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S u m m a r y . -  Suppose q~,~(x) is a polynomial o] degree m that satis]ies the di]]erential equation 

2n 

(1) ~ bi(x)y(i)(x) = ~my(x) , m = O, 1, 2 .. . .  

where n is some ]ixed integer ~ 1. We show that, under certain conditions, there exists an 
orthogonalizing weight distribution for {q~,~(x)} that simultaneously satis]ies n distributional 
di/]erential equations o] orders 1, 3, 5 .... ( 2 n -  1). I n  particular, this weight A must satis]y 

nb2n(x) A' + (nb~,(x) --  b2~_~(x))A -~ 0 

in the distributional sense. As a corollary to this result, we get part o] H. L. KraIFs 1938 
vlassi]ieation theorem which gives necessary and su][icient conditions on the existenee of an 
OPS o] solutions to (1) in terms of the moments and the eoe]]icients o] bdx). To illustrate 
the theory, we consider all o] the known OPS's to (1). In  particular, new right is shed upon 
the problem o] ]inding a real weight distribution /or the Besset polynomials. 

l .  - I n t r o d u c t i o n .  

A problem that  has attracted much interest over the past fifty years has been 
thut of classifying all differential equations of the form 

2n i 

(1.1) ~ ~ l~x~y(J)(x) : 2~y(x)  , n ~ 1 
i = l  i = 0  

having a sequence {~m(x)}:=0 of orthogona] polynomial solutions. This problem 
has become increasingly important to applied mathematicians who are looking for 
examples to fit the general Weyl-Titchmarsh theory of higher order differential 
equations. For example, see the recent papers of KnALL [10] and ]LITTLEJO~IiN and 
K~ALL [20]. 

The first major result was obtained by BOCHYEtr [3] in 1929 when he solved 
the problem for n ~ 1. Indeed, he found that, up to a linear change of variable, 
only the classical polynomials of Jacobi, Lag~erre ~nd Hermite and the Besscl 

(*) Entrata in Redazione il 30 giugno 1983; versione riveduta il 15 o~tobre 1983. 
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polynomials  satisfied a second order differential equat ion of the form (1.1). In  1938, 
H.  L. K~ALt published necessary and sufficient conditions in order for (1.1) to have 
an or thogonal  polynomial  sequence (OPS) of solutions [13]. Using this remarkable  
theoren~, he subsequent ly  classified all four th  order  equations having an OPS. He  
discovered three  new differential  equat ions having an OPS, all of which were dif- 
fe rent  f rom the  four sets ment ioned  above.  In  1978, A. ~ .  K~AI, L studied these 
nonclassical polynomials,  naming  them the  Legendre  type,  Laguerre  type  and Jacobi  

type  polynomials  [11],  . . . . . . . .  - 
Li t t le  work was done on the problem for the period 1940 1978. I t  became clear 

t ha t  more efficient techniques were required to solve the  problem in general.  The  
methods  of Bochner  and  Kra l l  are too tedious to apply  for large values of n. How 
ever,  a pa t t e rn  became apparent .  Consider the following table:  

Order of I 0PS Re~l 
Differential E qu~tion Weight 

2 Jaeobi (1 x)=(1 ~ x) ~ 
2 Laguerro x = exp [ x] 
2 Hermite exp [ x ~] 

1 
4 J~eobi type (1 x ) ~  - -~ 6(x) 

.~ 1 1 
Legendre type ~ -- -~ 6(x - -  1) -- ~ ~(x + 1) 

1 
4 L~guerre type exp [ x] -~ ~ b(x) 

Interval of 
0rthogonality 

[. 1, 1] 
[o, ~)  
( - ~ ,  ~)  

[0, 1] 

[-- I, I] 

[0, c~) 

:~Totiee tha t  the  weight :[or each OPS in the  four th  order  case can be found by  
adding discrete m~ss(es) to the weight in the associated second order OPS. Also, 
observe t ha t  the  weight for the Legendre  type  OPS has equal jumps at  =J=l. I t  is 
na tura l  to ask whether  an OPS exists when unequal  jumps at  =[=1 are considered. 
In  198], LI~TLEJO~ found tha t  such an OPS does exist  and called them the  Kra] l  
polynomials.  They  satisfy a sixth order differential equat ion and  their  various 
propert ies  are extensively  considered in [16]. l~,ecently, K o o ~ w I ~ I ) E ~  found a 
new OPS tha t  generalizes the  Kra]l  polynomials  [10]. The set t h a t  he has found 
are or thogonal  on [ - -1 ,  1] with respect  to the weight A O ( x - ~  1 ) ~ - B 6 ( x - - 1 ) - [ -  
+ C ( 1 -  x)~(1 + x) ~. The details have not  ye t  been worked out to de te rmine  if 
his OPS s~tisfies a differential equat ion of the form (1.1). I t  should be pointed out  
t ha t  ~-EVAI [22] has considered adding finitely m a n y  m~sspoints to  a weight distribu- 
t ion which has an associated OPS. In  fact,  he has produced some r emar l~b le  
formulas for  the  resulting new OPS. However ,  the applications of his t heo ry  to 
differential equat ions are unclear at the moment .  

