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Summary. - Suppose ¢, (») is o polynomial of degree m that satisfies the differential equation
2n .
(1) Z bi(w)yh)(x) = Z'my(w) ’ m = 0, 1, 2,..
i=1

where n is some fized integer = 1. We show that, under certain conditions, there exists an
orthogonalizing weight distribution for {g, ()} that simultaneously satisfies n distributional
differential equations of orders 1, 3, 5, ... (2n — 1). In particular, this weight A must satisfy

ln’b2n(w)/1l + (nb;n(w) - bzn—l(w))A =0

in the distributional sense. As a corollary to this vesult, we get part of H. L. Krall's 1938
classification theorem which gives necessary and sufficient conditions on the ewistence of an
OPS of solutions to (1) in terms of the moments and the coefficients of b,(x). To illustrate
the theory, we consider all of the known OPS’s to (1). In particular, new light is shed upon
the problem of finding a real weight distribution for the Bessel polynomials.

1. - Imtroduction.

A problem that has attracted much interest over the past fifty years has been
that of classifying all differential equations of the form

2 i
(1.1) > 2lua'y(@) = Aayl®), n>1

i=14=0

having a sequence {g,(r)}._, of orthogonal polynomial solutions. This problem
has become increasingly important to applied mathematicians who are looking for
examples to fit the general Weyl-Titchmarsh theory of higher order differential
equations. For example, see the recent papers of KRALL [10] and LITTLEJOHN and
KRrALL [20].

The first major result was obtained by BOCHNER [3] in 1929 when he solved
the problem for » = 1. Indeed, he found that, up to a linear change of variable,
only the classical polynomials of Jacobi, Laguerre and Hermite and the Bessel

(*) Entrata in Redazione il 30 giugno 1983; versione riveduta il 15 ottobre 1983.
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polynomials satisfled a second order differential equation of the form (1.1). In 1938,
H. L. KrALL published necessary and sufficient conditions in order for (1.1) to have
an orthogonal polynemial sequence (OPS) of solutions [13]. Using this remarkable
theorem, he subsequently classified all fourth order equations having an OPS. He
discovered three new differential equations having an OPS, all of which were dif-
ferent from the four sets mentioned above. In 1978, A. M. KrALL studied these
nonclasgsical polynomials, naming them the Legendre tvpe Laguene type and Jacobl
type polynomials [11].

Little work was done on the problem for the period 1940 1978. It became c]ear
that more efficient technigues were required to solve the problem in general. The
methods of Bochner and Krall are too tedious to apply for large values of n. How
ever, a pattern became apparent. Consider the following table:

Order of - 0P8 Real Interval of
Differential Equation ‘ Weight Orthogonality
| |
2 Jacobi ‘< (1 —x)%(1 + a)f L [—1,1]
2 Laguerre : » x* exp [— #] [0, oo)
2 “i Hermite ‘ exp [— z%] ) \ (— oo, o)
i 1 :’
4 | Jacobi type (1 — 2y = 8(a) 10,1
|
! o 1 1
4 | Legendre type | -‘2-4 506 —1) 430 + 1) —1, 1]
‘ | 'x \
é 1 !
; 4 i Laguerre type ‘] exp [—ax] + & o{x) \ [0, co)

Notice that the weight for each OPS in the fourth order case can be found by
adding discrete mass(es) to the weight in the associated second order OPS. Also,
observe that the weight for the Legendre type OPS has equal jumps at +1. It is
natural to ask whether an OPS exists when unequal jumps at 41 are considered.
In 1981, LirtieJonN found that such an OPS does exist and called them the Krall
polynomials. They satisfy a sixth order differential equation and their various
properties are extensively considered in [16]. Recently, KooRNWINDER found a
new OPS that generalizes the Krall polynomials [10]. The set that he has found
are orthogonal on [— 1, 1] with respect to the weight Ad(w + 1) + Bé(x —1) -
+ 01 —2)*(1 4 x)f. The details have not vet been worked out to determine if
his OPS satisfies a differential equation of the form (1.1). It should be pointed out
that NEvAI [22] has considered adding finitely many masggpoints to a weight distribu-
tion which has an associated OPS. In faect, he has produced some remarkable
formulas for the resulting new OPS. However, the applications of his theory to
differential equations are unclear at the moment.

