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Introduction. Suppose G is a connected reductive group over a global field /. Many
of the problems of the theory of automorphic forms involve some aspect of study of the
representation p of G(A(F)) on the space of slowly increasing functions on the homogeneous
space G(F)\G(A(F)). It is of particular interest to study the irreducible constituents of p.
In a lecture [9], published some time ago, but unfortunately rendered difficult to read by a
number of small errors and a general inprecision, reflections in part of a hastiness for which my
excitement at the time may be to blame, I formulated some questions about these constituents
which seemed to me then, as they do today, of some fascination. The questions have analogues

when F is a local field; these concern the irreducible admissible representations of G(F').

As I remarked in the lecture, there are cases in which the answers to the questions are
implicitin existing theories. If G is abelian they are consequences of class field theory, especially
of the Tate-Nakayama duality. This is verified in [10]. If " is the real or complex field, they are
consequences of the results obtained by Harish-Chandra for representations of real reductive
groups. This may not be obvious; my ostensible purpose in this note is to make it so. An
incidental, but not unimportant, profit to be gained from this exercise is a better insight into

the correct formulation of the questions.

Suppose the F'is the real or complex field. Let II(G) be the set of infinitesimal equivalence
classes of irreducible quasi-simple Banach space representations of G(F") [16]. In the second
section we shall recall the definition of the Weil group W of I’ as well as that of the associated

or dual group G” of G and then introduce a collection ®(G) of classes of homomorphisms of
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the Weil group of F'into G”. After reviewing in the same section some simple properties of the
associate group we shall, in the third section, associate to each ¢ € ® (G) anonempty finite set
I1, in II(G). The remainder of the paper will be devoted to showing that these sets are disjoint
and that they exhaust II(G). For reasons stemming from the study of L-functions associated

to automorphic forms we say that two classes in the same II, are L-indistinguishable.

Thus if II(G) is the set of classes of L-indistinguishable representations of G(F'), then by
definition the elements of HEG ) are parametrized by ®(G). It will be seen thatif G is quasi-split
and G is obtained from it by the inner twisting 1 then 1 defines an injection ®(G;) — ®(G)

and hence an injection I1(G1) < II(G). It will also be seen that for G quasi-split the set I1(G)
@)

is, in a sense to be made precise later, a covariant function of G”. These properties of II

provide answers to the questions of [9].

The classification of L-indistinguishable representation throws up more questions than it
resolves, since we say nothing about the structure of the sets II,, themselves and hence do not
really classify infinitesimal equivalence classes. Nonetheless we do reduce the general problem
to that of classifying the tempered representations. This is a considerable simplification. For
example, Wallach [15] has proved that the unitary principal series are irreducible for complex
groups. From this it follows that each II, consists of a single class; so the classification is
complete in this case. Since ®(G) may, when F' is complex, be easily identified with the orbits
of the Weyl group in the set of quasi-characters of a Cartan subgroup G(C), it likely that the
classification provided by this paper coincides with that of Zhelobenko. The set II(G) has been
described by Hirai [7, 8] for G = SO(n, 1) or SU(n, 1). Itis a simple and worthwhile exercise
to translate his classification into ours. In fact, the definitions of this paper were suggested by

the study of his results. It would be interesting to know if each Il consists of a single class

when G is GL(n) and F is R.

Important though these problems are, we do not try to decide which elements of which
II, are unitary or how the classes in a 11, are unitary or how the classes in a 11, decompose

upon restriction to a maximal compact subgroup of G(R).
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The three main lemmas of this paper are Lemmas 3.13, 3.14, and 4.2. The first associates to
each triplet consisting of a parabolic subgroup P over R, a tempered representation of a Levi
factor of P(R), and a positive quasi-character of P(R) whose parameter lies in the interior
of a certain chamber defined by P, an irreducible quasi-simple representation of G(R). The
second lemma shows that these representations are not infinitesimally equivalent. The third

shows that they exhaust the classes of irreducible quasi-simple representations.