In  this paper, we derive some new results regarding the general classification 
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problem. If  we are to solve this problem, we must  be able to classify all the  weight 
distributions tha t  make the polynomials orthogonal.  This is the approach tha t  we 
take :  we show tha t  the weight distributions fit nicely into a pa t te rn .  More spe- 
eifieMly, i/ {~v~(x)} is an OPS and ~ ( x )  satis]ies (].1) /or m =-O, 1, 2, ..., we show, 
under certain conditions, how to construct an orthogonalizing weight distrib~ttion A /or 
{~(x)}.  Under these conditions A will sim~dtaneously satis/y n distributional di]- 
]erential equations o/ orders 1,3 ,  5, ..., ( 2 n - -  1). We also show how pa r t  of H. I~. 
KlCALL'S 1938 classification theorem follows from our results. 

In  w 2, we lay  the  foundat ion for our results. We assume the reader  is famil iar  
with the paper  of K~AL~ and Mon~o~ [12] even though we review some of its mMn 
points in w 2. In  w 3, we introduce the  ideas of our article by  re-examining the 
second order ease. The reader  will notice how quickly the moments  are generated 
in this case. Also in w 3, new light is shed upon the problem of f n d i n g  an ortho- 
gonMizing Stieltjes funct ion of bounded var ia t ion for the Bessel polynomials.  ]Be- 
cause of the  in t imate  connect ion between self adjoint  differential operators and 
orthogonal  polynomiMs~ we develop, in w 4~ necessary and sufficient conditions for 
even order differential expressions to be formal ly  self adjoint.  w 5 deals with the 
general theory  tha t  we develop and, lastly, we follow this in w 6 by  considering the 
examples in the four th  and sixth order cases. 

2. - Background and preliminary assumptions. 

We list some fundamentM hypotheses  and well known results tha t  we shall 
assume and use th roughout  the  remainder  of this paper. 

(a) Le t  {Try(x)} be an  OPS with respect  to a real  Stieltjes weight tt(x), where 
/~(x) is of bounded var ia t ion  on -- oo < x ~ oc. Tha t  is : 

i) %.(x) is a polynomial ,  with real coefficients, of degree exact ly  m, m---- 

O, 1, ... and 

co 

ii) f%(x )%(x )  d~u(x) -~ K ~ ,  K~V= 0 and ~ denotes the Kroneeker  ~-func- 
- - o o  

tion, p, q ---- 0, 1, .... 

Fo r  general  propert ies of an OPS, the reader  is referred to the excellent t ex t  of 

Cm~A~A [6]. 

(b) Assume ~,~(x), m = 0, 1, ... is a solution of the 2n th order real differential 
equat ion 

2 n  

L, .(y)  = ~ b,(x)y(')(x) = ~.y(x)  
i = 1  

where ~t,,~ is a pa ramete r  depending only on m and where n is some fixed integer ~ 1. 



38 LANCE L. LITTLEJOIIN: On the classification o/ di//erential, etc. 

Necessarily then,  b~(x) is a polynomial  of degree < i, i = 1, 2, ..., 2n, so we hence 
i 2n 

fo r th  assume tha t  b~(x) = ~ 4 j x  ~, l , ~ R .  I t  follows then  tha t  2 ~ =  ~ 2 ( m , j ) l j j  
j = o  ~=1 

where /P(m, j) = m(m - - 1 )  ... (m -- ~ @ l)  and P ( m , ~ ) = 0  for ] > m .  The reader  
is encore'aged to consult  [13] for a general  account  of this discussion. 

c o  

(v) Le t  / t~: fx~dt t ( z ) ,  m = 0, 1, . . . ; / t~  is called the m th moment .  We shall 
- - o o  

assume: 

i) /zo= 1; 

ii) I/z~! _< cP,"m !, m = 0, 1, ... where c and P are arbi t rary ,  bu t  fixed, constants .  
(This is in accordance with the  assumptions given b y  Kral l  and  ~or ton . )  

iii) The n recur rence  relat ions given by  H. L. K~ALL (see Theorem 5.5) have a 
unique solution. This is a reasonable hypothesis ;  all of the  known OPS's have the  
p rope r ty  tha t  once /to is known,  all the  other  moments  are uniquely  determined.  
:Note t ha t  this assumption does no t  imply  the uniqueness of d#@): there  exist  m a n y  
signed measures d/z(x) such tha t  

c o  

f x~  @(z) = 0 ,  n = O, 1, . . . .  

Fo r  example,  f x . g ( x )  dx  = o, n = 0, 1, 2, ... where 
- - o o  

] e x p [ - - x  ~]s in(x  ~), x > 0  
g(x) 

I 0 , x < 0 .  

l~rom (a), it  follows tha t  

i~o #1 .. #,~ i 

Am= i/~I #2 .. /t~+l # 0 , 
i. 
i: 
i 1 

m - -  1~2 ... 

(see [6]). 
(d) Assume there  exists a funct ion /(x) having ( 2 n -  1) pieeewise continuous 

derivatives on R and, on the  intervals  where / (x)  has (2n -- 1) continuous derivatives,  
assume /@)L2~(y ) is formal ly  self adjoint .  This is also a reasonable assumption.  
The differentiM equat ions for the classical orthogonM polynomials,  the Bessel poly- 

nomiMs and the  nonclassical polynomials  found b y  K~ALL [11] and LITTT.EJOHN [16] 
can all be made  formal ly  self adjoint .  Indeed,  for  these classical and nonclassical 
polynomials,  / ( x )=  a'(x) where a(x) is the absolutely continuous par t  of #(x). 



