the GDP is piecewise. 

Proof: Choose v £ V' and 6 I £ A I. a, on each B, where 
~ ~ 

Suppose 6(x) 

Since h(.,a"v) is piecewise for each i, 
~ 

there exists 11 partition {C'1'C'2' ••. 'C' } of ~, a subset V,I of V' and a 
~ ~ ~n ~ 

vector of functions {w'1,w'2' ... ,Wo } such that h(x,a "v) = w;J'(x) on each 
~ ~ ~n ~ ~ 

C" and each W" E Vo'. Let P, = {C" r B, : j=1,2, ... ,n} and P 
~] ~] ~ ~ , ~] ~ 

also a partition of~. In addition, since 6 (x) 

(H 6 (x) v) (x) h(x,ai,v) on Bi 

m 
UP, is 

i=l ~ 

wi/x) on Bi n C
ij 

, which is again piecewise. Thus H6v E V', 

which satisfies (i) of the definition of CDP. 

Let v E ,". We next show how to find 6 E A' such that Ii
6
V=H*V. For 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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a E A, h(·,a,v) is piecewise, say h(x,a,v) = d. (x) on the j-th cell of a 
]a 

p 
partition Pa' Form the product partition x P P and put P = {B

l
,B

2
, ... , 

i=l a i 

B }, after reordering the cells of the partition. If B. ~s a subset of the 
m ~ 

j-th cell of Pa' let d. (.) = w. (.). For each a E A, P ~s plainly finer 
]a ~a 

than Pa' so that h(x,a,v) = wia(x) on B
i

, i=1,2, ... ,m. For each i=1,2, ... ,m 

and j=l,2, ... ,p define the set 

G .. = {x E B. 
~] ~ 

W. (x)~w. (x) for k=1,2, ... ,p,khL 
la

j 
~ak 

m 
Then, put Q

i 
{G .. 

~J 

j=l,2, ... ,p} is a partition of B. and Q _ U Q. is a 
~ i=l ~ 

partition of n with the property that 

(H*V) (x) = inf H Ii (x) 

Ii 

W •. (x) if x E G.. which is a cell of Q. 
~J ~J 

Thus, the policy Ii E ~' defined by Ii(x) 

which completes the proof .. 

a. on G .. satisfies H~ v 
J ~J \J 

4.2. Partially observable Markov decision processes 

(Q.E .D.) 

To introduce partially observable Markov decision processes, we first 

discuss a machine maintenance and repair model similar to that in Small wood 

and Sondik [17J. A machine consists of two internal components. The state 

of the machine is the number of working components. The machine produces four 

finished items at each period and the machine cannot be inspected. However, 

a random sample from the four items can be selected and the number of defec­

tives determined. The number of defective items out of the four has a 

binomial distribution with mean 4TI. if the state of the machine is i. At the 
~ 

beginning of a period, a prior probability distribution as to the state of 

the machine is known. Based on this distribution, an action is taken whether 

or not to overhaul the machine and the number of items to be sampled from the 

next lot. An action a = (l,k) represents the action to overhaul and sample k 

from the next lot and a = (O,k) represents the action of not overhauling and 

sampling k from the next lot. A cost c(i,a) is incurred if action a is made 

when the machine is in state i. The dynamics of the process {z : n = 0,1, 
n 

2, ... } giving the state of the machine in period n are governed by two pro-

bability transition matrices PI if the machine is overhauled and Po if the 

machine is not overhauled. The loss function is h(i,(Ii,k),v) = c(i,(Ii,k» + 

2 

S ~ PIi(i,j)v(j) where S € (0,1) is the discount factor and Ii is zero or one. 
j=O 
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In general consider a dynamic program with state space S = {l,Z, ... , } 

(called the core process), with a finite action set A such that each action 

is admissible in each state, and a loss function 

hU,a, v) c(i,a) + B(p v)(i), 
a 

( i a v) ~ S x A x RN 
~" ~ 

where B E (0,1) is the discount factor, each P is a probability transition 
a 

matrix, and (p v)U) is the i-th component of the vector P v. Thus the 
a a 

objective is to maximize E I Bnc(z ,a ) where Z is the state of the core 
n=O n n n 

process and an is the action at period n. However, Zn cannot be observed. 