In this paper, we derive some new results regarding the general classification
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problem. If we are to solve this preblem, we must be able to classify all the weight
distributions that make the polynemials orthogonal. This is the approach that we
take: we show that the weight distributions fit nicely into a pattern. More spe-
cifically, if {gn(z)} is an OPS and ¢.(x) satisfies (1.1) for m = 0,1, 2, ..., we show,
wnder certain conditions, how to construct an orthogonalizing weight distribution A for
{pn(®)}. Under these conditions A will simultaneously satisfy n distributional dif-
ferential equations of orders 1,3,5, ..., (2n —1). We also show how part of H. L.
Krarr’s 1938 classification theowm follows from our results.

In § 2, we lay the foundation for our results. We assume the reader is famlhar
with the paper of KrAry and MorTON [12] even though we review some of its main
points in § 2. In § 3, we introduce the ideas of our article by re-examining the
second order case. The reader will notice how quickly the moments are generated
in this cage. Also in § 3, new light is shed upon the problem of finding an ortho-
gonalizing Stieltjes function of beunded variation for the Bessel polynomials. Be-
cause of the intimate connection between self adjoint differential operators and
orthogenal polynomials, we develop, in § 4, necessary and sufficient conditions for
even order differential expressions to be formally self adjoint. § 5 deals with the
general theory that we develop and, lastly, we follow this in § 6 by considering the
examples in the fourth and sixth order cases.

2. - Background and preliminary assumptions.
We list some fundamental hypotheses and well known results that we shall
assume and use throughout the remainder of this paper.

(a) Let {@.(#)} be an OPS with respect to a real Stieltjes weight u(z), where
u(x) is of bounded variation on —oco <<z << oo. That is:

i) @u(#) is a polynomial, with real coefficients, of degree exactly m, m =
=0,1,... and
[¢,(@)po(@) du(w) = K,0,0, K,7 0 and 8,, denotes the Kronecker d-func-
tion, p, ¢ =10,1, ..

For general properties of an OPS, the reader is referred to the excellent text of
CHIHARA [6].

(b) Assume g, (x), m = 0,1, ... is a solution of the 2n th order real differential
equation

271 :'/) Z b (Z)(m = j'my( )

where 1, is a parameter depending only on m and where = is some fixed integer > 1.
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Necessarily then, b,(x) is a polynomial of degree < ¢, ¢ ==1,2,..., 2n, 50 We hence

] 2n
forth assume that b,(w) = > l,4% I;;€ R. It follows then that 1,= Y P(m,{)l,
i=0 j=1
where P(m,]) = m{m—1)...(m —j 4+ 1) and P(m,j) =0 for j>m. The reader
is encouraged to consult [13] for a general account of this discussion.

(¢) Let u, :fwm du(x), m = 0,1, ...; 4n 1s called the m th moment. We shall
assume: -
1) pro=1;
i) {pm! < eP?ml, m = 0, 1, ... where ¢ and .P are arbitrary, but fixed, constants.

§ ==

(This is in accordance with the assumptions given by Krall and Morton.)

iii} The n recurrence relations given by H. L. KRALL (see Theorem 5.5) have a
unique solution. This is a reasonable hypothesis; all of the known OPS’s have the
property that once g, is known, all the other moments are nniquely determined.
Note that this assumption does not imply the uniqueness of du(x): there exist many
signed measures du(x) such that

fm“ du(ey =0, »n=20,1,..

For example, j(w"g(a:) de=0,n=290,1,2,... where

exp [— a]sin (@), 2=0
g(@) =
0 , «<0.

From (a), it foilows that

ij,uo M1 e |

A, = (M1 22 o Mg #0, m=1,2 ..
P

i,um Bomay ove Yam

(see [6]).

(d) Assume there exists a function f(x) having (2n — 1) piecewise continuous
derivatives on R and, on the intervals where f(x) has (2n — 1) continuous derivatives,
assume f(#)L,,(y) is formally self adjoint. This is also a reasonable assumption.
The differential equations for the classical orthogonal polynomials, the Bessel poly-
nomials and the nonclassical polynemials found by KRALL [11] and LITTLEJOHN [16]
can all be made formally self adjoint. Indeed, for these classical and nonclassical
polynomials, j(2) = &'(z) where a(z) is the absolutely continuous part of u(z).
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(e) KrArL and MorToN [12] found what seems to be the appropriate setting
for the weight distribution du(x). More specifically, they showed that the distribution

(= 1)@ ()

acts as an orthogonalizing weight for {p.(x)}:
(@) pu@)10@) do = Kyb,0, K, %0

They showed, that under certain conditions, w(x) € P, the dual of the vector space P
which congigts of all infinitely differentiable real valued functions y(x), — oo << @ < oo,
sueh that for all >0, 420,

Lim exp [— a|z|ly@(z) = 0.

|@]—~>o00

The reader is referred to [12] for the discussion of the topology given to P. Notice
that P containg the set of all polynomials.

