
On the Classical d-Orthogonal Polynomials

Defined by Certain Generating Functions, II

Y. Ben Cheikh∗ K. Douak

Abstract

This paper is a direct sequel to [5]. The present part deals with the problem
of finding all d-orthogonal polynomial sets generated by G(x, t) = etΨ(xt).
The resulting polynomials reduce to Laguerre polynomials for d=1 and to
two-orthogonal polynomials associated with MacDonald functions for d=2,
recently considered by the authors [6] and by Van Assche and Yakubovich
[36]. Various properties for the obtained polynomials are singled out.

1 Introduction and preliminaries

During the two past decades, there has been increased interest in an extension of the
notion of orthogonal polynomials known as multiple orthogonal polynomials (see,
for instance, [3,10]). This notion, which is closely related to simultaneous Padé ap-
proximation, has many applications in various fields of mathematics as the number
theory and the special functions theory. However, only recently examples of multi-
ple orthogonal polynomials appeared in the literature. A convenient framework to
discuss such examples consists of considering a subclass of multiple orthogonal poly-
nomials known as d-orthogonal polynomials (see, for instance, [5,6,12-16, 27,36] ).
Our purpose in this work is to investigate some d-orthogonal polynomials defined by
specified generating functions. The resulting polynomials are natural extensions of

∗The corresponding author
Received by the editors May 2000.
Communicated by A. Bultheel.
1991 Mathematics Subject Classification : 33C45, 42C05.
Key words and phrases : orthogonal polynomials, multiple orthogonal polynomials, d-

orthogonal polynomials, hypergeometric polynomials, recurrence relations, differential equations.

Bull. Belg. Math. Soc. 7 (2000), 591–605



592 Y. Ben Cheikh – K. Douak

certain classical orthogonal polynomials. Our previous paper [6] dealt with polyno-
mials generated by G[(d+1)xt−td+1]. The present one is devoted to the polynomials
generated by G(x, t) = etΨ(xt) and defined by (1.7)-(1.8).
Next, we present some basic definitions which we need below.
Let P be the vector space of polynomials with coefficients in C and let P ′ be its dual.
We denote by 〈u, f〉 the effect of the functional u ∈ P ′ on the polynomial f ∈ P . Let
{Pn}n≥0 be a sequence of polynomials in P such that degPn(x) = n for all n. The
corresponding monic polynomial sequence {P̂n}n≥0 is given by Pn = λnP̂n, n ≥ 0,
where λn is the normalization coefficient and its dual sequence {un}n≥0 is defined
by 〈un, P̂m〉 = δn,m , n,m ≥ 0.
Definition 1.1: Let d be an arbitrary positive integer. The polynomial sequence
{Pn}n≥0 is called a d-orthogonal polynomial sequence (d-OPS) with respect to the
d-dimensional functional U = t(u0, · · · , ud−1) if it fulfils [27,37]〈uk, PmPn〉 = 0, m > dn + k , n ≥ 0,

〈uk, PnPdn+k〉 6= 0, n ≥ 0,
(1.1)

for each integer k belonging to {0, 1, . . . , d− 1}.
The orthogonality conditions (1.1) are equivalent to the fact that the sequence
{Pn}n≥0 satisfies a (d+1)-order recurrence relation [37] which we write in the monic
form as

P̂m+d+1(x) = (x− βm+d)P̂m+d(x)−
d−1∑
ν=0

γd−1−ν
m+d−ν P̂m+d−1−ν (x) , m ≥ 0, (1.2)

with the initial conditions
P̂0(x) = 1 , P̂1(x) = x− β0 and if d ≥ 2 :

P̂n(x) = (x− βn−1)P̂n−1(x)−
n−2∑
ν=0

γd−1−ν
n−1−ν P̂n−2−ν(x) , 2 ≤ n ≤ d,

(1.3)

and the regularity conditions

γ0
n+1 6= 0 , n ≥ 0.