As we observed above, the proofs are not very difficult. Unfortunately, they rely to some
extent on unpublished results of Harish-Chandra. To prove that the sets II, are disjoint we use
results from [6], which includes no proofs. Moreover, and this is more serious, for the proof
of Lemma 4.2 we use results from [5], which has only been partly reproduced in Appendix 3
of [16]. It contains theorems on differential equations which are used to study the asymptotic
behavior of spherical functions not only in the interior of a positive Weyl chamber, as in [16],

but also on the walls.

2. The associate group. We begin by recalling some of the constructions of [9]. If F' is
C the Weil group Wy is C*. If F is R the Weil group W consists of pairs (z,7), z € C*,
7 € g(C/R) = {1, 0} with multiplication defined by

(21,7'1)(22,7'2) = (2171(22)%1,7277172)-

Herear,,, =1lifqy =lorm =1land a,,, = —1if 71 = 75 = 0. For both fields we have an
exact sequence

1= F" - Wp—g(F/F)— 1.

Suppose G is a connected reductive complex algebraic group, B° a Borel subgroup of G°,
and T a Cartan subgroup of G° in B°. For each root o’ of T simple with respect to B° let

Xan # 0in the Lie algebra g of G° be such that

Adt(Xon) = a(t)Xon, t € TC.
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Let
A(G°, B°, T° {X,n})

be the group of complex analytic automorphisms w of G° leaving B° and T invariant and

sending X, to X,,nn, where wa” is defined by
wa’ (wt) = o’ (t).

If instead of B°, T°, {X,~} we choose Eé,Té, {X ¢~} with the same properties there is a

unique inner automorphism 1 such that
B =p(B%); T"=9(T%), Xyar =9(Xar).

Then
AG B T {Xan}) = {vwivtw € A(G®, B®, T°, {X2})}.

Suppose we have an extension
1G>G > Wr—1

of topological groups. A splitting is a continuous homomorphism from Wr to G* for which
the composition

WF—>G/\—>WF

is the identity. Each splitting defines a homomorphism of 77 of W into the group of automor-
phism of G”. The splitting will be called admissible if, for each w in W, n(w) is complex
analytic and the associated linear transformation of the Lie algebra of G° is semisimple. It will
be called distinguished if there isa B°,a T°, and a collection { X/} such that 7 factors through
a homomorphism of g(F'/F) into A(G°, B°, T°, X~,)). Two distinguished splittings will be

called equivalent if they are conjugate under G°.
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We introduce a category G”(F') whose objects are extensions of the above type, with
G° a connected reductive complex algebraic group, together with an equivalence class of

distinguished splittings. These we call special. A homomorphism
0: G — G,y

of two objects in the category will be called an L-homomorphism if

G, 5 G,
N\ e
Wr

is commutative, if the restriction of ¢ to G is complex analytic, and if ¢ preserves admissible

splittings. Two L-homomorphisms will be called equivalent if there is a g € G§ such that

P2 = adg o 1.

An arrow in our category will be an equivalence class of L-homomorphisms. For simplicity,

we do not distinguish in the notation between a homomorphism and its equivalence class.

For future reference we define a parabolic subgroup P of G to be a closed subgroup P
such that P = P N G? is a parabolic subgroup of G° and such that the projection P"* — W

is surjective.

We also remark that A(G°, B®,T°,{ X4~ }) contains no inner automorphisms. Thus if
n:9(F/F) = A(G° B°,T° {Xar}),
7:8(F/F) = A(G°, B", T" {Xar})

are associated to two distinguished splittings of G* there is a ¢ € G°, unique modulo the

center, such that

71=adgonoadg .
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Suppose we are given a special distinguished splitting associated to the above map 7.
Let L be the group of rational characters of 7°. If both variables on the right are treated as

algebraic groups

L" = Hom(T°, C*).

Let conversely

L = Hom(C*,T?).

Define a pairing

LxIL"—1Z

by
M (A(2) = 20 2 e €.

This pairing identifies L" with Hom(L, Z). Associated to each root o’ of T° is a homomor-

phism of SL(2, C) into G°. The composition

z 0 o
z— (0 Z_l)—>G

factors through T and defines an element « of L.