(f) For any distribution I" in P’, we will adopt the usual notation to show
how I' acts on P: for e P, {I',y> denotes this action. In particular, if we P’
where du(x) = w(w) de, then the m th moment of u is {(w, z”). Since we will be
freely using the calculus of digtributions, the reader is referred to [9], [23], or [25]
for an excellent review,

3. ~ Examples: the orthogonal polynomials in the second order case.

To illustrate the general theory developed in § 4 and § 5, we show how the
weights, differential equations and moments for the Hermite, Jacobi, Laguerre and
Besgel polynomials can be found

As stated in § 2, we shall assume:

(i) {@pn(2)} is an OPS with respect to du(w);

(ii) there exists a function f(z) which is piecewise continunously differentiable
on (= oo, co);

(iii) @n(x) 18 a solution of the real second order differential equation;
(31) L(y) = boy" + b1y’ = dny, m=0,1,2, ;

(iv) f(#) Lo(y) is formally self adjoint on the intervals where f is (.
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The most general formally self adjoint second order differential expression s
given by:
ay" + “;?/I + oy .

From (3.1) and iv), it follows that f(x) satisfies the first order differential equation:
(3.2) by(w)f' (®) + (by(@) — ba(@)) f(@) = 0.
Separation of variables easily yields the classical solution

oxD U’ b () dm]
P Thu(w)

by()

flw) =

However, (3.2) might be a singular equation so its general solution in P’ might
inelude a distributional part. For example, the general solution in P’ to #2f'(x) = 0
is f() = 6, + ¢, 0(x) where ¢, and e, are arbitrary constants. We shall make the
additional assumption that there is a distributional solution AP’ to (3.2) with
{A4,1) =1, For pe P, we have

(3.3) 0 = — {byA'+ (b;"‘ b) Ay w) = A, by’ + bay) .

Letting by(w) = lopw® - Ly - lag, by(#) = lyy@ + g, w() = @™ and using the notation
of § 2(g), equation (3.3) reads:

(3.4) (Ml = bay) Py + (Mg + Lig) o -+ Mlgopim_1 =0, m=0.

This is exactly the recurrence relation given by H. L. KRALL in [13]. Before con-
tinuning, there is an important remark to be made: the frue interval of orthogonality
is not immediately available once we find /A. For example, the weight for the
Legendre polynomials is well-known to be

1 for —1<gagi

flo) =

0  otherwise.

However, equation (3.2) yields just f(#) = 1. Thig turns out to be not a serious
problem. We outline a method below that allows us to determine the true interval
of orthogonality.

A) The Hermite Polynomials.

In this case, b(w) = 1 and b,(w) = — 22, Then, (3.2) becomes f'(x) 4 2af(x) = 0.
The general solution in P’ is clearly the classical solution f(z) = exp [— #*]. (3.4)
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yields the recurrence relation — 2u,,., - mp,_;= 0. This is readily solved to yield
Hampr= 0 and gg, = ((2m) luo) /(4™ m ).

We now show how Lagrange’s identity [5] can be used to find the Hermite
differential equation and weight function one by(») is known. Indeed, suppose by(x) = 1
in (3.1). From (3.2), it folows that

ly2?

f(w>=exp[ . ]Hmw.

By considering a linear change of variable, we may as well assume I,,== 0. Lagrange’s
identity yields the equation:

__ dif{e)wn(@)]

(@) @) Lo(y) — y(@)f(@) Lule) = “L22

where 1wy, == 2y'— y2'. Suppose the interval of orthegonality is (a, b) where —oco < a<C
< b'<oo. Then, for z =¢,, ¥y = ¢,, p#r, we have

b b ]
0= [tz — outefte) do = [ LD g0 — 1)) — oyt

It follows, then, that it is necessary and sufficient that f(a) = f(b) = 0. Indeed,
by choosing z = ¢,, ¥y = ¢, we see that f(a) = f(b). By letting z = oy Y = @y, ib
follows that f(a) = f(b) = 0. Of course, this implies I;;<< 0 and @ = — oo, = oo.
Again by considering a linear change of variable, we can assume I, = — 2. It follows
that f(x) = exp[— 2], Ly(y) = 9" — 22y, and thus, we get the Hermite polynomials.

B) The Jacobi Polynomials and the Laguerre Polynomials.

