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Abstract 

In a secret sharing scheme, a dealer has a secret key. There is a tit&et P 

of participants and a set I’ of subsets of P. A secret sharing scheme with I’ as 

the access structure is a method which the dealer can use to distribute shares 

to each participant so that a subset of participants can determine the key if 

and only if that subset is in I’. The share of a participant is the information 

sent by the dealer in private to the participant. A secret sharing scheme is 

ideal if any subset of participants who can use their shares to determine any 

information about the key can in fact actually determine the key, and if the 

set of possible shares is the same as the set of possible keys. In this paper, we 

show a relationship between ideal secret sharing schemes and matroids. 

1 Introduction 

In a secret sharing scheme, a dealer has a key. There is a finite set P of participants 

and a set r of subsets of P. A secret sharing scheme with F as the access structure is 

a method which the dealer can use to distribute shares to each participant so that a 

subset of participants can determine the key if and only if that subset is in I’. A secret 

sharing scheme is said to be perfect if any subset of participants who can use their 

shares to determine any information about the key can in fact actually determine the 

key. The share of a participant is the information sent by the dealer in private to the 

participant. 

In any practical implementation of a secret sharing scheme, it is important to keep 

the size of the shares as small as possible. The reason for this is obvious. The most 
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secure method for a participant to store a share is in his own memory. However, if his 

share is too large, he will be inclined to write down information which will help him 
to remember his share. This, of course, will degrade the security of the scheme. This 

paper deals with secret sharing shemes in which the shares are as small as possible, 

i.e. the shares are the same size as the keys. 

Let K be the set of keys and let S be the set of shares used in a secret shar- 

ing scheme. The information rate for the secret sharing scheme is defined to be 

log, IKl/ log, ISl. A perfect secret sharing scheme is said to be ideal if it has informa- 
tion rate l. 

The first constructions of perfect secret sharing schemes were the threshold schemes 

of Blakley [2] and Shamir [5].  In a threshold scheme, there is a threshold t such that 
the access structure is I' = { A  C P : IAl 2 t } .  

A set of subsets I' of a set P is said to be monotone if B E I? and B E C implies 

that C E I' for any B,C C P. Ito, Saito, and Nishisehi [4], and also Benaloh and 

Leichter [l] showed that for any monotone set of subsets I' of P, there exists a perfect 

secret sharing scheme with I' as the access structure. However, for both the ISN and 

the BL constructions, the information rate could be exponentially small in lPl. 
The schemes of Blakley and Shamir can be implemented so that they are ideal 

secret sharing schemes. Benaloh and Leichter [l], Brickell [3], and Simmons [6] have 
constructed ideal secret sharing schemes for other access structures. 

The main contribution of the current paper is to give a description of ideal se- 

cret sharing schemes in terms of classical combinatorial objects by showing a direct 

relationship between ideal secret sharing schema and matroids. 

In order to make the definitions more precise, we will define a secret sharing 

scheme to be a finite matrix M in which no two rows are identical. We will identify 

the columns of M as the set of participants P and will use M(r,p) to denote the 
entry of M in row r and column p .  We will denote the first column as po and will 

assume that po always receives the key as his share. It is sometimes useful to think 

of this special participant p o  as the dealer. For p E P, let S(p) = (M(r,p) I r is 

a row in M}. That is, S(p) is the set of the elements occurring in column p and 

S(R) = K. The dealer can distribute a key a E S(R)  by picking a row r of the 

matrix in which M(r,po) = a and using M ( r , p )  as the share for participant p for 

each p E P. We assume that the matrix is public knowledge, but that the dealer's 
choice of r is private. 

Let A C P. Each participant a E A receives a share, say a,, from the dealer. Lf 
the participants in A pool their information, they will know that the dealer picked 
a row r in which M(r,a) = a, for each a E A. It is now easy to define the access 
structure r. A subset A 5 P will be in I' if and only if any two rows r and i such 

that M ( r , a )  = M(i . ,a )  for all a E A also satisfy M(r,po) = M(i,po). 
Given a subset A C P and a participant b E P with b $! A ,  we will say that 

A has no information about the share given to b, denoted A f t  b, if for all rows r 

of M and /3 E S(b) there is a row r' such that M(r ,a )  = M(r' ,a)  for all a E A, 

and M(r',  b)  = /3. Otherwise, we will say that A has some infonation about b, and 
denote this by A -+ b. We will say that A knows the share given to b, denoted by 

A =$ b if all rows that are identical on the participants in A are also identical on b. 
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Then r = { A  E P I A =$ p o }  is the collection of access sets. 