When d = 1, the recurrence (1.2) with (1.3) is the well-known second-order recur-
rence relation P̂n+2(x) = (x− βn+1)P̂n+1(x)− γn+1P̂n(x), n ≥ 0,

P̂0(x) = 1, P̂1(x) = x− β0.

Let {Qn}n≥0 be the sequence of the derivatives defined by Qn(x) = DxPn+1(x),
n ≥ 0, where Dx is the derivative operator d/dx. According to Hahn’s property
[20], if the sequence {Qn}n≥0 is also d-orthogonal, the sequence {Pn}n≥0 is called
“classical ” d-OPS.
The generalized hypergeometric functions are defined by (see, for instance, [26]
p.136):

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

+∞∑
m=0

(a1)m · · · (ap)m
(b1)m · · · (bq)m

zm

m!
,
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where
• p and q are positive integers or zero (interpreting an empty product as 1),
• z is a complex variable,
• (a)m is Pochhammer’s symbol given by:

(a)m =

1 if m = 0,

a(a+ 1) · · · (a +m− 1) if m = 1, 2, 3, . . . ,

• the numerator parameters a1, . . . , ap and the denominator parameters b1, . . . , bq
take on complex values provides that bj 6= 0,−1,−2, . . .; j = 1, . . . , q.
Thus, if a numerator parameter is a negative integer or zero, the pFq series terminates
and we are led to a generalized hypergeometric polynomial of the type

Pn (x; a1, . . . , ap;α1, . . . , αq) = p+1Fq

(
−n, a1, . . . , ap

α1 + 1, . . . , αq + 1
; x

)

=
n∑

m=0

(−n)m(a1)m · · · (ap)m
(α1 + 1)m · · · (αq + 1)m

xm

m!
,

(1.4)

where αj 6= −1,−2, . . .; j = 1, . . . , q. The polynomial Pn is of degree n. These
polynomials are generated by (cf.[7] p.947):

etpFq

(
a1, . . . , ap

α1 + 1, . . . , αq + 1
; −xt

)
=

∞∑
n=0

Pn (x; a1, . . . , ap;α1, . . . , αq)
tn

n!
, (1.5)

and satisfy the differential equation (cf. [29] p.75):(
x(θ − n)

p∏
i=1

(θ + ai)− θ
q∏
j=1

(θ + αj)
)
y = 0, (1.6)

where θ = x d
dx

.
Now, let us consider the following Problem P: Find all d-orthogonal polynomial
sequences {Pn}n≥0 generated by

et Ψ(xt) =
∞∑
n=0

1

n!
Pn(x)tn, (1.7)

where

Ψ(z) =
∞∑
n=0

cnz
n, cn 6= 0. (1.8)

Such characterization takes into account the fact that polynomial sets which are
obtainable from one another by a linear change of the variable are considered equiv-
alent.
Before proceeding to a discussion of the case d = 1, let’s recall some properties
satisfied by polynomials generated by (1.7):
Lemma 1.1 (cf. [6]): The following statements are equivalent:
1) The polynomials Pn; n ≥ 0; are generated by (1.7).
2) The polynomials Pn; n ≥ 0; are generated by

(1− t)−λ F
(

xt

1− t

)
=

∞∑
n=0

(λ)n
n!

Pn(x)tn, (1.9)
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where

F (z) =
∞∑
n=0

(λ)n cnz
n, cn 6= 0. (1.10)

3) The sequence of polynomials Rn(x) = xnPn
(

1
x

)
is an Appell one, namely, gener-

ated by Ψ(t)ext.
4) The polynomials Pn; n ≥ 1; satisfy the differential-recurrence relation

xP ′n(x) = nPn(x)− nPn−1(x). (1.11)

5) The polynomials Pn; n ≥ 0; possess a multiplication formula of the form

Pn(xy) =
n∑
k=0

(
n
k

)
yk (1− y)n−k Pk(x). (1.12)

Some other interesting properties of the polynomials Pn were given by Rainville (cf.
[28,29]).
Problem P, for d = 1, was set and treated under different aspects by many authors
who took as starting point for their characterizations one of the properties given by
Lemma 1.1. Indeed:
1) Feldheim [18] proved that the only orthogonal polynomials which satisfy the
multiplication formula (1.12) are those of Laguerre.