The Jacobi differential equation

(1 —a)y'(@) + [B—oa— (e f+ 2)aly (@) +mm + o+ + Dylx) =0
can be found in a similar way to that of the above Hermite equation by considering

the case of by(x) being a polynomial of degree 2 with-two unequal real roots. We
will not do this however; instead we find the weight. In this case, (3.2) becomes:

1 —a3)f' @) + (B —a—(«+ fa)fz) =0.
The general solution in P’ is again just the classical solution

f@) =1 — @)1+ 2)°.
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For the Laguerre polynomials, equation (3.2) reads
of (2) + (@ — a)f(x) = 0.

The general solution in P’ to this equation is f(x) = »* [exp [— 2]. Using (3.4), the
moments for these polynomial sets can easily be calculated.

C) The Bessel Polynomials.

The Bessel polynomials satisfy the second order differential equation wx2y”
+ 2(w + )y — an + 1)y = 0. A Stieltjes weight distribution du(x), where u(x)
is of bounded variation on — oo << @ < o0, has never been found, even though Boag’
theorem [2] guarantees its existence. Attempt after attempt has been made to find
du(x) but each method has failed to recover y. For an excellent treatise on the
Bessel polynomials, the reader is encouraged to consult GROSSWALD’s text [7].
The first order equation (3.2) is given by

(3.5) w*f'(w) — 2f(x) =

Note that % exp [ 2/x] satisfies this equation (k any constant) but kexp [— 2/x]
is not the weight function for the Bessel polynomials. In fact, k exp [— 2/z] is not
in P’ unless ¥ = 0. KRrALL and MorToN [12] found that

o0 271+15(71)(w)
azenl(n + 1!

makes the Bessel polynomials orthogonal on {— oo, o), We can show:

oo 2utl 6(n)(w)

THEORE 1. - = -
REM 3.1 w(x) Zonin £ 1)t

satisfies (3.5).

ProOF. —~ Let ¢ be an appropriate test function (for example, a polynomial).
Note that (w2@(ax)m+0 = g2 (w) + 2(n + 1)ep™(2) + n(n + 1)¢»V(x). Hence

) |2 D (g oo YnFiFm (g
{wrw'— 2w, @) = <w~nzo Wﬁ:_(_. ; i +(1)) > =
% uti o Qnte
=2 Fay el =2 oD o,
S (__ 1)n+12n+1 1)9‘L+12n+2

2 {O(®), (w2 (@)1 +Z O(w), gn())

:n=0 nl(n +1)! oy n'nJ—l)'
ynont (pm)(g o (— 1)rigutagn(Q)
A A = a
ngo ‘(n +1 20 aln 4+ 1)!

Krall and Morton further showed that the inverse Fourier transform of w(x) is not
exp [— 2/x]. Thus (3.5) does have a distributional solution other than exp [— 2/x].
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This aunthor has applied various techniques to try and find the general solution to
{8.5) but to no avail. The standard methods that are used to find the distribntional
solutions to differential equations do not seemt o work in this case. Let A denote this
general distributional solution to (3.5) (it may be that A = ew(x) + ¢, exp [— 2/x]).
It is not clear if this general distributional solution is in P’. However, the formal
arithmetic that we carry out below indicates that the directions that we have taken
in this paper are right even for the Bessel polynomials. Equation (3.4) yields the
recurrence relation 2u., + (m -+ 2)p,,=0. This is eagily solved to yield w, =
= ((— 1)2m ) [(m + 1) . Of course this is in complete agreement with other meth-
ods that compute these moments.

We now show the orthogonality of the Bessel polynomials with respect to /.
For an appropriate test funetion ¢, we have:

(3.6) 0 =LA’ — 24, ¢p = A, 22¢"+ 2(z + 1)) .
If y, and y,, denote the n-th and m-th Bessel polynomials respectively, we see that
(n—m)(n - m 4 1)Yuln = B (YYo= YoYm) + 2@ + 1)(Yny"— Yn¥2) -

Let & = YnYn— Yn¥n 80 2'= YnYu— YnYn.
Hence,

(n—m)(n + m + 1)<A, YnYmy = <A, 222’4 2(w + 1)2) = 0 by (3.6).

This shows the orthogonality of the Bessel polynomials with respect to A.

4. — A criterion for formal self adjoininess of higher order differential equations.