A secret sharing scheme is perfect iff for all subsets A C P, A -+ po implies that 

A + po. A secret sharing scheme is ideal iff it is perfect and IS(p)I = /S(po)l  for 

all p E P. Thus if a secret sharing scheme is ideal, we will assume WLOG that 

S ( p )  = S(m) for all p E P and we will denote S ( p )  as simply S. 
Let rrn denote the set of minimal elements of I’. If there is a participant p E P 

such that p is not contained in any subset in rrn, then this participant is not needed 

since there is never a case in which his share is useful in determining the key. It is not 

interesting to study secret sharing schemes in which some participants receive useless 

shares. Therefore, we will say that the secret sharing scheme is connected if every 

participant p E P is contained in some subset in rm, and for the remainder of this 
paper, will only consider connected secret sharing schemes. 

For M an ideal secret sharing scheme, let D ( M )  = { A  E P I thereexists 

y E A such that A\y 3 y}. Intuitively, a set of participants is in D ( M )  if there 

is a dependency among them. 
Before we state the main results of this paper, we need to introduce the definitions 

of matroids and nearfields. 

Matroids are well studied combinatorial objects (see for example Welsh [8] ). A 
matroid 7 = (V,z) is a finite set V and a collection Z of subsets of V such that (11) 
through (13) are satisfied. 

(11) 0 E 2. 

(12) If X E Z and Y E X then Y E 2. 

(13) If X , Y  are members of Z with 1x1 = IYI + 1 there exists z E X\Y such that 

The elements of V are called the points of the matroid and the sets Z are called 

independent sets.  A dependent set of a matroid is any subset of V that is not inde- 

pendent. The minimal dependent sets are called circuits. A matroid is said to be 

connected if for any two elements, there is a circuit containing both of them. 

A right nearfield is a set R with distinguished elements 0 and 1 and binary opera- 
tions + and - such that (R, +) is an Abeliq group, (R\O, -) is a group, and (R ,  +, .) 
is right distributive (i.e. (u  + b)  - c = a .  c + b .  c for all u, b, c E R).  If a right nearfield 
is also left distributive then it is a field. When R is finite its cardinality is always a 

power of a prime (see [?I). The nearfields we will consider are finite. A right near 

vector space and its dot product are defined analogously to a vector space only de- 

fined over a right nearfield instead of a field. A vector w in a right near vector space 

V is said to be dependent on a set A of vectors iff for every vector u E V ,  if u - a = 0 
for all a E A then ZL.  v = 0. In the case that the right nearfield is actually a field, 

this definition of dependence is equivalent to stating that a vector v is dependent on 

a set A of vectors iff v is a linear combination of the vectors in A. A set A of vectors 
is said to be a dependent set if there exists a E A such that a is dependent on A\a. 
A matroid is representable over a right nearfield if there is a dependence preserving 

injection from the points of the matroid into the set of vectors of a right near vector 
space. 

Y U { z }  EZ.  
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In this paper, we prove the following two theorems which together almost charac- 

terize ideal secret sharing schemes. 

Theorem 1 Let M be a connected ideal secret sharing scheme. Then the sets D ( M )  
are the dependent sets of a connected matroid. 

Theorem 2 Let T = (V,z> be a connected matroid representable over a nearfield. 

Let vo E V .  Then there exists a connected ideal secret sharing scheme M such that 

po = VO,  P = V ,  and D ( M )  = the dependent sets of T. 

We say that this almost characterizes ideal secret sharing schemes because there 

may be connected matroids that are not representable over any nearfield, and for 

any such matroids, we do not know if there exist corresponding ideal secret sharing 
schemes. 

Another interesting result that can be easily proven from the methods used in 
proving Theorem 1 is the following. 

Theorem 3 Let M be a connected ideal secret sharing scheme. Let A C_ P and 

b E P .  I f  A + b, then A + b. 

This theorem shows that any participant in a connected ideal secret sharing scheme 
can be thought of as the special participant, po.  

There is an alternate definition for ideal secret sharing that a t  first glance appears 

to be a weaker definition. Let A E P and b E P\A. We will say that A has no 

probabilistic information about the share given to b, denoted A ++ b, if for all rows 

r of M, there exists an integer n such that for all /3 E S(b), there are exactly n 

distinct rows r i ,  - * - , rk such that for 1 5 i 5 n, M ( r ,  a)  = M ( ( ,  a )  for all a E A and 

M(r i ,  b)  = p. Otherwise we will say that A has probabilistic infomation about the 
share given to b and denote this by A + b. 

