## 173. On the Classical Stability Theorem of PoincaréLyapunov with a Random Parameter

By Chris P. Tsokos<br>Virginia Polytechnic Institute, U.S.A.<br>(Comm. by Zyoiti Suetuna, m. J. A., Nov. 12, 1969)

1. The objective of this paper is concerned with the generalization of the classical stability theorem of Poincaré-Lyapunov, [1].

The Poincaré-Lyapunov theorem with a random parameter can be written as follows:

$$
\begin{equation*}
\dot{x}(t ; \omega)=A(\omega) x(t ; \omega)+f(t, x(t ; \omega)), \quad t \geq 0 \tag{1.0}
\end{equation*}
$$

where
(i) $\omega \in \Omega, \Omega$ being the supporting set of the probability measure space $(\Omega, A, \mu)$;
(ii) $x(t$; $\omega$ ) is the unknown $n x l$ random vector;
(iii) $A(\omega)$ is $m x n$ matrix whose elements are measurable functions;
(iv) $f(t, x)$ is for $t \in R_{+}$and $x \in R$ an $n x l$ vector valued function.

The above random differential system can be easily reduced into the following stochastic equation

$$
\begin{equation*}
x(t ; \omega)=e^{A(\omega) t} x_{0}(\omega)+\int_{0}^{t} e^{A(\omega)(t-\tau)} f(\tau, x(\tau ; \omega)) d \tau . \tag{1.1}
\end{equation*}
$$

Remark. The term $e^{A(\omega) t} x_{0}(\omega)$ is referred to as the free stochastic term or free random variable, $e^{A(\omega)(t-\tau)}$ the stochastic kernel and $x(0, \omega)=x_{0}(\omega)$.

The particular aim of this paper is the existence, uniqueness and asymptotic behavior of a random solution of the stochastic integral equation (1.1). In accomplishing this objective we utilized certain aspects and methods of "admissibility theory" which can be found in [2].
2. We shall consider that the random solution $x(t ; \omega)$ and the stochastic free term $e^{A(\omega) t} x_{0}(\omega)$ are functions of the real argument $t$ with values in the space $L_{2}(\Omega, A, \mu)$. The function $f(t, x(t ; \omega))$, under convenient conditions, will also be a function of $t$ with values in $L_{2}(\Omega, A, \mu)$. The value of the stochastic kernel, $e^{A(\omega)(t-\tau)}, 0 \leq \tau \leq t$, shall be an essentially bounded function with respect to $\mu$ for every $t$ and $\tau$, such that $0 \leq \tau \leq t<\infty$. The values of this term for fixed $t$ and $\tau$, will be in $L_{\infty}(\Omega, A, \mu)$ so that the product of $e^{A(\omega) t} x_{o}(\omega)$ and $e^{A(\omega)(t-\tau)}$ will always be in $L_{2}(\Omega, A, \mu)$.

The norm of the stochastic kernel of the random integral equation
(1.1) will be given by

$$
\begin{aligned}
\left\|\left\|e^{A(\omega)(t-\tau)}\right\|\right. & =\left\|e^{A(\omega)(t-\tau)}\right\| L_{\infty}(\Omega, A, \mu) \\
& =\mu-\operatorname{ess} \sup \left|e^{A(\omega)(t-\tau)}\right|,
\end{aligned}
$$

$\omega \in \Omega$. That is, for fixed $t$ and $\tau$,

$$
\left\|\left|\left|e^{A(\omega)(t-\tau)}\right| \|=\inf _{\Omega_{0}}\left\{\sup _{\Omega-\Omega_{0}}\left|e^{A(\omega)(t-\tau)}\right|\right\}\right.\right.
$$

$\mu\left(\Omega_{0}\right)=0$.
Definition 2.1. We shall denote by

$$
E_{0}=E_{0}\left(R_{+}, L_{2}(\Omega, A, \mu)\right)
$$

the Banach space of all continuous functions from $R_{+}$into $L_{2}(\Omega, A, \mu)$, such that

$$
\left\{\int_{\Omega}|x(t ; \omega)|^{2} d \mu(\omega)\right\}^{1 / 2} \leq A g(t)
$$

where $A$ is a positive number and $g(t)$ is a positive continuous function on $R_{+}$.