2) Toscano [33] proved that {Pn(x)}n≥0 is an orthogonal polynomial set and
{
xnPn

(
1
x

)}
n≥0

is an Appell if and only if {Pn(x)}n≥0 is the Laguerre polynomial set.
3) Abdul-Halim and Al-Salam [1] proved that the only orthogonal polynomials of
the form (1.4) where the a’s and α’s are independent of x and n, are the Laguerre
polynomials (p = 0 , q = 1).
Also, this result may be deduced from Al-Salam-Chihara’s characterization of clas-
sical orthogonal polynomials (cf.[2]) and the identity (1.11).
We now state our main result:

Theorem 1.2: The polynomial sequence {`~αdn }n≥0 defined by

`~αdn (x) := `(α1,...,αd)
n (x) = 1Fd

(
−n

α1 + 1, . . . , αd + 1
; x

)
, αj 6= −1,−2, . . . ; j = 1, . . . , d.

(1.13)
is the only d-OPS generated by (1.7). Moreover, it is classical in Hahn’s sense.
At first, we prove the above theorem. Then, we establish the connection of the poly-

nomials `~αdn ;n ≥ 0; with other polynomial sets in the literature. After that, we state
some of their properties which generalize in a natural way the Laguerre polynomials
ones. These properties are: a differential equation of order d + 1, generating func-
tions defined by means of the hyper-Bessel functions, some differentiation formulas
and a Koshlyakov type formula involving the Meijer G-function.
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2 Proof of the main result

Starting point for the proof of Theorem 1.2 is the following fundamental lemma:
Lemma 2.1: Let Pn; n ≥ 0; be the polynomials generated by (1.7). The following
statements are equivalent:
1) {Pn}n≥0 is a d-OPS.
2) Each polynomial Pn ; n = 0, 1, · · · , satisfies a differential equation of the type(

x(θ − n) − S(θ)
)
y = 0, θ = x

d

dx
, (2.1)

where S is a polynomial of degree d + 1 in θ given by

S(θ) =
d+1∑
k=0

sn,k (θ − n)k, sn,0 6= 0 and sn,d+1 6= 0. (2.2)

Proof: The iteration of (1.11) leads to the relation (cf.[28] p.242):

Pn−k(x)

(n− k)!
= (−1)k (θ − n)k

Pn(x)

n!
(2.3)

where (T )k denotes

(T )k = (T )(T + 1) · · · (T + k − 1), (T )0 = 1.

This identity allows us to replace any condition, given by a recurrence relation linking
Pn and Pn−j ; 0 ≤ j ≤ r, by another expressed by a differential equation satisfied by
Pn where the differential operator is defined in terms of (θ − n)j; 0 ≤ j ≤ r, and
vice versa. For the sake of simplicity we illustrate this method for the case d = 2,
see below at the end of this section.
Thus, the combination of (2.3) and (1.2) provides the equivalence: 1)⇐⇒ 2).
Now, we return to our problem and prove the main result.
Proof of Theorem 1.2. Without loss of generality (use a change of variable if neces-
sary), the polynomial S(θ) may be written as:

S(θ) = θ
d∏
j=1

(θ + αj), αj ∈ C , j = 1, . . . , d. (2.4)

By induction, we verify that the expression of the coefficients sn,0 and sn,d+1 in terms
of the roots −αj; j = 1, . . . , d; are given by

sn,0 = n
d∏
j=1

(n + αj) and sn,d+1 = 1.

So, the conditions (2.2) are ensured if and only if αj 6= −1,−2 . . .. In this case,
the polynomials Pn, n = 0, 1, · · · , are solutions of the generalized hypergeometric
equation: (

x(θ − n)− θ
d∏
j=1

(θ + αj)
)
y = 0 (2.5)
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which, according to (1.6), means that Pn; n ≥ 0; are the polynomials `~αdn ; n ≥ 0;
defined by (1.13).