In [17], this anthor investigated the problem of when an even order real dif-
ferential equation can be made formally self adjoint. The following theorem is-
based upon a remarkably simple formula of H. L. KRALL [15]. Let

2n
Senly) = 3 au(@)y (@),
k=0

where a,(x) is real valued, a,€ C*(I), a,,(x) 5% 0 for x € I, and where I is some com-
pact interval of the real line and n is some positive integer.

THEOREM 4.1. — f()8:.(y) is formally self adjoint if and only if f(x) simulta-
neously satisfies the » homogeneous differential equations:

n 25—2%+1/ Qg 28 — 2k -} 1\ 222wtz ] —2kt1—j ;
Pl [ i = S N B
PN )

— g3 (@) () =0, k=1,2,..,m.
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where B,; is the Bernoulli number defined by:

@ z 2 Byat
—_— =1 2
oxp o] —1 2 +i=21 (20)! =
The # differential equations given by (4.1) are of orders 1, 3,5, ..., (2n — 1). The

first order equation ecan easily be solved to give:

XD [_{J‘“anA(w) da]
P1a) @)

(o (1)

fle) =

Notice that for » =1, (4.1} is just equation (3.2).

5. — General theory.

The reader is reminded of the hypotheses stated in § 2 that we shall assume.
By Theorem 4.1, f(x) necessarily satisfies the n differential equations:

» # 28—2k+1 23 28__2k +1 228—2k+2___1
6 Z 2 (2#—1)( .

i=0

P B28»2k+2bé2ss_2k+1—j)(w)f D) —

— by (@)fx) =0, k=1,2,..,n.

We now make another assumption: assume system (b.1) has a general solution A e P’
with {A4,1) = 1.
Then, for ¢ € P, we have:

n 28—2+l/ 9 2s —2k -+ 1
(5.2) 0= <sgk 54—-20 (270‘8‘1)( 8 J )

2 25—2K+2 . 1

m st_2k+2b<22ss~2k+1_ﬂ(93)/1(” — by 1) 4, 9"> ’

We will show that A is an orthogonalizing weight distribution for {@,(x)}.

It ig well-known that if A is a digtribution and L(y) is a differential expression,
then

(5.3) (L), ¢y =<4, LM @)y, (see [24])

where Lt is the Lagrange adjoint of L. Our first aim will be to simplify (5.2) nsing
(5.3). The following lemma is easy to prove.
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Lemma 5.1. — If m is a positive integer, then

m=—1 2(_1)y’~1 —(_1)m
%o 2m—j)tjl (mh)e

LeMMA 5.2, ~
2§—2k+1 28—2k+1~j (25 — 2k - 1) (23 — 2k +1—= 7)
— ]y . . :
ago ego =1 ( 1 “
,b(zi:-i)(w)(p(2s—2k+1—j-i)(m) = — by, (@) p2s—2h+ 1) (g)

PrOOF, — Let

2s — 2k 4 1)(28—% +1—j

ay = (— 1)9‘—1( ; . )b;":”(w)qows—w—f—”(m) :

Since
28 — 2k 4 1\ /(28 — 2k + l—j)_ 28 — 2k + 1\ {28 — 2k 4+ 1 —1
j i - g j ’
it follows that
i) a;; = @a;; if and only if ¢ —§ is even, and;

il) a;;= — a;; if and only if 4 —j is odd.

By considering the matrix of a,’s, it is clear that it suffices to show Y a; ;; =0,

1=0,1,..,28—2k+1—j,j=0,1,..,2¢ — 2k 4 1. i=0
Suppose, then, that { = 2m — 1. '
Then
2m—1
z Q15,1 == Ogn_1,0 + Gam_g,1 1 Ogmsa+ «oo + Bagm_s T+ Vg omz 4 (o zm_y == 0
i=0

by ii) above.

2n m—1
If 7= 2m7 then Za’ﬂ'm—f,j: 2 za’ZM—a’,j + a’m,m by l) ﬁxbO'Ve.

i=o i=0
=1 25 — 2% + 1\ (25 — 2% + 1 —3j

= 2 ~— 1)#1 (2m) (25—2%+1—2m)
S (M2 T g, @) +
28 —2Fk + 1\ [28—2k +1—m
— 1)m1 (2m) (23—2%-+1—2m)
R ] W | R O @.
Now
(23—2k+1)(2s—2k+1—j . (28 — 2k + 1)!
i Im — j T (28s—2k—2m + 1)1(2m — )1} !
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and
2s — 2k + 1\ (28 —2k 4~ 1 —m\ (28 — 2k + 1)!
m m T (28 —2k—2m + 1)! (m!)2’
Thus,
(25 — 2k + 1))

™ (1) gp2s—2ht1—m) (gp) -

2 Gan—s, = (25 — 2k —2m + 1)!

=0

by Lemma 5.1.