LANCE L. LITTLEJOH~: On the elassi/ieation of di//erential, etc. 39 

(e) KRALL and MORTO~ [12] found what  seems to be the appropriate setting 
for the weight distribution dlt(x). More specifically, they  showed tha t  the distribution 

( -  1),,~#~(~)(x) 
w(x) = ~. 

m=o m !  

acts as an orthogonalizing weight for {~(x)}: 

c o  

f ~ ( x )  ~(x)  w(x) dx = K~ ~,,~ , 
- - o o  

K~v~ 0 

They showed, tha t  under  certain conditions, w(x) e P~, the dual of the vector sp~ce/)  
which consists of all infinitely differenti~ble real valued functions V(x), -- oo < x < c% 
such tha t  for all ~ > 0, q ~ 0, 

l im exp [--~]xlJ~0r = 0 . 

The reader is referred to [12] for the discussion of the topology given to P. Notice 
tha t  _P contains the set of all polynomials. 

(/) For  any  distribution P in P ' ,  we will adopt  the usual notat ion to show 
how F acts on P :  for ~ ~ 1 ), <F, ~> denotes this action. In  particular, if w e pr 
where dlt(x ) = w(x )dx ,  then  the m t h  moment  of # is <w, x"}. Since we will be 
freely using the calculus of distributions, the reader is referred to [9], [23], or [25] 
for an excellent review. 

3. - Examples: the orthogonal polynomials in the second order case. 

To illustrate the general theory developed in w 4 and w 5, we show how the 
weights, differential equations and moments for the t termite ,  Jacobi, Laguerre and 
Bessel polynomials can be found 

As stated in w 2, we shall assume: 

(i) {~(x)} is an OPS with respect to d/~(x); 

(ii) there exists a func t ion / (x)  which is piecewise continuously differentiable 
oll ( -  ~o, o~); 

(iii) ~%(x) is a solution of the reM second order differential equation; 

(3 1) Z~(y) ----- b~y" ~ bly ' -~ ~,~y , m = O, 1, 2, ; 

(iv) / (x)L,(y)  is formally self adjoint  on the intervals where / is C 1. 
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The most general formMly self adjoint second order differential expression .~s 
given by:  

a~y" -~ a~y ~ ~- aoy .  

From (3.1) and iv), it follows thgt ](x) satisfies the first order differential equation: 

f 

(3.2) b~(x)/'(x) 4- (b~(x)--b~(x))](x)  := O. 

Separation of v~ri~bles easily yields the classical solution 

/(x)= 

[ (b (x)dx] 
b2(x) 

However, (3.2) might be ~ singular equation so its general solution in  P '  might 
include a distributional part. For exa, mple, the general solution in P '  to x~-]'(x) = 0 

is i ( x ) =  e~+ c2~(x) where e~ ~nd c2 ~re arbitrary constants. W e  shall make  the 

additional assumpt ion  that there is a distributional solution A ~ P '  to (3.2) with 

(A, 1 } = 1 .  l~or ~6_P, we have 

(3.3) 

Letting bs(x) - -  t~x  ~ -b l~ix -~ 12o, b~(x) = t n x  zr l~o, yJ(x) -~ x "~ and using the notation 
of w 2(g), equation (3.3) reads: 

(3.,1) (mI~2 ~- t~),u.~+~ -~ (mI~ -~ 1,o)#,, ~- m l 2 o # ~ _ ~  ---- 0 ,  m ~ 0 . 

This is exactly tile recto'fence relation given by H. L. KgALL in [13]. Before con- 
tinuing, there is ~n important remark to be made: the true interval of orthogonality 
is not immediately avai]~ble once we find A. For example, the weight for the 
Legendre polynomials is well-known to be 

i 1 f o r - - l < x ~ < Z  
](x) ~ 0 otherwise. 

However~ equation (3.2) yields just ] ( x ) :  1. This turns out to be not a serious 
problem. We outline ~ method below that allows us to determine the true interval 
of orthogonMity. 

A)  The Hermi te  Polynomials .  

In this ease, b2(x) ~- 1 and bl(x) ~ - -  2x. Then~ (3.2) becomes ]'(x) - j  2x](x) -= O. 

Tile general solution in P '  is elearly the cla.ssical solution ] ( x ) = - e x p  [--x~-]. (3.4) 
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yields the  recurrence relat ion - -  2#~+~ -~ m#.~_~ ~ 0. This is readi ly  solved to yield 

~.,~+~ = o and  ~ -  ( ( 2 m ) ! m ) l ( 4 m m  !). 
We now show how Lagrange ' s  iden t i ty  [5] cun be used to find the  He rmi t e  

differentiM equat ion and  weight  funct ion one b~(x) is known. Indeed,  suppose b~(x) = :[ 
in (3.1). F r o m  (3.2), it follows tha t  

](x) : exp [ / ~ ]  §  

By considering 3~ l inear  change of variable,  we m a y  as well assume l~0 = O. Lagrange ' s  

iden t i ty  yields the  equat ion:  

d[l(X)Wo~(X)] 
z(x)/(x)L2(y)  - -  y(x)f(x)L~(z) --  dx 

where u'0~ = zy'--  yz'. Suppose the  in te rva l  of o r thogona l i ty  is (a, b) where --  oo ~ a < 

< b ~ o o .  Then,  for z = A % , y = ~ , , p v  6 r ,  we h~ve 

b b 

f . = 
a t~ 

I t  follows, then,  t ha t  i t  is necessary  ~nd sufficient t ha t  / ( a ) =  ] ( b ) =  0. Indeed,  

b y  choosing z = %, y = ~01, we see t ha t  /(a) -~ ](b). By  le t t ing z = %, y = 902, it  
follows t h a t  ] ( a ) =  ] ( b ) =  0. Of course, this implies l = <  0 and  a = ,  0% b = oo. 