Let A" be the set of roots simple with respect to B°. Associated to G°, B°,T° { Xy} are
a connected reductive group G° over F, a Borel subgroup B % of G°, a Cartan subgroup T% in

B, and isomorphisms 7,, o € A", of the additive group with a subgroup of B° such that
L =Hom(T,GL(1))

and

A = {a|a” € A}

is the set of simple roots of 7 with respect to B°. Moreover

adt(na(x)) = na(a(t)z), =€ F,t e T°(F).



Classification of irreducible representations 7

The collection G°, B°, T?, n,, is determined up to canonical isomorphism by these conditions.
Any w in A(G?, B%,T° {X,}) acts on L and L". There is a unique way of letting w act on
G° so that

wA(wt) = A(t), A€ L,teT(F),

and

W () = Nya(x), x € F.

The automorphism w so obtained is defined over F'. Thus
n:9(F/F) — A(G° B°,T° {Xan})
defines an element of H'(g(F/F), AutG°) and hence an F-form G of G°. In particular
G(F) ={g € G°(F)lrn(7)(9) = g)¥7 € g(F/F)}.

Observe that the group G is quasi-split. Observe also that the data associated to two
special distinguished splittings of G are connected by a unique inner automorphism. It
follows readily that the group G, together with B, T, {n,}, is determined up to canonical
isomorphism by G”.

Conversely, suppose we are given a quasi-split group G over F'. Choose a Borel subgroup
B and a Cartan subgroup 7" in B all defined over F'. Interchanging the roles of L and
L" and of A and A", we pass from G, B, and T to G° B°,T°, and {X,}. The group
A(G®,B°,T° { X, }) may be identified with the group of automorphisms of L that leave the

set A invariant. Define a homomorphism

n:g(F/F) — A(G°, B°, T° {Xur})

n(M)A(T(t)) =7(A(t)), AeL,teT(F).
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This map allow us to define G, which again is determined up to canonical isomorphisms by

G alone.

Suppose GG and G5 are two quasi-split groups over F'and ¢ : G1 — G2 is anisomorphism
with =17 (z)) inner for each 7 in g(F/F). Choose g € G1(F) so that ¢/ = 1) o adg takes
Bj to By and T; to T». Then v’ determines a bijection A; — A, as well as an isomorphism
Y’ : Ly — Lo. These do not depend on the choice of g and determine an isomorphism
P+ G¢ — GY. This isomorphism takes B¢ to BS, T¢ to TS, and Xaf to Xag if a1 and g are
corresponding elements in A; and As. Since ¢’ _17'(1/) ") takes T to Ty, By to By, and is inner

it is the identity on 7. It follows readily that

n2(T)Y (A1) = ¢ (1 (T) Ar).

Thus 1" may be extended to an isomorphism of G, with G that preserves the splittings. It

is determined uniquely by the conditions imposed upon it.

These are of course the considerations which allowed us to define G” in the first place.
If Gy = Gy = G then G" may be realized either as G? x Wg or as Gg x Wg but these two
groups are canonically isomorphic. There are occasions when a failure to distinguish between

(G and its realizations leads to serious confusion.

In general if G is a connected reductive group over I’ we may choose an isomorphism
1) of G with a quasi-split group G. 1 is to be defined over F and 1)~ 17(v) is to be inner for
7 € g(F/F). We may, taking into account the canonical isomorphisms above, define G ? to be
G". However, we should observe that the same difficulties are present here as in the definition

of the fundamental group; the isomorphism ) we write ¢ f ().

There are some further observations to be made before the task of this paper can be
formulated. Let p(G) and p(G1) be respectively the sets of conjugacy classes of parabolic
subgroups of G and G that are defined over F. Let p(G”) be the classes of parabolic

subgroups of G” with respect to conjugacy under G°. We want to describe a bijection

p(G) < p(G")
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and an injection

p(G1) = p(G").

For the first we recall that for a given 7" and B and the corresponding 7, B® we have
a bijection A «» A”. Tt is well known that p(G) is parametrized by the g(F/F)-invariant
subsets of A. The classes of parabolic subgroups of G° are parametrized by the subset of A.
The normalizer of P? in G” is parabolic if and only if the associated subset of A is invariant

under g(F/F). This yields the bijection.