It would be reasonable to define a perfect secret sharing scheme as one in which 

A - PO implies that A + pa .  But the next theorem shows that at least for connected 

secret sharing schemes with information rate 1, this definition would be equivalent to 
our original definition. 

Theorem 4 Let M be a connected ideal secret sharing scheme. Then A - po implies 

that A + PO. 

In the next section, we consider a special case in which we are able to establish 
necessary and sufficient conditions for the existence of an ideal secret sharing scheme. 
The proofs of the general case will not be presented in this extended abstract, but 

will be contained in the final paper. We conclude the extended abstract with some 
open problems in Section 3. 
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2 Example: The Rank 2 Case 

In this section we will prove Theorems 1 and 2 in a special case that is much easier 
to prove and more intuitive than the general case. But first we need some lemmas 
that will hold for the general case as well. 

Let M be a connected ideal secret sharing scheme. Let q = IS/. For A C P, 
let M ( r , A )  be the row r in M restricted to the columns indexed by A and define 

s (A)  = {M(r ,A)  : r is a row of M}. That is, s (A)  is the set of distinct entries in M 
under A. Let tfA = ls(A)I. 

Lemma 1 Let A Z P and p E P .  If A =+ p ,  then tfA = i ( A  U p ) .  

Proof: If tf(AUp) > jA, there exists rows rl and r2 such that M(r1, a )  = M(rz,a)  

for all a E A and M(rl,p) # M(r2 ,p ) .  But this contradicts A =$ p .  0 

Lemma 2 Let A C P a n d p  E P .  Suppose A .iC, po and AUp + po .  Then AUpo + p .  

Proof: Define a function q5 : S t S by d(p) = 7 iff there exists a row r such 

that M ( r , a )  = M(r1,a) for all a E A, and M ( r , p )  = B and M(r ,po)  = 7. Since 

( A  U p )  =$ PO, this function is well defined. Since A f ,  po l  q5 must be onto and hence 
1-1. 0 

For a secret sharing scheme M ,  let P = { p  E P I p + a}. Let G ( M )  be a 

graph with vertices the participants in and with p 1 , p 2  E P joined with an edge iff 

A connected ideal secret sharing scheme, M ,  is said to have rank 2 iff (Sl) - (S3) 
{P l ,PZ}  E r- 

are satisfied. 

(S l )  There exists a set in r,,, of cardinality 2. 

(S2) All sets in rm have cardinality 1 or 2. 

(S3) G ( M )  is connected. 

We then have the following Theorem. 

Theorem 5 Let M be a rank 2 connected ideal secret sharing scheme. Let G' be the 

complementary graph of G ( M ) .  Then G' is a disjoint union of cliques. 

Proof: k t  { p ~ , p z }  E I',. If there exists al,a2 both in S such that there is no 

row r of M with M ( r ,  p i )  = ai for i = 1,2, then p 1  --t p z .  Hence, p1 -+ PO and thus 

p1 + PO. Contradiction. Thus, j { p 1 , p 2 }  = q2. 

Let A C P be maximal set such that jA = q2 and { p I , p 2 }  C A. By Lemma 

1, PO E A and P\@ E A. Suppose P\A # 0. Since G ( M )  is connected, there 

exists b E P\A and a E A such that { a ,  6 )  E I?. By Lemma 2 ,  {a ,po}  + b. Since 
{ a , p o }  E A, jA = fl(A U b ) .  Contradiction. Thus tP = q2. 

Suppose { a ,  b} 5: @ and {a ,  b }  $ I'. Let r be a row of M .  Then for all p E S, there 
exists a row rD such that M(rp,  a )  = M(r,  a) ,  M(rp,  b)  = M ( r ,  a) and M(rp,p,) = p .  
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Thus, qH{a, b} = H{a, b , p o )  5 qz .  Since flu = q, j i a ,  b }  = q. Since tfb is also q, we 

must have a + 6. Suppose now that {a,b,c} E P and { a , b }  4' I' and (6 ,c)  ft? I'. 
Since a =+ b and b =+ c implies a =+ c, we also have {a,c} 4 I'. Theorem 5 now 

follows. 0 

The converse to Theorem 5 is also true. 