Again by  considering a l inear  change of variable,  we can a s s u m e / =  = - -  2. I t  follows 

tha t  ](x) = exp [--  x2], Z2(y) -= y"--  2xy',  and  thus,  we get  the  H e r m i t e  polynomials .  

B) The Jacobi Polynomials and the .Laguerre Polynomials. 

The Jaeobi  differential  equat ion 

(1 --  x=)S(x) + [fl -- ~ -- (o: + fl + 2)x]y'(x) + m(m + o~ + fl + 1)y(x) = 0 

can be found in a s imilar  way  to tha t  of the  above  H e r m i t e  equat ion b y  considering 

the  ease of b2(x) being a po lynomia l  of degree 2 w i t h  two unequal  real  roots. We 
will no t  do this however ;  ins tead we find the weight. I n  this case, (3.2) becomes:  

(!-x~)/'(x) + (~-~- (~+f l )x ) / (x )  = o .  

The general  solution in _P' is again  jus t  the  classical solution 

/(x) = (1 x )~ (1  §  
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For the Laguerre polynomials,  equation (3.2) reads 

xt'(x) + (x-~)/(x)  = o .  

The general solution in P '  to this equation is ](x) = x ~ [exp [-- x]. Using (3.4), the 
moments  for these polynomial  sets can easily be calculated. 

C) The Bessel .Polynomials. 

The Bessel polynomials satisfy the second order differential equation x2y " 
~- 2@ + 1)y ' - -  n(n ~ 1)y ~ 0. A Stieltjes weight distr ibution d#(x), where /t(x) 
is of bounded variat ion on -- c~ < x <: c~, has never been found, even though Boas' 
theorem [2] guaremtees its existence. At tempt  after  a t t empt  has been made to find 
d/~t(x) but  each method  h~s failed to recover /~. For  an excellent treatise on the 
Bessel polynomials,  the render is encouraged to consult G~osswAL])'s tex t  [7]. 

The first order equation (3.2) is given by 

(3.5) x ~ l ' ( z ) - 2 ] ( x )  = o .  

Note t ha t  k exp [~  2/x] satisfies this equation (k any  constant) but  k exp [--2Ix] 
is no t  the weight funct ion for the Bessel polynomials.  In  fact,  k exp [-- 2Ix] is not  
in P '  unless k = 0. KRAL~ and Mo~To~ [12] found tha t  

2"+~(")(x) 
w(x) = 

makes the Bessel polynomials orthogonal on (--cr c~). We can show: 

Tn3~olcE~ 3.1. - w ( x ) =  ~ satisfies (3.5). 
~=o n ! (n  -f- 1)  ! 

PnooF. - Let  ~ be an appropriate test  funct ion (for example, a polynomial).  
:Note t ha t  (x2q~(x) c€ : X2(~("+I)(x) I--~ 2 ( ~  -~-- 1)Xq0(')(X) -~-- n(n ~- 1)~(~-~)(X). Hence 

X 2 ~ + : 

~=o n !(n § 1) ! 
2~+2 

~=on!(n + 1 ) !  
<~)(z) ,  ~(x)> 

~=o n !(n +1 )~  <a(x), (x2~(x))"§ + - �9 ,~=o n ! (n  + 1)  ! <a (x ) ,  ~ ( x ) >  

[] 

Kral t  and ~ o r t o n  fur ther  showed tha t  the inverse Fourier t ransform of w(x) is not 
exp [-- 2/x]. Thus (3.5) does have a distributional solution other th~n exp [-- 2/xl. 
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This author  has applied various techniques to t ry  and find the general solution to 
(3.5) bu t  to no avail. The s tandard methods tha t  are used to find the distributional 
solutions to differential equations do not  secret o work in this ease. IJet A denote this 
general distributional solution to (3.5) (it may  be tha t  A = elw(x) -4- e~ exp [-- 2Ix]). 
I t  is not  clear if this general distributional solution is in 22  However, the formal 
ar i thmetic tha t  we carry out below indicates tha t  the directions tha t  we have taken 
in this paper are right even for the Bessel polynomials. Equat ion (3.4) yields the 
recurrence relation 2 / ~ - ( m - ~  2)/~,,+~= 0. This is easily solved to yield / ~  = 
= ((-- 1)~2~tto)/(m -~ 1) !. Of course this is in complete agreement  with other meth- 
ods tha t  compute  these moments .  

We now show the orthogonali ty of the Bessel polynomials with respect to A. 
:For an appropriate test  function ~, we have: 

(3.6) 0 = <x:A ' -  2A, qD> = <A, x2q'-~ 2(x + 1)q>.  