The injection will now be defined by
p(G1) = p(G).

Suppose P is a parabolic subgroup of GG; defined over F. I claim that here there is a g in
G1(F) such that if ¢/ = v o adg then P = v/(P;) is defined over F. The class of P depends
only on v and the class of P;. The required injection maps the latter class to the former. To

prove that g exists we use the following lemma.

LEMMA 2.1. Let G’ and G be connected reductive groups over F. Let G be quasi-split
and let v : G' — G be an isomorphism defined over F. Suppose 1~ 17(1)) is inner for
T € g(F/F). If T' is a Cartan subgroup of G' defined over F there is a ¢ € G'(F) and
a Cartan subgroup T in G defined over F' such that ¢ = 1 o adg’ when restricted to T’

yields an isomorphism of T' with T that is defined over F.

Let G/, be the derived group of G’ and let G be its simply connected covering group.
Define G4er and G in the same way. Lift ¢ to an isomorphism s : GL, — Gg.. Let Ty be
the inverse image of 7" in G’.. Choose t' € T!.(F) with image ¢’ in T'(F) so that T/, is the

centralizer of ¢’ and 7" the centralizer of t'. Set t; = 1. (t'). Since

T(t1) = Ve (W T(Wse)(F')), T € 9(F/F),
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the conjugacy class of #; is defined over F. By Theorem 1.7 of [14] there is a § € G.(F) such
thatt = adj(t;) lies in Gy (F). Let t be its projection in G(F). The centralizer T of ¢ is defined
over F and if ¢’ is the projection of §’ = 1! (g) then ¢/’ = 1) 0 adg maps ¢’ to t and T” to T
Since both ¢’ and ¢ are rational over F' the automorphism '~ 17(1/’) which is inner commutes

with ¢’ and hence with all of 7”. It follows that ¢’ : 7" — T is defined over F.

We apply the lemma with G’ equal to G; and with 7" equal to a Cartan subgroup T} lying
in P;. Choose g so that if ¢’ = 1) o adg then ¢/’ =17 (¢’) lies in T} (F) for 7 € g(F/F). Then if

P =19 (P)

we have
T(P) =¢' (@7 (¢')(P1)) = $(P1) = P
and P is defined over F.

Let p”(G4) be the image of p(G1) in p(G).
LEMMA 2.2. If P, D P, and the class of P, lies in p"(G1) so does the class of P, .

Choose P; in (G that is defined over F'. The parabolic subgroups of GG; that are defined
over F' and contain P; belong to different classes. So do the parabolic subgroups of G that
contain PlA . We have only to verify that these sets contain the same number of elements.
Choose T} in P; that is defined over F' and choose an isomorphism 1 of GG; with a quasi-split
group G so that 1) ~17(1)) is inner and commutes with T} for all 7 € g(F/F). Let M; be
a Levi factor of P, containing 7% and let S; be a maximal torus in the center of M;. Then
P =¢y(P),M = ¢(M),and S = (51), as well as 1|5 are all defined over F. Thus the
maximal split tori in S and S} have a common rank r and P and P; are both contained in
2" parabolic subgroups defined over F'. Since the number of parabolic subgroups of G ? that
contain PlA is equal to the number of parabolic subgroups of G that are defined over F' and

contain P the required equality follows.
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The group W lies in §*(F). Let (G ) be the subset of
HOngA(F)(WF, G/l\)

consisting of these ¢ such that the class of any parabolic subgroup P” containing ¢(Wr) lies

in p”*(G1) under the above injection. In particular, for the quasi-split group G
(I)(G) = HOIIlgA(F)(WF, G/\)

which is obviously a covariant functor of G”.

We shall start in the next paragraph to relate ®(G) to II(G). There are some simple
properties of ®(G) to establish first. The group G(F') does not change on restriction of scalars
and neither does II(G). We had best check that this is also true for ®(G). Although there is,
in the present circumstances, only one nontrivial way to restrict scalars, namely from C to R, I
would prefer not to take this explicitly into account.