Hence
25—2k+1 2s—2k+1—§
Z a'ij = Qe == — bzs(w)¢(2s—2k+1)(w) . D
i=0 i=0

Returning to (5.2), we have:

n 28-2k+1/ Qg 95 — 2% - 1) 222w+
0—<sgk a‘;(} (27"—1)( j )8‘k+1

Bae s o 0) A — by (@) A, ) =

% 28—2k+1 23 28_2}'5 + 1 225—2k+2__1
{E (2k—1)( j )s—-k+1'

s=k §=0
R . Y
'st_2k+zbgg(w)A(gs‘zkHﬁ)“ bar_1(2) 4, (P) =

2s—2k+1

n 28 Q2s—2k+2 ]
ms;k(zk . 1) s—Fk + 1 st_2k+2 < ~

Now

28 — 2k - .
( # 2?k T 1)[)(27;(90) As—2kt1-9), (p(w)> —

- <A, bara(@)p(2)) .

23—2k+1(2s_2k +1

i ) <A(2s—2k+1—«i), bgg o

i=0

28—2k+1 —
_ E (28 2:,70 + 1) (— 1)7—1</I, (b(zi;(p)(zs—2k+l~j)> —
i=o

:23——22k+1 23—-2%—?—1—5(_ 1)7__1 (28 — 2]{5 'f— 1) (28 — 2k+ 1— ?) <A, b;i;i)(p(gs_zk+1_j_1)> —
i=0 i=0 ] 7

= <A7 —bzs(w)¢(23_2k+l)($)> by Lemma 5.2 .

Henee, (5.2) may be rewritten as:

28 )223—-2lc+2_ 1

0= (4,3 (57 )t B sabul)g59(0) + b so)gla))

E=1,2,..,n.
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We summarize our results so far in the following theorem.

THEOREM 5.3. — The distribution /A € P’ satisfies the »n distributional differential
equations: for g € P,

n 2s-2k+1 [/ 9g 25 — 2% L 1\ 22e-2k+2 ] arri 1
O P | . L SR EL}

, k=1,2,..,n.
Equivalently, for all g€ P,

2¢ )22s—2k+2— 1

(5.3) </1; gk (27{: —1) 5=k F1 B23_2k+2b25¢(23_2k+1) -+ bzk_19v> =0,

EF=1,2,..,n.

i
If we let g(x) = o™ and write b,(x) = Y 1,7, (5.3) gives us n recurrence rela-
i=0
tions involving the moments of A. Indeed, we have:

THEOREM 5.4, — The moments {u,}r_, of the distribution 4 simultaneously
satisfy the n recurrence relations:

Q2s~2k+2_ ]

Tk(m)zf.%( 2s )P(m—2k+1,2s—2k+1)m-

2k—1
'st—2k+z ZZs,y'(Pm_zs-;-a‘ -+ Z Z?k_l,hum—zk-(»l—;-j: 0, m>2k—1, k=1,2,..,n.
i=0

ProoF. — This follows immediately npon substituting ¢ = #m into (5.3) and
replacing m by m — 2k + 1. 0O

At this point, let us recall H. L. KRALL’s 1938 classification theorem:

THEOREM 5.5 (KRALL). ~ In order that there exist an OPS {p.(v)} satisfying
the differential equation

2n i
Z z L’y (x) = Any(®)
i=14=0

it is necessary and sufficient that:

(i) the moments {u,}=_, satisfy the n recurrence relations

2n i '-—7{?——1
(54)  Sm)= > 3 (Z )P(m—2k—1, i 2k — 1)l st = 0,
i=2F+1 4=0 k ,
E=0,1,..,(n—1), m>2k -+ 1
and
(ii) 4% 0, k = 1,2, ..., where 4, is defined in § 2(¢). 0O

4 ~ Annali di Matematica
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It is natural to ask: what is the connection between 8,(m) and T;(m)? Elementary
calculations reveal, for example, that

Ta(m) = 8,_(m)
nin —1)(m —2n + 3)(m —2n + 2)

Tua(m) = 8, ,(m) — 5 Sa_s(m)
D am) = 8, _yim) — DD I DI T D g 4
+ n{n —1)(dn — 7)(m — 2n 4+ B)(m «;4:97% + 4)(m — 20 + 3)(m —2n + 2) S, (m).
In fact,
E+1
(5.5) Towlm) = 3 A8 ppialm), k=0,1,...,(n—1),
i=1
where:

B Tl fn—F 42—
4,=1 and zAi(n—k—i—i—2

i=1

)P(m——2n + 2k —2i—38,2j—2 +2)=10,
j=1,2, .0 k.