I f  y~ and y~ denote the n-th and  m-th Bessel polynomials respectively, we see tha t  

2 I/ Y ? n ! (n -- m)(n q- m -4- 1)y~y.~ = x (y~y~-- y~y~) 3- 2(x -4- 1)(y~y -- y~y~). 

I ! Z l  ~ 1/ If 
:Let z = y~y~-- y,~y~ so y~y~-- y~y~. 

Hence, 

(n -- m)(n + m + 1)<A, y,~y~) = <A, x2z'-~ 2(x + 1)z) = 0 by (3.6). 

This shows the orthogonali ty of the Bessel polynomials with respect to A. 

4. - A criterion for formal self adjointness of  higher order differential equations. 

In  [17], this author  investigated the problem of when an even order real dif- 
ferential equation can be made formal ly  self adjoint.  The following theorem is- 
based upon a remarkably  simple formula of H. L. KRAI~L [15]. :Let 

2 n  

~n(y) = ~ ak(x)Y(k)(x) , 
k = 0  

where a~(x) is real valued, ake C~(I), a2~(x) =/= 0 for x e I ,  and where I is some com- 
pact  interval  of the real line and n is some positive integer. 

TH]~ORE~ 4.1. - /(x)g~dy) is formal ly  self adjoint  if and only if ](x) simulta- 
neously satisfies the n homogeneous differential equations: 

n 2 s - - 2 k + l  

(4.1) Z 
s = k  ~ = 0  

( 2 s )  (2s --  2k q- 1~ 2~'-~k+~-- i n .(~-~k+l-~,/~ ~(j)r~ 
2 k - - 1  i ] s Z ~ -  ~ ~-~-.~+~2~ ,~,,  ,~, 

- -  a ~ _ l ( x ) / ( x )  = 0 ,  k = 1 ,  2 ,  . . . ,  n . 
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where B.~ is the Bernoull i  number  defined by :  

X X ~2~ B~-ix2Z [] 
I 

The n differentiM equat ions given by  (4.1) are of orders 1~ 3, 5, ..., (2n -- 1). The 
first order  equat ion can easily be solved to give: 

/ ( x )  = a~(x) 

Notice that for n - - 1 ,  (4.1) is just  equat ion (3.2). 

5.  - G e n e r a l  t h e o r y .  

The reader  is reminded  of the  hypotheses  s ta ted in w 2 tha t  we shall assume. 
B y  Theorem 4.1, ](x) necessarily satisfies the n differential equations:  

s = k  i=O ~ / , 
- - 4 ~ _ ~ ( x ) l ( x )  = O ,  k = 1,  2 ,  . . . ,  n . 

We now make  ano ther  assumption:  assume system (5.1) has a general solution A ~ 1 )' 
with <A, 1> = 1. 

Then,  for  ~ e/~,  we have:  

~S~k 2S--2k+l ( 28 
(5.2) o = Z 2 ~ -  

i = 0  

B h(gs-2tc+l-J)/x~A(D - -  b~_l(x)A, 

We will show that A is an orthogonalizing weight distribution ]or {%,(x)}. 

I t  is well-known tha t  if A is a dis tr ibut ion and L(y) is a differential  expression, 
then 

(5.3) <L(A), ~o} = <A, L+(~o)}, (see [24]) 

where L § is the Lagrange adjoint  of L. Our first aim will be to simplify (5.2) using 
(5.3). The following lemma is easy  to prove.  
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LE~m~A 5.1. - I f  m is u pos i t i ve  in teger ,  t h e n  

~,~-~ 2(__ 1)~-~ ( - - 1 )  ",~ 
]~ !~,- (~,)~ �9 ~'=o ( 2 m - - ~ )  . 

LE~i~A 5.2. - 

2 S . 2 k +  1 2~--2k+ 1--i  ( 

i=O {=0 

P~ooP .  - L e t  

a~: (--l)~-~(2s--;k + l)( 2s- 

Since 

i ] 

" i i ' 

i t  fol lows t h a t  

i) a ~ j =  ar if a n d  on ly  if i - - j  is even ,  a n d ;  

ii) a { j : -  ar if  a n d  on ly  if i - - j  is odd.  

i 
B y  cons ide r ing  t h e  r a a t r i x  of  a{j's, i t  is c lear  t h a t  i t  suffices to  show ~ a{_j.~ : O, 

i : 0, 1, . . . ,  2 s - -  2k + 1 - -  j, ~ = 0, 1, .. . ,  2 s - -  2k -j- 1. j=o 

Suppose ,  t hen ,  t h a t  i : 2 m -  1. 
T h e n  

2~t-- 1 

a2.,_l_j,:;----- a~,~_l,o-[- a:,,._2,1 + a~._z,2-}- ... + a2,~_~ + aI,2._~ + ao,~,~_l = 0 
J=O 

b y  ii) above .  

I f  i = 2m,  t h e n  
2~ ~- -1  

a~_ j , j  = 2 ~ a2~_j,j + a,y,~ b y  i) above .  
i = 0  ~=0 

1 ( )( ) :2~(_i)~_~ 2s--2k+1 2s--2k+l--j 

l~Iow 

i 2m -- i (2s -- 2k -- 2m + 1) !(2m -- i) ! i ! 
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~nd 
(2s--2km + l ) ( 2 s - 2 k m + l - m ) =  

Thus, 

~ a~..,_~,~= ( 2 s - - 2 k - - 2 m  + 1)' "7~0 

by Lemma 5.1. 
Hence 

2s--2k+ 1 2s--2k+ 1-- 

2 2 
~=0 i=0 

(2s -- 2k + 1) ! 