The norm in the space $E_{g}$ is defined by

$$
\|x(t ; \omega)\| E_{g}=\sup _{t \in R_{+}}\left\{\frac{1}{g(t)}\|x(t ; \omega)\|\right\}
$$

where

$$
\begin{aligned}
\|x(t ; \omega)\| & =\|x(t ; \omega)\|_{L_{2}(\Omega, A, \mu)} \\
& =\sup _{0 \leq t}\left\{\int_{\Omega}|x(t ; \omega)|^{2} d \mu(\omega)\right\}^{1 / 2}
\end{aligned}
$$

Definition 2.2. The pair of spaces $\left(E_{1}, E_{2}\right)$ will be called $a d m i s s i-$ ble with respect to the operator

$$
T: E_{g}\left(R_{+}, L_{2}(\Omega, A, \mu)\right) \rightarrow E_{g}\left(R_{+}, L_{2}(\Omega, A, \mu)\right)
$$

if and only if $T E_{1} \subset E_{2}$.
Definition 2.3. $x(t ; \omega)$ will be called a random solution of the random integral equation (1.1) if for every fixed $t$ belonging to $R_{+}$, $x(t ; \omega) \in L_{2}(\Omega, A, \mu)$ and satisfies equation (1.1) $\mu-a . e$.

Definition 2.4. The random solution $x(t ; \omega)$ is said to be stochastically asymptotically exponentially stable if there exists a $\rho>0$, such that,

$$
\left\{\int_{\Omega}|x(t ; \omega)|^{2} d \mu(\omega)\right\}^{1 / 2} \leq \rho e^{-\beta t}
$$

where $\beta>0$.
Finally, for $E_{1}$ and $E_{2}$ a pair of Banach spaces and $T$ a linear operator, we state the following lemma which will be used in the main theorem of this paper.

Lemma 2.1. Let $T$ be a continuous operator from $E_{g}\left(R_{+}, L_{2}(\Omega\right.$, $A, \mu))$ into itself. If $E_{1}$ and $E_{2}$ are Banach spaces stronger than $E_{g}$ and the pair $\left(E_{1}, E_{2}\right)$ is admissible with respect to $T$, then $T$ is a continuous operator from $E_{1}$ to $E_{2}$.

The lemma follows easily from the closed graph theorem.
Remark. Since $T$ is a continuous operator it is also bounded.

Then it follows that we can find a constant $K>0$, such that

$$
\|(T x)(t ; \omega)\|_{E_{2}} \leq K\|x(t ; \omega)\|_{E_{1}} .
$$

3. With respect to the aim of this paper we state and prove the following theorem.

Theorem 3.1. Let us assume that the random integral equation (1.1) satisfies the following conditions:
(i) The matrix $A(\omega)$ is stochastically stable, that is, there exists $\alpha>0$, such that

$$
\mu\left\{\omega ; \operatorname{Re} \psi_{k}(\omega)<-\alpha, k=1,2, \cdots, n\right\}=1
$$

where $\psi_{k}(\omega), k=1,2, \cdots, n$, are the characteristic roots of the matrix ;
(ii) $x(t ; \omega) \rightarrow f(t, x(t ; \omega))$ is an operator on

$$
S=\left\{x(t ; \omega) ; x(t ; \omega) \in E_{g},\|x(t ; \omega)\|_{E g \leq_{p}}\right\},
$$

with values in $E_{g}$ satisfying

$$
\|f(t, x(t ; \omega))-f(t, y(t ; \omega))\|_{E_{g}} \leq \lambda\|x(t ; \omega)\|_{E_{g}}
$$

for $x(t ; \omega), y(t ; \omega) \in S, \lambda$ being a constant and $f(t, 0)=0$.
Then, there exists a unique random solution of the random integral equation (1.1), such that

$$
\lim _{t \rightarrow \infty}\left\{\int_{\Omega}|x(t ; \omega)|^{2} d \mu(\omega)\right\}^{1 / 2}=0
$$

provided that

$$
\lambda<K^{-1},\left\|e^{A(\omega) t} x_{0}(\omega)\right\|_{E_{g}} \leq \rho(1-\lambda K)
$$

where $K$ is the norm of the operator $T$.
Proof. First we will show that the pair of Banach spaces ( $E_{g}$, $E_{g}$ ) with $g(t)=e^{-\beta t}$, where $0<\beta<\alpha$, is admissible under the above conditions. Recall that the norm in $E_{g}$ space is defined by

$$
\|x(t ; \omega)\|_{E_{g}}=\sup _{t \in R_{+}} \frac{1}{g(t)}\left\{\int_{\Omega}|x(t ; \omega)|^{2} d \mu(\omega)\right\}^{1 / 2},
$$

and for $x(t ; \omega) \in E_{g}$ let us define the following integral operator

$$
(T x)(t ; \omega)=\int_{0}^{t} e^{A(\omega)(t-\tau)} x(\tau ; \omega) d \tau
$$