Theorem 6 Let G' be a graph which is a disjoint union of cliques. Then there exists 

a rank 2 connected ideal secret sharing scheme M, with P = V(G')  U p 0  such that 

G ( M )  = complement of G'. 

Proof: Let C be the set of distinct components of G'. Let n be the number 

of components of G'. Let d = C U po. Let 3 = (6,S,i9) be an ideal 2 out of 

n threshold scheme with IS1 = q. Using the Shamir construction, such a threshold 

scheme exists for all prime power q such that q > n. Let M be a matrix with the same 

number of rows as &f and with columns indexed by the vertices of G'. For a vertex 

v E G' contained in component c E C, and T a row of A6f, let M ( r ,  TI) = k ( r ,  c). Let 

M(r,po) = k ( r , p o )  for all rows r of k. It is straightforward to check that M is a 

rank 2 connected ideal secret sharing scheme. 0 

These two theorems now make it easy to prove Theorems 1 and 2 for this special 

case. 

For M a rank 2 connected ideal secret sharing scheme, let Z ( M )  = (0) U Cp I P E 

It is easy to see that Z ( M )  = 2'\D(M) (where 2 p  is the set of all subsets of P) .  
P )  u { { P l , P 2 }  I PI *Po and P2 + Po} u {{PI,P2) I { P m )  c w 

Theorem 7 Let M be a rank 2 connected ideal secret sharing scheme. Then the sets 

D ( M )  are the dependent sets of a connected rnatroid. 

Proof: We need to show that the set Z(S) satisfies (11) - (13). Conditions (11) 
and (12) are trivially satisfied. The same applies to (13) if X = 0 or X C Y. Thus 

assume that 1x1 = 1 and X Y. Let X = {z} and Y = { y l , y 2 } .  WLOG, we may 

assume that y1 E P .  If z E P\i,  then { z , y l )  C 1 ( S ) .  If z $ P\@ and y2 E P\p, 
then { z , y 2 }  E Z(S). So we can assume that x , y l t y 2 , ~  p. Since ( y l , y 2 )  E E(G) ,  then 

by Theorem 5, for i = 1 or 2, ( z , y i )  E E(G) and so {z,yi}  E Z(S). 0 

For a set X E V ?  the rank of X, p(X)  is defined as 

p(X)  = max{ IAl : A E X, A E 1). 

Theorem 8 Let 7 = (V,Z) be a rank 2 connected matroid. Let 00 E V .  Then there 

ezists a connected ideal secret sharing scheme M such that po = vo, P = V ,  and 

D ( M )  = the dependent sets of 'T. 

Proof: Let = { v  E V I {u ,vo}  E I}. Let G be the graph on such that 

{ u , u }  is an edge of G iff { u , u }  E 1. From (I3), it follows that the complement 
of G is a disjoint union of cliques. By Theorem 5,  there exists a rank 2 connected 

ideal secret sharing scheme 2, with P = U po such that G ( f i )  = G. Let M be 

the matrix with columns P = U V\e and with M ( r , p )  = k ( r , p )  for all p E P 
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and M(r,p) = &(?,PO) for all p E P\$. It is straightforward to check that M is a 

connected ideal secret sharing scheme and the sets D ( M )  are exactly the dependent 
sets of 7. 0 

Thus in the rank 2 case, we did not need the condition used in Theorem 2 that the 

matroid was representable over a nearfield and therefore we were able to completely 

characterize the connected ideal secret sharing schemes. One possible reason why we 
were successful in this case but not in the general case is that all rank 2 matroids are 

representable over fields. 

3 Open Questions 

The most obvious open question is to determine if Theorem 2 is still true if the 

condition of the matroid being representable over a nearfield is removed. 

There are several other open questions which could also be addressed. 

1. Characterize the perfect secret sharing schemes that have a fixed information 
rate. 

2. Characterize the perfect secret sharing schemes that have an information rate 

that is at least l/(polynomial in IPI). 

3. Find a nontrivial lower bound on the information rate of all perfect secret 

sharing schemes. 

4. Find an algorithm that given a secret sharing scheme, will determine the small- 
est information rate that could be used to implement that scheme. 

Ym [9] has made some progress on problem 2. He has shown that if trap door 

functions exist, then any set I' which can be recognized by a polynomial (in 1PI) size 
monotone circuit can be the access structure of a secret sharing scheme in which the 

information rate is at least l/(polynomial in [PI). 
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