Instead a signal Y
n 

which takes values in the finite set e is generated by 

the conditional probability distribution function 

r(elz ,a ) = pr[Y = elz ,a ] = Pr[Y = elz ,a ,zk,ak,Yk,k ~ n-l]. 
nn n nn n nn 

Assume that the probability distribution of Zo is known, say 

pr[zo = i) i=l,Z, ... ,N. 

The n-th action, an' is based on the history of the process Hn = (X
O

; 

Yl'YZ, ... ,Y
n

; aO,a1, ... ,a
n

_
l
). Let Xn be the probability vector defined by 

x (i) = pr[Z = ilH ] for i E S. 
n n n 

It can be shown (cf. Dynkin [7]) that 

Xn+l (i) = pr[zn+l = ilHn+l] Pr[Z 1 = ilz ,Y l,a]. 
n+ n n+ n 

Thus X 
n 

is a suffi-

105 

cient statistic for the history f{ • 
n 

It follows that {X : n = O,l,Z, ... } is a 
n N 

Markov process and is called the observed process. 
N 

Its space is rl = {XER : x i~O, 

Lx.=l}. 
1 ~ 

q(Blx,a) 

Its loss function is h(x,a,v) = ra . x + Bfv(y)q(dylx,a) where 
rl 

pr[x 1 E Blx = x, a = a] r is the vector (cU,a) : i E S), 
n+ n n 'a 

and v is a bounded real-valued function defined on rl. 

A formula expressing the probability transition function q(Blx,a) in 

terms of rand P is derived in [14]. The vector X 1 is a deterministic 
a n+ 

function of xn,a
n

, and Y
n

+
l

. Let Pe,a be the matrix with components 

Pe x 
Pe U,j) = 

,a 
r(elj,a)p (i,j). 

a 
Let g(x,a,e) = ~ so that X 1 = g(X ,a , 

p x' n+ n n 

Yn +l )· For BeRN and x E rl, define the set 
e,a 

valued function ~ (B,x) = 
a 

-1 
le: g(x,a,e) E B} and for ~ c e define ~ (~,B) = {x E rl: ~ (B,x) = ~}. Then 

a a 

-1 N 
{~ (~,B): ~ c e} is a finite partition of rl for each a E A and B CR. Using 

a 

p[y =elx =x a =a] p x it follows from [15] that for each ~ C e, 
n+l n' n e ,a ' 

(1) q(Blx,a) L p x 
eE~ e,a 

for 
-1 

x E <I> (~,B). 
a 
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The next theorem provides a formula for the loss function which is con­

venier.t for machine implementation. Since the theorem demonstrates that the 

loss function is piecewise linear, it follows from Theorem 2 that the observed 

process is a piecewise linear dynamic program. 

Theorem 3. Suppose vex) 

a partition of rl. Then 

v . . x for x e: B. with P 
~ ~ v 

(2) h(x,a,v) = [r + BEv. E Pe ] 
a i ~ee:1jJ. ,a 

~ 

• x for x e: 
m -1 
n ~ (1jJ. ,B .) 

i=l a ~ ~ 

where 
m -1 

• (1jJ .,B.) is a cell in the partition P of rl defined by 
i=l a ~ ~ 

p 
m -1 
X {~ (1jJ,B.) 

i=l a ~ 
1jJ c 8}. 

In other words, a partially observable Markov decision process is a piecewise 

linear (closed) dynamic program. 

Proof: First observE~ that from (1), 

E g(x,a,e)P
e 

x = E Pe x for 
ee:1jJ ,a ee:1jJ ,a 

Consequently, (2) follows by substituting the above into 

h(x,a,v) = r 
a 

r 
a 

• x + B!v(y)q(dylx,a) 
("l 

m 

• x + B E v.! yq(dylx,a). 
i=l ~B. 

~ 

-1 
x e: ~ (1jJ ,B) • 

a 

-1 
That {~ (1jJ,B.) : 1jJ C 8} is a partition was noted in the discussion preceding 

a ~ 

(1). This completes the proof. (Q.E.D.) 