It follows that

$$
\begin{equation*}
\|(T x)(t ; \omega)\| \leq \int_{0}^{t} e^{A(\omega)(t-\tau)}\|x(\tau ; \omega)\| d \tau \tag{3.1}
\end{equation*}
$$

It has been shown by T. Morozan [3] that there exists a subset $\Omega_{0}$ of $\Omega$, such that, $\mu\left(\Omega_{0}\right)=1$ and

$$
\begin{equation*}
\left\|\left|e^{A(\omega)(t-\tau)} \|\right| \leq M e^{-\alpha(t-\tau)},\right. \tag{3.2}
\end{equation*}
$$

for $\omega \in \Omega_{0}, K>0$ and $\alpha$ as defined above. Applying inequality (3.2) to inequality (3.1) we have

$$
\begin{equation*}
\|(T x)(t ; \omega)\| \leq M \int_{0}^{t} e^{-\alpha(t-\tau)} \frac{\|x(\tau ; \omega)\|}{g(\tau)} g(\tau) d \tau \tag{3.3}
\end{equation*}
$$

Since we have chosen $g(t)=e^{-\beta t}, 0<\beta<\alpha$, inequality (3.3) can be written as

$$
\begin{align*}
\|(T x)(t ; \omega)\| & \leq M \int_{0}^{t} e^{-\alpha t} e^{\tau(\alpha-\beta)} \frac{\|x(t ; \omega)\|}{e^{-\beta \tau}} d \tau \\
& \leq M\|x(t ; \omega)\|_{E_{g}} e^{-\alpha t} \int_{0}^{t} e^{\tau(\alpha-\beta)} d \tau \\
& \leq M\|x(t ; \omega)\|_{E_{g}}(\alpha-\beta)^{-1}\left[e^{-\beta t}-e^{-\alpha t}\right], \quad t \leq 0 . \tag{3.4}
\end{align*}
$$

Since $0<\beta<\alpha$, inequality (3.4) can be majorized as follows:

$$
\|(T x)(t ; \omega)\| \leq M\|x(t ; \omega)\|_{E_{g}}(\alpha-\beta)^{-1} e^{-\beta t}
$$

from which it follows that

$$
\begin{aligned}
\|(T x)(t ; \omega)\|_{E_{g}} & \leq M(\alpha-\beta)^{-1}\|x(t ; \omega)\|_{E_{g}} \\
& \leq K\|x(t ; \omega)\|_{E_{g}}
\end{aligned}
$$

Hence, $x(t ; \omega) \in E_{g}$ implies that $T E_{g} \subset E_{g}$, which implies that the pair of Banach spaces ( $E_{g}, E_{g}$ ) is admissible.

Now, let us define an operator $U$ from $S$ into $E_{g}$ as follows:

$$
\begin{equation*}
(U x)(t ; \omega)=e^{A(\omega) t} x_{0}(\omega)+\int_{0}^{t} e^{A(\omega)(t-\tau)} f(\tau, x(\tau ; \omega)) d \tau \tag{3.5}
\end{equation*}
$$

We must show that $U$ is a contracting operator and $U S \subset S$. Consider an element $y(t ; \omega) \in S$. We can write

$$
\begin{equation*}
(U y)(t ; \omega)=e^{A(\omega) t} x_{0}(\omega)+\int_{0}^{t} e^{A(\omega)(t-\tau)} f(\tau, y(\tau ; \omega)) d \tau \tag{3.6}
\end{equation*}
$$

Subtracting equation (3.6) from equation (3.5) we have

$$
(U x)(t ; \omega)-(U y)(t ; \omega)=\int_{0}^{t} e^{A(\omega)(t-\tau)}[f(\tau, x(\tau ; \omega))-f(\tau, y(\tau ; \omega))] d \tau
$$

Since $U S \subset E_{g}$ is a Banach space, then

$$
(U x)(t ; \omega)-(U y)(t ; \omega) \in E_{g} .
$$

By assumption (ii), $[f(t, x(t ; \omega))-f(t, y(t ; \omega))] \in E_{g}$. From Lemma 2.1 we have seen that $T$ is a continuous operator from the Banach space $E_{g}$ into $E_{g}$, which implies that we can find a constant $K>0$, such that,

$$
\|(T x)(t ; \omega)\|_{E_{g}} \leq K\|x(t ; \omega)\|_{E_{g}} .
$$

That is,

$$
\|(U x)(t ; \omega)-(U y)(t ; \omega)\|_{E_{g}} \leq K\|f(t, x(t ; \omega))-f(t, y(t ; \omega))\|_{E_{g}} .
$$