( 2 s - - 2 k - - 2 m  + l ) ! ( m ! )  =" 

{ ( -1 )o-  1 
(2m --  j) ! j I + ~=o (m!)~ / 

a i~ = aoo = - -  b~(x)cf(=~-~+~)(x) �9 [] 

= 0  

Returning to (5.2), we have: 

-B2~_~+2b~2~-~k+~-~)~x~A ~ ~ - -  b2~_l(x)A, ~o) = 

1(, 2,-2~+1( 2s 1~22'-'~+'--1 
j / s----~-+ 1 

�9 B~,_~+2b(J~,(x)A (~ -~+~-~-  b~_~(x)A, ~o} = 

----i( 2~2s-- 1 ) 2 ~'-~+~- l s  k + 1 B~'-2~+~ ( ~  - f + ~  (2s - -2k@l)b~(x )a (~-2~+~-~) '? (x )>  

Now 

E = 

2S--2k+l(2s--2~ + 1 )  [ h(,) m. (28_2k+ l_i),,) 
= 2 . (--1)'-~(A, w~,~, . = 

i=o Y 

= ~ ~ (- -1) ' - '  2s--2k. + 1  2 s - - 2 k . + 1 - - ]  (A,b~,y,~f(~,_2~+~_j_,)) = 
~=o i=o J 

= (A,--b~(x)~o(~'-"-~+~)(x)> by Lemma 5.2. 

Hence, (5.2) may be rewritten as: 

~ [ 2s \22~-~k+~-1 
O =  ~ A,~ =k t2k __ 1) ~ ~--~ _T i ~  B2~_~+2 b ~s,'x"~(2'-2k+l"x ' , ~  , , + b2k_l(x)?(x)) , 

k = l ,  2 , . . .~n .  
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We summar ize  our resul ts  so far  in the  following theorem.  

TI-IEORE~ 5.3. - The dis tr ibut ion A ~ _P' satisfies the n dis t r ibut ional  differential 

equat ions:  for F e P, 

<~ 2~--2k+1( 2s )(2s--2k + 1~2 ~ - 2 k + ~ - _ l n  h(o,_~+l_j,/l(j, b2, ~A, 9} = 0  

k = 1,2, ...,n. 
Equiva len t ly ,  for all 9 e-P, 

~A ~ / 2s \22~-~+2--1  

k = 1, 2, ..., n .  

i 

I f  we let  9(x) = x m and write b~(x) = ~, l ,x ~, (5.3) gives us n recurrence rela- 
i = 0  

t ions involving the  m o m e n t s  of A. Indeed,  we have:  

TI~EOl~E~ 5.4. - The m omen t s  {/z~}~~ of the dis tr ibut ion A s imul taneously  
sat isfy the  n recurrence relat ions:  

~ (  ) 1) 2~-2k+2~ 1 T~(m) = ~ 2s P(m-- 2k + 1, 2 s - - 2 k  + 
2 k - - 1  s k + 1  s = k  J=O 

2k--1 

"B~_2k+~l~,jq~_~.~+j 4- ~ 12k_l,~/z~_~+l+j = 0 , m ~ 2k - - 1 ,  k = 1, 2, ..., n .  
~'=0 

PROOF. - This follows immed ia t e ly  upon subs t i tu t ing  9 = x~ into (5.3) and  
replacing m b y  m --  2k + 1. [] 

At  this point ,  let  us recall  H.  L. KRALL'S 1938 classification theo rem:  

T~EO~E~ 5.5 (KRALL). -- I n  order t ha t  there  exis t  a.n OPS {~.(x)} sat isfying 
the  differential  equat ion  

2n i 
j (i) y. ~. l . x  y (o0) = ~v(~)  

i = l  J=O 

i t  is necessary  and  sufficient t ha t :  

(i) the  m o m e n t s  {/~m}~o sat isfy the n recurrence relat ions 

(5A) 

and 

~ ( k - -1)p(m--2k- -1 ,  i--2k--1)li,  i.~/xm_~=O & ( m )  = i - -  

i = 2 k + l  u=O k 

k = 0 , 1 , . . . ,  ( n - - l ) ,  m>2k +1 

(ii) A ~ #  0, k = 1, 2, ..., where A~ is defined in w 2(c). [] 

- z l n n a l i  d i  M a t e m a t i c a  
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I t  is na tura l  to ask: what  is the connection between S~(m) and T~(m)? Elementary  
calculations reveal, for example, t ha t  

T~(m)  = S,~_~(m) 

2~_~(m) = & _ ~ ( m ) -  
n ( u -  1 ) ( m -  2n + 3 ) ( r a -  2n + 2) 

2 S ._~(m)  

( n - - 1 ) ( n - - 2 ) ( m - - 2 n  -j- 5 ) ( m - - 2 n  + 4) 
S~_~(m) + 

+ n ( n - - 1 ) ( 5 n - -  7 ) ( m - - 2 n  + 5 ) ( m - - 2 n  + 4 ) ( m - - 2 n  + 3 ) (m--  2n + 2) ,~_l(m). 
24 

In  fact,  

(5.5) 

where: 

A1 : 1 and 

T~_~(m) = ~_. AjS~_k+j_~(m)  , 
i = l  

k - - - - O , ] , . . . , ( n - - 1 ) ,  

J + ~ , A ~ ( n - - k  + 2 j - - i )  
i=1 n - - k  + i - - 2  P ( m - - 2 n  + 

j = 1, 2, ..., k . 