Thus, if we consider as equivalent two polynomial sets which are obtainable from one
another by a linear change of the variable, we state that the polynomials `~αdn ; n ≥ 0,
are the only d-OPS generated by (1.7).

Finally, in order to verify that these polynomials are classical in Hahn’s sense, let
us recall the identity (see [29] p.107) :

Dx pFq

(
a1, . . . , ap
b1, . . . , bq

; x

)
=

∏p
i=1 ai∏q
j=1 bj

pFq

(
a1 + 1, . . . , ap + 1
b1 + 1, . . . , bq + 1

; x

)
. (2.6)

From (2.6) and (1.13), we deduce

d∏
j=1

(αj + 1)Dx`
~αd
n+1(x) = −(n+ 1)`~αd+1

n (x), n ≥ 0, (2.7)

where ~αd+1 = (α1+1, . . . , αd+1). So the sequence
{
Dx`

~αd
n+1

}
n≥0

is also d-orthogonal,

which is the Hahn property [20].

On the other hand, from (1.13), it may be seen that `~αdn has the explicit formula

`~αdn (x) =
n∑
k=0

(
n
k

)
ξkx

k, n ≥ 0, (2.8)

where

ξm := ξm(~αd) =
(−1)m∏d

j=1(αj + 1)m
, m ≥ 0. (2.9)

Also, if we denote by {ˆ̀~αdn }n≥0, the monic polynomials corresponding to {`~αdn }n≥0,

it is easily seen that `~αdn = ξn ˆ̀~αd
n . Thus (2.7) gives Dx

ˆ̀~αd
n+1 = (n + 1)ˆ̀~αd+1

n , n ≥ 0.
Now, we shall illustrate the possibility of deriving a (d+1)-order recurrence relation

satisfied by the polynomials `~αdn from the differential equation (2.5) and the identity
(2.3) for d = 2:

The polynomials

`(α,β)
n (x) = 1F2

(
−n

α+ 1, β + 1
; x

)
, n ≥ 0

satisfy the differential equation:(
x(θ − n)− θ(θ + α)(θ + β)

)
`(α,β)
n (x) = 0.

Use the following relations, which one can easily verify,
θ = (θ − n) + n,
θ2 = (θ − n)2 + (2n − 1)(θ − n) + n2,
θ3 = (θ − n)3 + 3(n − 1)(θ − n)2 + (3n2 − 3n+ 1)(θ − n) + n3,
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to rewrite the last equation under the form(
n(α+ n)(β + n)−

[
3n2 − 3n+ 1 + (2n− 1)(α + β) + αβ − x

]
(θ − n)

+ (3n− 3 + α+ β)(θ− n)2 + (θ − n)3

)
`(α,β)
n (x) = 0,

which, combined with (2.3), leads to the recurrence relation:

(α + n)(β + n)`(α,β)
n (x)−

[
3n2 − 3n + 1 + (2n− 1)(α + β) + αβ − x

]
`

(α,β)
n−1 (x)

+ (n− 1)(3n − 3 + α+ β)`
(α,β)
n−2 (x)− (n− 1)(n − 2)`

(α,β)
n−3 (x) = 0.

Notice that, this recurrence relation was also obtained by Rainville (cf. [29] p.243)
using Sister Celine’s technique.

Next, we give some properties of the polynomials `~αdn , n ≥ 0.

3 Polynomials related to `~αdn

From (1.13), we deduce that the polynomial sequence
{
`~αdn
}
n≥0

is a special case of

the Brafman polynomials (cf. [8] p.186 ). Three particular cases are worthy of note:
1) For d = 1, with ~α1 = (α), α > −1, we obtain

`(α)
n (x) =

n!

(α+ 1)n
L(α)
n (x), (3.1)

where L(α)
n , n ≥ 0, are the classical Laguerre polynomials.

2) For d = 2, ~α2 = (α, β), α, β 6= −1,−2, . . ., we have

`(α,β)
n (x) = n!