Let £ be a finite extension of F'. We want first of all to define a faithful functor from
GM(E) to G"(F). We imbed E in F. Corresponding to this imbedding is an imbedding of W
in Wg. Actually there is some arbitrariness in both imbeddings. Since, up to equivalence, it
has no effect on the functor to be constructed, we ignore it. Suppose G” lies in G (E). Choose
a distinguished splitting of G and let 7} be the corresponding action of W on G°. Let G° be

the set of functions h on Wr with values in G° satisfying
h(vw) = R(v)(h(w)), ve Wg.
Let n(v), v € Wg, send h to b’/ with
B (w) = h(wv).
With respect to this action form the semidirect product

G/\ :Gé XWF.
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It is easy to see that the given splitting of G” is distinguished and that G” lies in §"(F).

Observe also that there is an obvious bijection from p(G”) to p(G").

If we had chosen another distinguished splitting 7’ there would be a g € G° such that
7 (w) = gn(w)g™, weWp.

The map h — h’ with h/(w) = gh(w)g~! together with the identity on Wy would yield an
isomorphism between G” and the group constructed by means of 77’; so we need not worry

about the arbitrariness of the distinguished splitting either.

Choose a set V of representatives v for Wg\Wp. If w € Wg let

vw = dy(w)', v,v € V.

If ¢ is an L-homomorphism from é/l\ to é; let
o(1 x w) =a(w) X w, w e Wg,

with respect to special distinguished splittings of G? and ég . If w € Wpg let a(w) be the
function in G whose value at v € V is a(d, (w)). If h is a function in G¢ let 4’ be the function
in G defined by

h'(v) = g(h(v)), veV.
Define G? and Gg as above and let ¢ be the homomorphism from the former to the latter
defined by

o(h x w) = h'a(w) x w.
A little calculation that will be left to the reader shows that ¢ is in fact an L-homomorphism
and that its class is determined by that of ¢ alone and is independent of the auxiliary data.
The reader will also easily verify that the class determined by ¢ 2 is p1p2.

Given ¢ we define ¢ as follows. If hx w,w e Wg, belongs to G ? we let h be a function
in G¢ with h(1) = h. If
o(h xw)=h"xw
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we set

The class of ¢ depends only on that of . It is clear that this process inverts the operation of
the previous section. A slight variant of Shapiro’s lemma shows that the reciprocal is true.
Starting from ¢ we construct ¢; from @ we pass to ¢’. We have to show that ¢ and ¢’ lie in the

same class. We may assume that the set of representatives V' contains 1. Suppose
o(w) = hy X w

and define h in G§ by

It is easily verified that
plg) =he'(9)h™", g€ Gy
Thus our functor is fully faithful. The object of §”(F') corresponding to Wg is W.

Suppose Gis quasi-split over E and G over F'is obtained from G by restriction of scalars.

Then for any scheme Z over I
Homp(Z,G) = Homg(Z @F E, G)

because restrictions of scalars is the right adjoint of base change. In particular if a Borel
subgroup B of G and a Cartan subgroup 7" of B are given, then restriction of scalars yields B
and T in G; so G is quasi-split. We must verify that G” is obtained from G” by the functor

introduced above.

Let L' be the group of functions X’ on g(F/F) with values in " satisfying
N(oT) =0oXN(r), o€a(F/E),

and let A’ be the set of )\’ that are zero on all but one coset of g(F/E) on which they take
values in A. All we have to do is show that L' is isomorphic to L" as a g(F/F) module in

such a way that A’ corresponds to A.
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Since we have chosen an imbedding of E in F' we may take E to be F. Map F ®F E to
the ring R of F-valued functions a on g(F/F) satisfying

a(or) = o(a(r)), o€ g(F/E),

by
a®pf—a:1—T1(a)p.

This is an isomorphism. Then

L" = Hom#(GL(1) ®p F,T ®F F)

= Homp(GL(1)®p, F,T) = Homg(GL(1) @ R,T).
Every 7 € g(F/F) yields by evaluation a map R — F and hence a map

Thus every element of L" yields a function on g(F/F) with values in L”. The function is
easily seen to lie in L’. That the resulting map from L" to L’ has the required properties is

easy to see.