2 k - - 2 i - - 3 , 2 j - - 2 i  + 2 ) • 0 ,  

We leave out the verification of (5.5) because of the tedious computations involved. 
F rom (5.5), it is clear tha t  S~(m)  - :  O, k = O, 1, . . . ,  (n - -  1), if and only if Tk(m) ---- 0, 
k : i, 2, ..., n. 

Hence, from w 2 (c), A and w generate the same moments  where w is defined in 
w 2. In  view of these facts and  Theorem 5.5, we have the following. 

Tt{EO~E)I 5.6. - Suppose {~(x)} is an OPS with moment  sequence {/~.~}. Assume 
the hypotheses stated in w 2. In  addit ion,  suppose the following are satisfied: 

i) %~(x) satisfies the real differential equation 

(5.6) ~, b~(x)y(~)(x) : 2 ~ y ( x )  , 

i 

where bdx )  = ~ l , :~ x  ~, i = 1, 2, . . . ,  2n; 

ii) The system of distr ibutional differential equations 

m = O, 1 ,  2 ,  . . .  

(5.7) 

. ~  h(~-~+l-J)l~o~ A(j) b21~_l(x)A = O , ~2S_2k+i ~28 ~ ] z x  - -  

k = l ,  2, . . . ,  n 

has a nontrivial  solution A e P '  with <A, 1>----1, where B~ is the i-th Bernoulli 
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number .  Then A is an orthogonalizing weight distr ibution for {F~(x)} with / ~  
= <A, x'~}. In  part icular ,  A satisfies the first order equat ion n b ~ ( x ) A ' +  ( n b ~ ( x ) -  
- b~_~(~) )A = 0. 

:NOTE. - Compare this last s t a tement  to Theorem 2 in [:[]. This theorem says 
tha t  if a weight function w(x) satisfies a first order equat ion of the form a(x)y'(x) 
+ b (x )y (x )=  0 where a(x) and b(x) are polynomials  then  the OPS associated with 
w(x) satisfies a differential equat ion of the form 

A(x,  n)yr~(x) + B(x, n)y'(x) ~- C(x, n)y(x) = 0 . 

We now point  out a ra ther  interest ing corollary. 

THEORE~ 5.7. -- Under the assumptions of Theorem 5.6, (.4, b~k_~> = O, k = 

Pi~oor. - Set q ( x ) =  i in (5.3). 

For  example,  the  Hermi te  differential equat ion is y"-- 2xy'4- 2ny = O. 

Note  tha t  <exp [-- x~], -- 2x} = ; - -  2x exp [-- x ~] dx 0. Similarly, the Laguerre  

equat ion is x y " +  (1 -~- cr x)y '4-  ny =- O. Observe tha t  

oo 

<x ~ exp [-- x], 1 ~- ~ -- x> f ( 1  + ~ - x)x~ exp [ -  x] ax = 0 
0 

6. - More examples .  

In  this section, we show how the theory  a~pplies to the nonclassical orthogonal 
polynomials  found by  Kral l  and Lit t lejohn.  

A) The Zegendre type Polynomials. 

In  this case, the four th  order equat ion is: 

(x ~ -  1)~y (4) -~- 8x(x ~ -  J)y (~) -[- (4~ -~ 12)(x 2 -  1)y'r-~ 8ocxyr= ~ y .  

F r o m  (5.6), we know tha t  the weight A simultaneously satisfies 

(a) ( x ~ -  1 ) ~ A ' =  0; 

(b) (x ~ -  1)2A(~)-~ 12x(x ~ -  1 ) A " +  [(24 -- 4cr - 4o~]A'= O. 

The general  solution to (a) is A(x) = cl ~ c2(~(x - 1) ~- c36(x + 1). 
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Subst i tut ion of A into (b) and  using the equivalent  equat ion ~rom (5.3) yields 

0 = ((x ~ -  1)~A (~) 4- 12x(x~-  1 ) A " §  [(24 - 4~)x ~ 4- 4~]A', ~} = 

= <./1, (x 2 -  1 ) ~  ( ~ -  (4~ 4- 12)(x ~ -  1)~0'-- 8~x~) = 

1 

= -- 8a~(1)c~-}- 8 ~ ( - -  1)ca 4- c~j[(x ~ -  1)~0 ( ' , -  (4r162 4- 12)(x -~- 1 )~ ' - -  8axe] dx = 
- - 1  

where we have used integrat ion by  par ts  to simplify the integral.  This forces 
c1= ~c~= ~e3 so c~= c3. I f  we let  ca=  �89 we get A(x) = ~/2 4- �89 1) 4- �89 4- 1). 
This, of course, is in complete agreement  with the me thod  used by  Kral l  and Mor- 
ton  who used the  ~o~rier  t ransform.  Our method  does seem easier. ~o t ice  tha t  the  
moments  can be immedia te ly  calculated wi thout  using the  recurrence relations in 

Theorem 5.4. We find tha t  # ~  = (a 4- 2m 4- 1)/(2m 4- 1) ~nd /*2~+~ = 0. 

B) The Zaguerre type Polynomials. 