We leave out the verification of (5.5) because of the tedious computations involved.
From (5.5), it is clear that S,(m) =0,k = 0,1, ..., (n — 1), if and only if T\(m) = 0,
E=1,2,..,n

Hence, from § 2 (¢), A and w generate the same moments where » is defined in
§ 2. In view of these facts and Theorem 5.5, we have the following.

THEOREM 5.6. — Suppose {p.(2)} is an OPS with moment sequence {u,}. Assume
the hypotheses stated in § 2. In addition, suppose the following are satisfied:

i) @u(x) satisfies the real differential equation

2n

(5.6) S b)Yy (@) = Auyl®), m=0,1,2,..

=1

where b,(#) = > 1,,&% i =1,2,...,2n;
0

i1) The system of distributional differential equations

_ n 2s—2k+1 28 28~2k + 1 D2s—2k+2 _ ]
0 2 2 (2k~—1)( j ) s—k+1

'BZs_2k+1b(zess—%ﬂ_n(w)/l(j)_‘ bora(#) A =0, k=1,2,..,n

has a nontrivial solution A e P’ with {A,1) =1, where B, is the i-th Bernoulli



LANCE L. LITILEJOHN: On the classification of differential, eic. 49

number. Then A is an orthogonalizing weight distribution for {g.(s)} with u,
= (A, x>, In particular, A satisfies the first order equation nb,,(z)A" - (nb;n(w) —
— bya(@)) A = 0.

Note. — Compare this last statement to Theorem 2 in [1]. This theorem says
that if a weight function w(x) satisfies a first order equation of the form a(x)y'(z) -
+ b(x)y(x) = 0 where a(x) and b(z) are polynomials then the OPS associated with
w(x) satisfies a differential equation of the form

A(z, n)y" (@) + B(w, n)y'(x) + Oz, n)y(x) = 0.

We now point out a rather interesting corollary.

TEHEOREM 5.7. — Under the assumptions of Theorem 5.6, (A, by ;> = 0, k =
=1,2,..,n.

Proor. — Set ¢(x) =1 in (5.3).
For example, the Hermite differential equation is y"— 2wy’ + 2ny = 0.

Note that {exp[— #?], —2x) = f — 2z exp [— #*] dr = 0. Similarly, the Laguerre
equation is xy"4 (1 + a ~— 2)y’' -+ ny = 0. Observe that

oo

(wdexp[— ], 1+ o — ) :f(l F+o—x)x*exp[—x]dz = 0.
0

6. — More examples.

In this section, we show how the theory applies to the nonclassical orthogonal
polynomials found by Krall and Littlejohn.

A) The Legendre type Polynomials.

In this case, the fourth order equation is:
(2 — 1)y 4- 8x(x®— 1)y® + (dor -+ 12)(22— 1)y" + Soxyy’ = An .

From (5.6), we know that the weight A simultaneously satisfies
(@) (@—1)24' = 0; |
(b) (2>—1)24® L 120(x2 — 1) A"+ [(24 — 4o)2® -+ o] A’ = 0.

The general solution to (a) is /I(x) =0, -+ 6,0(@ — 1) + e;0(x + 1).
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Substitution of A into (b) and using the equivalent equation from (5.3) yields

0 = {(a2— 1)2A® + 120(p2— 1) A" + [(24 — da)2? -+ 4] A, g5 =
= {, (@2 — 1)2¢® — (4ot -+ 12)(22— 1) ¢’ — Bouwp) =

o= — 80599(1)02 -+ 80(‘?(_" 1)es 4 ¢ [(.’,U2—» 1)2‘77(3)“ (4o + 12) (2% — 1)‘7)"’ 80(00(}?] dow =
-1
= (— 8xc, 1 8¢,)p(1) + (Bore;— Bey)p(— 1)

where we have used integration by parts to simplify the integral. This forces
€y == 00y == 03 S0 Cy==¢;. If welet ¢;= 1, we get A(x) = /2 + $é(x — 1) 4+ Lo(z -+ 1).
This, of course, is in complete agreement with the method used by Krall and Mor-
ton who used the Fourier transform. Our methed does seem easier. Notice that the
moments can be immediately calculated without using the recurrence relations in
Theorem 5.4. We find that py, = (¢ + 2m 4- 1)/(2m + 1) and gyp,, = 0.