Γ(1 + α)Γ(1 + β)

Γ(1 + n+ β)
x−

α
2 J

(α,β−α
2

)
n

(
x

1
2

)
,

where J (ν,σ)
n are the Bateman functions (cf.[4] p.575).

These polynomials have been studied recently by the authors [6] and by Van Assche
and Yakubovich [36] in order to solve an open problem, formulated by Prudnikov
in [35], which consists of constructing orthogonal polynomials associated with the
weight function

ρν(x) = 2x
ν
2Kν(2

√
x), x > 0,

where Kν is the MacDonald function (modified Bessel function).

3) For ~αd(α) =
(
α+1
d
− 1, . . . , α+d

d
− 1

)
, α > −1, we have

`~αd(α)
n (x) =

n!

(α+ 1)dn
Zα
n

(
dx

1
d , d

)
,

where Zα
n (x, k);n ≥ 0; are known in the literature as Konhauser polynomials, earlier

introduced by Toscano as follows (cf. [32] or [23]):

Zα
n (x, k) =

(α + 1)kn
n!

1Fk

(
−n

α+1
k
, . . . , α+k

k

;
(
x

k

)k )
.

In particular, Zα
n (x, 1) = L(α)

n (x). The case k = 2 was encountered by Spencer and
Fano [30] in certain calculations involving the penetration of gamma rays through
matter.
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4 Generating functions

From (1.5), we deduce a generating function for the polynomials `~αdn , n ≥ 0, ex-
pressed by the hyper-Bessel function J~αd defined by (cf.[11] or [22] ):

J(α1,α2,...,αd)(z) = 0Fd

(
−

α1 + 1, α2 + 1, . . . , αd + 1
; −

(
z

d+ 1

)d+1
)
.

In fact, from (1.5) we have

etJ(α1,α2,...,αd)

(
(d+ 1)(xt)

1
d+1

)
=

∞∑
n=0

`~αdn (x)
tn

n!
. (4.1)

When d = 1, we have the well-known generating function for Laguerre polynomials
(cf. [17] p.189)

etJα
(
2
√
xt
)

=
∞∑
n=0

1

(α+ 1)n
L(α)
n (x)tn,

where Jν is the Bessel function of the first kind of order ν.
Another generating function for the polynomials `~αdn ; n ≥ 0; may be derived from
the Chaundy identity (cf. [9] p.62) or from (1.9), that is,

(1− t)−λ 1Fd

(
λ

α1 + 1, . . . , αd + 1
; − xt

1− t

)
=
∞∑
n=0

(λ)n `
~αd
n (x)

tn

n!
, | t |< 1. (4.2)

If λ = αi + 1, this identity takes the form

(1− t)−(αi+1)
0Fd−1

(
−

α1 + 1, . . . , αi−1 + 1, αi+1 + 1, . . . , αd + 1
;− xt

1− t

)

=
∞∑
n=0

(αi + 1)n`
~αd
n (x)

tn

n!
, | t |< 1.

When d = 1, we have the well-known generating function for Laguerre polynomials
(cf. [17] p.189)

1

(1− t)α+1
exp

(
− xt

1− t

)
=

∞∑
n=0

L(α)
n (x)tn, | t |< 1.

5 Connection between the polynomials `~αdn and the d-OPS of

Hermite type

Recall that the d-OPS of Hermite type are at the same time d-orthogonal and
Appell polynomials [12]. The Gould-Hopper polynomials gd+1

n (x, h) ; n ≥ 0; are
(apart from a linear transform) d-OPS of Hermite type. They are generated by the
following relation (cf.[19] p.58):

exp(xt+ htd+1) =
∞∑
n=0

gd+1
n (x, h)

tn

n!
(5.1)
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and generalize the Hermite polynomials Hn ; n ≥ 0. In fact, for d = 1, we have

g2
n(2x,−1) = Hn(x), n ≥ 0. (5.2)

The explicit form of these polynomials is (cf. [19] p.58 ):

gd+1
n (x, h) =

[ n
d+1

]∑
s=0

n!