If we take L to be Hom(L, Z) we may identify L with the space of functions A on g(F/F)

with values in L satisfying
MoT)=0a(\(T)), o<cg(F/E).

The pairing is

A= Y Q@) AN)).

o(F/E)\g(F/F)

If 2 is an F-valued point in GL(1) then

AN (2)) = 2O = 2@ 0> S TTA)WN(1)(2) = [[ 7~ HAE) WM (1)(72)}
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because every rational character of GL(1) is defined over F. In general we have an isomor-
phism
T(F) = Homp(Spec F,T) = Homg(Spec R, T) = T'(R).

Since each 7 € g (F/F) yields a map R — F, we may associate to each s € T(F') a function
7 — s(7) on g(F/F) with vaules in T(F). If s = A(z) then s(7) = M\\(7)(7(2)). Since the

points A" (z) generate T'(F') we have

A(s) =TT 7A@ (s())}-

In particular if s lies in T'(F') then s(7) = 3 is independent of 7 and lies in T'(E).

It has already been pointed out that the definition of the associated group of an arbitrary
connected reductive group GG1 depends on the choice of an isomorphism ¢ : G; — G with
G quasi-split. However, composing 1) with an inner automorphism has no effect on the
construction. In particular, since 1)~ 17 (1)), 7 € g(F/F) is always supposed inner, 1) could be

replaced by 7(¢).

LEMMA 2.3. Suppose G, and G are given over E with G quasi-split, together with an
isomorphism @E :G1 — G over E. Let G1 and G be obtained from Gy and G by restriction
of scalars. There is associated to 1 an isomorphism ¢ : G — G over F defined up to
composition with an inner automorphism and G? 1$ obtained from é? (1;) by the restriction

of scalars functor from G™(E) to G"(F).

Only the existence of ) needs to be established. We imbed E in F and identify E with F’

HOIl’lF<G1 Rp F,G@F F) = HOIIlF(Gl KRE F, G)

= Hompg (G ®g (G1 ®F R, é)

and

Homp(G1 ®F F,G1®rF F) = Hompg (G ®r R, é1)
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Start from the identity morphism on the left to get a morphism from G; ®5 R to G;. On the
other hand, if we choose a set of representatives p for g(F'/E) in g(F/F) we may imbed F in
R by associating to o € F the function whose value at each p is a. This yields a morphism
from Spec R to Spec F' over E. The two morphisms together yield a morphism from Gy ®r R
to @1 ®g F. Composing with z/N) : él RpF — G we get a morphism from G; @ R to G and
hence ¢ : G @r F = G.

The invariance of ®(G) under restriction of scalars is now clear. Suppose P is a parabolic
subgroup of G over F. We may choose B and T in P. Now construct G", B°, and T°. Let
P be the parabolic subgroup of G containing B° whose class corresponds to that of P. Let
N be the unipotent radical of P, N”* that of P°, and let M = P/N, M" = P"/N". ltis easily
seen that M belongs to §"\(F') and that M" is the associated group of M. If P" is another
parabolic subgroup in the same class as P there is a g € G° such that gP"g~! = P". The
induced map M”" — M" is uniquely determined up to an inner automorphism by an element
of M°. Thus if P" and P lie in corresponding classes in p(G”) and p(G) the associated group
of M is canonically isomorphic, in the category §"(F), P"/N".

Suppose 1 : G1—G is such that ¢~ 17(v) is inner for 7 € g(F/F). If P; is a parabolic
subgroup of G; over F' we may always modify ¢ by an inner automorphism so that P = ¢ (P )

is defined over F'. We readily deduce the following lemma.

LEMMA 2.4. Suppose P, is a parabolic subgroup of G over F' and PlA 18 a parabolic subgroup
of G? whose class corresponds to that of Py. Then ]\41A = P1A /NlA s canonically isomorphic

in the category G™(F) to the associate group of M.