Now, applying Lipschitz's condition given in (ii) we have

$$
\|(U x)(t ; \omega)-(U y)(t ; \omega)\|_{E_{g}} \leq \lambda K\|x(t ; \omega)-y(t ; \omega)\|_{E_{g}}
$$

Applying the condition that $\lambda K<1$, it implies that the operator $U$ is a contracting operator. It now remains to be shown that $U S \subset S$. For every $x(t ; \omega) \in S$, we have

$$
\begin{equation*}
(U x)(t ; \omega)=e^{A(\omega) t} x_{0}(\omega)+\int_{0}^{t} e^{A(\omega)(t-\tau)} f(\tau, x(\tau ; \omega)) d \tau \tag{3.7}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\|(U x)(t ; \omega)\|_{E_{g}} \leq\left\|e^{A(\omega) t} x_{0}(\omega)\right\|+\int_{0}^{t}\| \| e^{A(\omega)(t-\tau)}\| \|\|f(\tau, x(\tau ; \omega))\| d \tau \tag{3.8}
\end{equation*}
$$

but, $\left\|\mid e^{A(\omega)(t-\tau)}\right\| \| \leq M e^{-\alpha(t-\tau)}$, which implies that inequality (3.8) can be written as

$$
\begin{align*}
\|(U x)(t ; \omega)\|_{E_{g}} \leq & \left\|e^{A(\omega) t} x_{0}(\omega)\right\| \\
& +M \int_{0}^{t} e^{-\alpha(t-\tau)} \frac{1}{g(\tau)}\|f(\tau, x(\tau ; \omega))\| g(\tau) d \tau . \tag{3.9}
\end{align*}
$$

Since $g(t)=e^{-\beta t}$, (3.9) becomes

$$
\begin{align*}
\|(U x)(t ; \omega)\|_{E_{g}} \leq & \left\|e^{A(\omega) t} x_{0}(\omega)\right\| \\
& +M\|f(t, x(t, \omega))\|_{E_{g}} \int_{0}^{t} e^{-\alpha(t-\tau)} g(\tau) d \tau \\
\leq & \left\|e^{A(\omega) t} x_{0}(\omega)\right\|+M\|f(t, x(t ; \omega))\|_{E_{g}} e^{-\alpha t} \int_{0}^{t} e^{(\alpha-\beta)} d \tau \\
\leq & \left\|e^{A(\omega) t} x_{0}(\omega)\right\|+M(\alpha-\beta)^{-1} \| f\left(t, x(t ; \omega) \|_{E_{g}} .\right. \tag{3.10}
\end{align*}
$$

By adding and subtracting $f(t, 0)$ and applying Lipschitz's condition inequality (3.10) becomes

$$
\begin{equation*}
\|(U x)(t ; \omega)\|_{E_{g}} \leq\left\|e^{A(\omega) t} x_{0}(\omega)\right\|+K \lambda\|x(t ; \omega)\|_{E_{g}} . \tag{3.11}
\end{equation*}
$$

Since $x(t ; \omega) \in S$ and $\|x(t ; \omega)\|_{E_{g}} \leq \rho$ together with the condition that $\left\|e^{A(\omega) t} x_{0}(\omega)\right\| \leq \rho(1-\lambda K)$, equation (3.11) reduces to

$$
\|(U x)(t ; \omega)\| \leq \rho(1-\lambda K)+K \lambda \rho=\rho,
$$

which implies that $(U x)(t ; \omega) \in S$ for all $x(t ; \omega) \in S$, or $U S \subset S$. Therefore, since $U$ is a contracting operator and $U S \subset S$ (Inclusion property), applying Banach's Fixed Point Theorem, there exists a unique random solution of the random differential system (1.0) which is exponentially stochastically stable.

## References

[1] Poincaré, H.: Mémoire sur les courbes définier par une équation différentiable. Jour. Math. Pures et Appl., (3) 7, 375-422 (1881); 8, 251-296 (1882); (4) 1, 167-244 (1885); 2, 151-217 (1886).
[2] Lakshmikantham, V., and Leela, S.: Differential and Integral Inequalities: Theory and Applications (to appear in fall, 1968, Academic Press Inc.).
[3] Morozan, T.: Stability of linear systems with random parameters. Journal of Differential Equations, 3, 170-178 (1967).