s!(n− (d+ 1)s)!
hs xn−(d+1)s, (5.3)

which means that the sequence
{
gd+1
n

}
n∈N

is d-symmetric, namely,

gd+1
n (ωd+1x, h) = ωnd+1g

d+1
n (x, h),

where ωd+1 = exp(2iπ/(d+ 1)).
Let f be a complex function. Put

Π[d+1,k](f)(x) =
1

d+ 1

d∑
`=0

ω−k`d+1f
(
ω`d+1x

)
,

where k is an integer such that 0 ≤ k ≤ d. Apply this operator to the two members
of the identity

exp(−td+1) exp (−(d+ 1)xt) =
∞∑
n=0

gd+1
n

(
(d+ 1)x,−1

) tn
n!

(5.4)

considered as functions of the variable x.
Using the fact that the sequence

{
gd+1
n

(
(d + 1)x,−1

)}
n∈N

is d-symmetric and the

identities ∑d
`=0 ω

m`
d+1 =

{
d + 1 if m ≡ 0 mod (d + 1),
0̧ otherwise,

((d+ 1)n + k)! = k!(d+ 1)(d+1)n∏d
j=0

(
k+1+j
d+1

)
n
,

we obtain

exp(−td+1)
((d+ 1)xt)k

k!
0Fd

(
−

∆∗(d + 1, k + 1)
; (xt)d+1

)

=
∞∑
n=0

gd+1
(d+1)n+k

(
(d+ 1)x,−1

) t(d+1)n+k

((d + 1)n+ k)!
(5.5)

where ∆∗(d + 1, k + 1) abbreviates the set of the d parameters{
k + 1 + j

d+ 1
; j = 0, 1, . . . , d, j 6= d− k

}
. (5.6)

Now, combining (4.1) and (5.5) to obtain

gd+1
(d+1)n+k

(
(d+1)x,−1

)
= (−1)n

((d+ 1)n + k)!

n! k!
((d+1)x)k `~αd,kn (xd+1), for all n ∈ N

(5.7)
where the components of the vector ~αd,k + 1 are given by the set (5.6).
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Notice that for d = 1, the identity (5.7) is reduced to the well-known relation between
Hermite and Laguerre polynomials (cf.[31] p.102):

H2n(x) = (−1)n 22n n!L
(− 1

2
)

n (x2),

H2n+1(x) = (−1)n 22n+1 n! xL
( 1

2
)

n (x2).

For d = 2, see the analogous result given in [6] Section 5.

6 Differentiation formulas and recurrence relations

Notations : If ~αd = (α1, . . . , αi, . . . , αd), we put ~αd(i−) = (α1, . . . , αi−1, αi−1, αi+1, . . . , αd)
and | ~αd |=

∑d
i=1 αi.

Theorem 6.1 : The polynomials `~αdn , n = 0, 1, · · · , satisfy the following relations :

d∏
i=1

(αi + 1)Dx`
~αd
n (x) = −n `~αd+1

n−1 (x), (6.1)

d∏
i=1

(αi + 1)k D
k
x`
~αd
n (x) = (−1)k

n!

(n− k)!
`~αd+k
n−k (x), (6.2)

xDx`
~αd
n (x) = n `~αdn (x)− n `~αdn−1(x), (6.3)

x `~αd+1
n−1 (x) =

d∏
i=1

(αi + 1)
(
−`~αdn (x) + `~αdn−1(x)

)
, (6.4)

xDx `
~αd
n (x) = αi

(
− `~αdn (x) + `~αd(i−)

n (x)
)
, (6.5)

{dxDx+ | ~αd |} `~αdn (x) =
d∑
i=1

αi`
~αd(i−)
n (x), (6.6)

(n + αi) `
~αd
n (x) = n `~αdn−1(x) + (αi)`

~αd(i−)
n (x), (6.7)

[dn+ | ~αd |] `~αdn (x) = dn `~αdn−1(x) +
d∑
i=1

αi `
~αd(i−)
n (x), (6.8)