B) The Laguerre type Polynomials.

The fourth order differential equation for these polynomials is:

w2y W — (202 — 4a)y® + (02— (2R + 6)2)y" + (2R + 2]o — 2R)Y' = Any .
The weight distribution satisfies the two equations:

a) 24"+ 224 = 0;

by w2 A® + 60" - [— 22+ (2R + 6)x - 614"+ 2Rz - 6)A = 0.

The general solution to a) is A(x) = ¢,6(x) + ¢, exp [— «]. Substitution into b)
reveals A(x) = (1/R)é(z») - exp [— #]. The moments can now be easily calculated.
They are p,= (R + 1)/R and p,=m!, m>1.

O) The Jacobi type Polynomials.

These polynomials satisfy
(@2 — @)2y® + 2a(w — 1)([o + 41w — 2) 4 + @([o® + 9 + 14 + 2 Mz —
— [60 + 12 + 2MT)y" + ([« + 2][2e + 2 + 2M]2 — 2 M)y = Ay .
In this case, the weight satisfies:
a) (v — 124" 4+ ax*(1 — 2)4 = 0, and

b) x*w—1)2A® 4 (1208 — 18x2 + 6x) A" |-
+ [(~— 02— 9 -+ 22 — 2M) a2 + (6 — 24 -+ 2 M) + 614"+
+ [(2Me — 12x)2 -+ 6a]d = 0 .
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The general solution to a) is A(x) = ¢,(1 — @)* + ¢,0(w).

Similar to the previous two examples, substitution of this A into (5) and integra-
tion by parts reveals Me,= ¢;: Setting ¢;,=1, we find that A(z) = (1 — 2)*4 1/ M é(x).
Again, the moments can easily be calculated. We find in this case that u,=
= (¢ -1+ M)/M(x + 1) and, for m > 1, yn= m!/(t + 1)u.s.

D) The Hrall Polynomials.

This OPS satisfies the sixth order differential equation

(x2— 1)*y® -+ 18x(w?— 1)2y® -+ {[3AC + 3BC + 96]a* — [64C + 6BC + 132]a* -+
1+ [3AC -+ 3BC + 36]}y® + {[244C + 24BC -+ 168]a5 —
— [244C + 24B0 - 168]x}y® + {[124BC* + 4240 + 42BC + 72]a? +
-+ [12BC — 124 0% — [124BC* 4 30AC 4- 30BC + 721}y" 4
+ {[244BC* + 1240 + 12BC] + [12BC — 12401}y = A,y
From (5.2), the weight distribution A satisfies the three differential equations:
a) (#2— 134 = 0; |
b) B(w2— 1)2A® -+ 90x(x?— 1)2A4" + (22— 1)[(— éAO’ — 6BC + 258)x2 +
+ (BAC -+ 6BC — 18)] A’ = 0;
¢) (w2— 1349 4 30m(aw?— 1)24® - (22— 1){(— A0 — BC + 268)x* +
+ (AC + BC — 48)}A® 4 {(— 124C — 12BC + 816)a® +-
+ (124C 4 12BC — 456)x} A"+ {(4ABC*— 2240 — 22BC 4 672)x% +
+ (4BC — 4AC)x + (— 44ABC* 4 240 + 2B0 — 120)}4'= 0.

The general solution to a) is
A(@) = e1+ 26w — 1) + ;0w + 1) + 8" (@ — 1) + ¢:0'(x + 1) .
Sustitution of A into b) reveals ¢, = ¢; = 0. Similarly, substitution of A into ¢)
leads to ¢, = BCe,= ACe;. If we let ¢;= O, we get A(x) = C + 1/B)d{x—1) +

4 (1/4)d(x + 1). For this OPS, the moments are given by U, ;= (4 — B)/AB
and g, = 1/4 + 1/B + 2C/(2m + 1).

7. — Conclusion.

In summary, we have shown, under certain conditions, how to construct an
orthogonalizing weight distribution for an OPS {p.(#)} satisfying a real differential
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equation of the form

La'y®(@) = Any(®).
0

Much work needs to be done if we are to classify all differential equations of this
form having an OPS for a solution set. In particular, it is surprising how very little
is known on the general distributional selution to first order equations of the form
a(z)y' (@) - b(x)y(x) = 0, where a(x) and b(x) are polynomials. If we can successfully
learn how to solve these first order equations, perhaps we can solve the above
clagsification problem. ' ' '
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