The four th  order differential  equat ion for these polynomials  is: 

xPy( ~)- (Px~- 4x)y(~) + (x~- (PR 4- 6)x)y" 4- ([2~ 4- 2 I x -  2R)y '  = ~ y .  

The weight dis t r ibut ion satisfies the two equat ions:  

a) xPA' 4- x~A = 0; 

b) xPA'3~4- 6xA"4- [-- x24- (2R 4- 6)x 4- 6 ]A '4-  (2Rx 4- 6)A = 0 .  

The general  solution to a) is A(x) = cl~(x) 4- c~ exp [-- x]. Subst i tut ion into b) 
reveals A(x) = (I/R)(~(x) 4- exp [-- x]. The  moments  can now be easily calculated. 

They  are /zo = (/~ 4- 1)/R and  f t .  = m !, m ~ 1. 

C) The Jacobi type Polynomials. 

These polynomials  satisfy 

(x 2 -  x)Py (4) 4- 2x(x -- 1)([~ 4- 4Ix -- 2)y  (~) Jr x([~ 2 4- 9~ 4- 14 4- 2 M i x  -- 

-- [6g 4- 12 4- 2M])y"4-  ([~ 4- 2][2a~ 4- 2 4- 2MJx  -- 2 M ) y ' =  ~ y .  

In  this case, the weight satisfies: 

a) x~(x -- 1)~A ' -j- ~x~(1 -- x )A  = O, and 

b) x ~ ( x -  1)PA (3) + (12x 3 -  lSx2 4- 6x)AIr4- 

4- [ (_  ~2_  9~ 4- 22 -- 2 M ) x  2 4- (6~ -- 24 4- 2 M ) x  4- 6]A' 4- 

4- [(2M~ --  12a)x 4- 6~]A = 0 .  
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The general solution to a) is A(x)----c1(1- x)~+ c~(x). 
Similar to the previous two examples, substitution of this A into (b) and integra- 

t ion by parts  reveals Mc: ~ c1: Setting cl ~ 1, we find tha t  A(x) ~ (1 -- x) ~ + 1/M~i(x). 
Again, the moments  can easily be calculated. We find in this case tha t  /*0~ 
= (a ~- 1 -~ M)/M(~ + 1) and, for m_~ 1, #m ~- m!/(~ + 1)~+~. 

D) The Krall _Polynomials. 

This OPS satisfies the sixth order differential equation 

(x 2 -  1)~y( e~ + 18x(x 2 -  1)2y (~) ~ {[3AC -~ 3BC -~- 96]x' -- [6AC ~- 6BC + 332]x2+ 

[3AC ~- 3BC + 36]}y (~) + {[24AC ~- 24BC ~ 168]x 3 -  

-- [24AC + 24BC + 168]x}y (3) + {[12ABC 2 ~ 42AC -~ 42BC ~ 72]x 2 + 

~- [ 1 2 B C -  1 2 A C ] x -  [12ABC 2 + 30AC + 30BC + 72]}fr + 

+ {[24ABC ~ -~ ]2AC ~ 12BC]x ~ [12BC -- 12AC]}y'~-- 2~y. 

From (5.2), the weight distribution A satisfies the three differential equations: 

a) (x~- 1)~A'= 0; 

b) 5(x 2 -  1)aA r -{- 90x(x ~ -  1)2A"+ (x 2 -  1)[(-- 6 A C -  6BC + 258)x2 + 

+ (6AC-~ 6 B e - -  1 8 ) ] A ' :  0; 

C) (X 2 -  1)3A (s) ~- 30X(X 2 -  1)~A r + (x ~ -  1){(-- AC -- BC -r 268)x 2 -~ 

+ (AC + B C -  48)}Ar { ( -  1 2 A C -  12BC ~- 816)x ~ + 

+ (12AC + 12BC -- 456)x}A"+ {(4ABC~-- 2 2 A C -  22BC ~- 672)x2-} - 

+ (4Be -- 4AC)x + (-- 4 A B e  ~ + 2AC + 2BC -- 120)}A'----- 0. 

The general solution to a) is 

A(x) = c~ + c:,~(x - 1) + c~6(x + 1) + e,6'(x -- 1) + c~ ' ( x  + :t) . 

Susti tut ion or A into b) reveals c4 = c5 = 0. Similarly, substi tution of A into c) 
leads to c1~ BCc~= ACe3. I f  we let e~ = C, we get A(x) = C + (1/B)~(x--  1) + 
+ (1/A)O(x + 1). For  this OPS, the moments  are given by t~2m_~= ( A -  B) /AB 
and /t2~ = 1/A + 1/B + 2C/(2m 4- 1). 

7 .  - C o n c l u s i o n .  

In  summary,  we have shown, under  certain conditions, how to construct an 
orthogonMizing weight distribution for an OPS {%~(x)} satisfying a real differential 
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equation of the form 
2n i 

~, ~, 4 f r  = ;~y(x). 
i = l  i=0  

3fuch work needs to be done if we are to classify ~11 differential equations of this 

form having  ~n OPS for ~ solution set. I n  part icular,  it is surprising how very  little 

is known on the general distributional solution to first order equations of the form 

a(x)y'(x) ~- b(x)y(x) ~- 0, where a(x) ~nd b(x) a, re polynomia,ls. I f  we c~n Successfully 

learn how to solve these first order equntions, perha~ps we can solve the above 

classification problem. 
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