− dnx∏d
i=1 (αi + 1)

`~αd+1
n−1 (x) + (| ~αd |) `~αdn (x) =

d∑
i=1

(αi − 1)`~αd(i−)
n (x), (6.9)−Dx

d∏
j=1

(θ + αj)

 `~αdn (x) = n `~αdn−1(x), n ≥ 1. (6.10)

Proof : 1) (6.1) is the relation (2.7) obtained in Section 2.
2) The iteration of (6.1) leads to (6.2).
3) (6.3) may be deduced from (5.2) and Lemma 1.1.
4) If we combine (6.1) and (6.3), we obtain (6.4).
5) (6.5) may be deduced from (6.3) and the identity (13) p.82 in [29].
6) We derive (6.6) from (6.5).
7) (6.7) may be deduced from (1.13) and the identity (15) p.82 in [29]. Also, (6.7)
results from (6.3) and (6.5) by eliminating their common term xDx`

~αd
n (x).

8) We derive (6.8) from (6.7).
9) We derive (6.9) from (6.1) and (6.6) by eliminating the derivative term.
10) If we combine (6.3) and (2.5), we obtain (6.10).
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7 A hierarchy of polynomials `~αdn

We now obtain a representation of `~αdn in terms of integrals containing polynomials

`
~αd′
n of least order (d′ < d).

Recall that the inverse Laplace transform of a pFq is given by (cf., for instance, [26]
p.60):

ωβ−1
pFq+1

(
α1, . . . , αp
β, β1, . . . , βq

; ωz

)
=

Γ(β)

2πi

∫ c+i∞

c−i∞
eωtt−βpFq

(
α1, . . . , αp
β1, . . . , βq

;
z

t

)
dt, (7.1)

where ω is real, ω 6= 0, <(β) > 0, c > 0 and p ≤ q. From this, if we put p =
1 , α1 = −n , q = d − 1 , βj = αj + 1 ; 1 ≤ j ≤ d − 1 , β = αd + 1 and ω = 1 ,
and we use the definition (1.13), we obtain a representation of `~αdn in terms of an
integral containing the polynomials `~αd−1

n , that is

`~αdn (z) =
Γ(αd + 1)

2πi

∫ c+i∞

c−i∞
ett−αd−1`~αd−1

n

(
z

t

)
dt. (7.2)

The iteration of this identity to the polynomial `~αd−1
n leads to a representation of `~αdn

in terms of (d− 1)-fold integral containing the Laguerre polynomials.

8 Koshlyakov formula

Recall that the Koshlyakov formula links two Laguerre polynomials of different
parameters, that is (cf. [24] or [25]):

L(α+β)
n (x) =

Γ(n + α+ β + 1)

Γ(β)Γ(n+ α + 1)

∫ 1

0
tα(1− t)β−1L(α)

n (xt)dt, α > −1, β > 0.

(8.1)
This identity may be used to define transmutation operators between two differential
operators of the same order.
Next, we generalize this identity to the polynomials `~αdn .
Let us recall (cf. [17] p.200)

pFq

(
a1, . . . , ap
ν + µ, b2, . . . , bq

; x

)
=

Γ(µ)

B(µ, ν)
Iν−1,µ

1,1

(
pFq

(
a1, . . . , ap
ν, b2, . . . , bq

; x

))
, (8.2)

where

Iν,µ1,1 f(z) =
1

Γ(µ)

∫ 1

0
xν(1− x)µ−1f(xz)dx.

The iteration of (8.2) leads to the following identity:

pFq

(
a1, . . . , ap
ν1 + µ1, . . . , νq + µq

; x

)
=

q∏
i=1

(
Γ(µi)

B(µi, νi)

)(
q∏
i=1

Iνi−1,µi
1,1

) (
pFq

(
a1, . . . , ap
ν1, . . . , νq

; x

))
.