4.3. A stochastic inventory model 

Let x be the inventory level at the beginning of a period, a be the 

inventory level immediate after producing the goods, that is, a - x is the 

amount produced and s the amount of demand with the distribution function 

F(·). A function v on rl is called K-convex if there exists a constant value 

K such that K + v(ax
l
+(1-cl)x

2
) ~ av(x

l
) + (1-a)v(x

2
) for any x

l
,x

2 
e: ("l, 

a e: (0,1). Note that a O-convex function is convex in the ordinary defini­

tion. As a matter of fact, K can be interpreted as a set up cost, which will 

be seen in the following paragraph. It is easy to show that if v is K-convex, 
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so is f;v(a-s)dF(S) and that if v
1 

and "2 are K-convex, so is v
1 

+ i3v1 for 

i3 > a. Define the loss function 

h(x,a,v) 
{

K + e(x,a) + i3f~v(a-s)dF(S) 

e(x,a) + i3f~v(X-S)dF(S) 

if a > x 

if a = x 
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where e(x,a) is the sum of the expected inventory cost and the expected 

shortage cost. Assume that e(x,a) is convex in x for each a. Take v' as the 

set of K-convex functions. From the properties of a K-convex function men­

tioned above h(x,a,v) is K-convex in x for each a whenever v is K-convex. 

Take t:,' as the set of piecewise constant: policies. It is well known (see 

Hadley and Whiten [9]) that in such an inventory model with a set up cost the 

(s-s) policy is optimal, provided e(x,a) is convex in x for each a. Such 

(s-s) policy is certainly piecewise constant because 8(x) = S for x < 5, and 

8 (x) = a for x ~ s. This implies that if v £ v' there exists a policy 8 I~ t:,' 

such that ff*v = H
8

V. Furthermore, if 8 £ t:,', then 

{

h(X,S,V) for x:5s, 
H8v = h(x,o(x),v) = 

h(x,a,v) for x>s. 

Therefore, H 8 v £ v' for v £ V' and 8 £ [,'. This concludes that the stochastic 

inventory model is piecewise (closed) with V' as the set of K-convex functions 

and t:,' as the set of piecewise constant policies. 
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Appendix 

Initialization of the algorithm for the three special classes 

To start the algorithm we must choose some Vo E v' such that Vo 2 H *v
O

. 

In this appendix we show how to find such an initial cost function Vo for 

certain classes of CDP. To this aim we need a specification of loss function 

h. Suppose that h(x,a,v) = e(x,a) + Sfnv(y)q(dy!x,a) as in Markov decision 

processes. Assume that v'is a subset of V which contains constant functions. 

4.1. 

whcih 

Piecewise dynami c pr'ograms 

Define a constant function Vo by 

min 
e(x,a) 

Vo = sup ---
x a 1-13 

reduces to the following inequalities, 

(l-S)v
O 

~ min e(x,a) 
a 

for all x. 

Hence, (H*VO)(X) = min{e(x,a) + SfvO q(dy!x,a)} ~ (l-S)v
O 

+ SvO 
a n 

Therefore, such a constant function Vo E V' satisfies Vo ~ H*V
O 

4.2. Partially observable Markov decision processes 

Vo for all x. 

Since in this class of CDP we have h(x,a,v) = ra·x + SJv(y)q(dy!x,a), 

we put 
r 'X 

v = min max a 
o a xdl 1-8 

where n {x=(xl' ... ,x
N

): x, ? 0, Z,x, = I}. max r 'x - r ·x* is simply the 
• ~ • XEn a a 

optimal value of a linear programming problem for each a, (l-S)v
O 

= min rax* 
a 

- min ra·x for all x. Hence H*V
O 

= min{ra'x + SvO} :;;; O-S)vO + SvO = vo· 
a a 

4.3. A stochastic inventory model 

Define 

1 
Vo = --max{sup min[K + e(x,a)], sup e(x, O)}. 

1-8 x a x 

By the same arguments as the above, such Vo ~s satisfactory to start the 

algorithm. 
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