(8.3)
The repeated integral operator possesses a single integral representation (cf. [21]):

I
~νq−1,~µq
1,q (f)(x) =


∫ 1
0 G

q0
qq

(
t

∣∣∣∣∣µ1 + ν1 − 1, . . . , µq + νq − 1
ν1 − 1, . . . , νq − 1

)
f(xt)dt, for

∑q
i=1 µi > 0;

f(x), for µ1 = µ2 = · · · = µq = 0,
(8.4)
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where

Gmn
pq

(
x

∣∣∣∣∣α1, . . . , αp
β1, . . . , βq

)
is Meijer’s G-function (see, for instance, [17] p.207). In particular, we have

G10
11

(
x

∣∣∣∣∣α+ β
α

)
=

1

Γ(β)
(1− x)β−1xα, (8.5)

G20
22

(
t

∣∣∣∣∣γ1 + δ1, γ2 + δ2

γ1, γ2

)
=


tγ2 (1−t)δ1+δ2−1

Γ(γ1+γ2) 2F1

(
γ2 + δ2 − γ1, δ1

δ1 + δ2
; 1− t

)
, for t < 1;

0 , for t > 1.
(8.6)

Thus the identity (8.3) may be rewritten under the form

pFq

(
a1, . . . , ap
α1 + β1 + 1, . . . , αq + βq + 1

; x

)
=

q∏
i=1

(
Γ(αi + βi + 1)

Γ(αi + 1)

)

×
∫ 1

0
Gq0
qq

(
t

∣∣∣∣∣α1 + β1, . . . , αq + βq
α1, . . . , αq

)
pFq

(
a1, . . . , ap
α1 + 1, . . . , αq + 1

; xt

)
dt (8.7)

from which, using (1.13), we deduce an integral relation connecting `~αd+~βd
n and `~αdn

if
∑d
i=0 βi > 0, that is

`~αd+~βd
n (x) =

d∏
i=1

Γ(αi + βi + 1)

Γ(αi + 1)

∫ 1

0
Gd0
dd

(
t

∣∣∣∣∣α1 + β1, . . . , αd + βd
α1, . . . , αd

)
`~αdn (xt)dt. (8.8)

For d = 1, this identity is reduced to Koshlyakov’s formula (8.1) by virtue of (8.5)
and for d = 2, it’s equivalent to

`(α1+β1,α2+β2)
n (x) =

Γ(α1 + β1 + 1)Γ(α2 + β2 + 1)

Γ(α1 + 1)Γ(α2 + 1)Γ(β1 + β2)

×
∫ 1

0
tα2(1− t)β1+β2−1

2F1

(
α2 + β2 − α1, β1

β1 + β2
; 1− t

)
`(α1,α2)
n (xt)dt (8.9)

by virtue of (8.6) if β1 + β2 > 0. Next, we obtain an integral expression for the
polynomials `~αdn in terms of Gould-Hopper polynomials gd+1

(d+1)n , n ≥ 0. Put

~αd,0 − 1 =

(
−1

d + 1
,
−2

d+ 1
, . . . ,

−d
d+ 1

)
.

Replace in the integral relation (8.8), ~αd by ~αd,0 − 1 and ~βd by ~αd − (~αd,0 − 1), to
obtain

`~αdn (x) =
(−1)n

∏d
i=1 Γ(αi + 1)

((d + 1)n)!
√

(2π)d

d+1

×
∫ 1

0
Gd0
dd

(
t

∣∣∣∣∣ α1, . . . , αd
−1
d+1

, . . . , −d
d+1

)
gd+1

(d+1)n

(
(d+ 1)(xt)

1
d+1 ,−1

)
dt, (8.10)
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since we have (cf., for instance, [26] p.12)

d∏
j=1

Γ
(

j

d + 1

)
=

√
(2π)d

d + 1
.

For d = 1, we have, after a change of variable, the Uspensky representation (cf. [34]
p.604):

L(α)
n (x) =

(−1)nΓ(n+ α + 1)√
π(2n)!Γ(α + 1

2
)

∫ π

0
H2n

(√
x cosϕ

)
sin2α ϕdϕ.
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