Choose a splitting M; — P; defined over F' and a splitting MlA — P1A that carries
distinguished splittings of M f to distinguished splittings of G’?. The isomorphism between
M f and the associated group of M; depends on the choice of P, and PlA with M, and M lA as

Levi factors.
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LEMMA 2.5. Suppose P, and PlA are given as above with My and J\/IlA as Levi factors. There
s a bijection n between the parabolic subgroups of Gy defined over F' that contain My as
a Levi factor and the parabolic subgroups of G? that contain M1A as Levi factor such that
Wf = n(P1), and such that the isomorphism between Mf and the associated group of M,

is the same for all pairs P, , n(Py).

Take G quasi-split and let ) be an isomorphism from G; to G with ¢ ~17(¢)) inner for
7 € g(F/F). We also suppose that there is a Cartan subgroup 7; in M; defined over F
such that each ¢~ !7(1)) commutes with the elements of 7. Then (T}), M = (M), and
P = 1(Py) are defined over F. In fact if P; is any parabolic subgroup over F that contains M
then P = 1(P;) is defined over F'. The definitions are such that we may prove the assertions
for G, M, P rather than G1, M;, P;. Choose a Borel subgroup B over F' that is contained in P
and a Cartan subgroup 7" of B that is also defined over F'. Then build G, B°, T?, and {Xan}.
We may replace GQ by G and suppose that P" contains B”. Since any two Levi factors of

P are conjugate under P° (cf. [12], Theorem 7.1), we may also suppose that M " contains 7.

Let D(M) be the space of vectors in L ® R invariant under g(F/F) and orthogonal to the
roots of M”*. By a chamber in D(M) we mean a connected component of the complement of

the union of the hyperplanes
{a € D(M)|(a,a”) =0}

where o is a root of T in G° but not in M°. There is a bijection between chambers in D (M)
and parabolic subgroups P" of G” that contain M” as Levi factor. P” corresponds to the

chamber

C= {CL S D(M)|<a,o/\> >0 ifXan GPA,XQA €m/\}

p and m” are the Lie algebras of P"* and M".

There is also a bijection between chambers of D (M) and parabolic subgroups of G that
are defined over F' and contain M as Levi factor. If B is the Killing form, which may be

degenerate, then C corresponds to P defined by the condition that it contain 7" and that a root
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a of T in G be a root in P if and only if B(a,a) > 0 for all a in C. The bijection 7 is the
composition of P — C' — P".
The Weyl groups Q" and 2 of T° in G° and of T in G are isomorphic in such a way that

the reflections

A= A= (), aMa,
A= A — (o, M)

correspond. Suppose P" = n(P). There is an w” in Q" that takes every root of T in P’ not
in M?° and every root in M° N B® to a root of T° in B°. Let h in the normalizer of T in G°

represent w” and let P, be hP"h~!, and M, be hM"h~*. We may suppose that
AdR(Xar) = X (an)

if a” is a root of T° in M° N B®. If g in the normalizer of T in G(F) represents the element

1 contains B. It is clear that « is a root of T in

w of Q corresponding to w” then Py = gPg~
Py if and only if o is a root of T in POA . Thus Py and POA and hence P and P belong to

corresponding classes in p(G) and p(G").

If we build the associate group of M starting with M, B N M, and T we obtain M",
BN M",T?, and the collection { X ,» } where a” runs over the simple roots of 7° in M° with
respect to B° N M?. This gives the isomorphism of M " with the associate group of M defined
by P and P”. The isomorphism between M " and the associated group of M defined by P and
P” is more complicated to obtain. This is not because of any intrinsic asymmetry but rather
because of the simplifying assumption that P" contains B” and P contains B. We have to use
g to establish an isomorphism between M and My = gM g~ that we may assume is defined
over I, then build the associate group of M, with respect to B N M and 7', obtaining thereby
M, , BN M, T°, and { X4 }, where a” runs over the simple roots of 7' in M? with respect

to B° N Mg, and finally we have to use the isomorphism between M”" and M, OA given by h.



Classification of irreducible representations 19

What has to be verified to prove the lemma is that, in the category G " (F), the isomorphism
between M” and ]\40A given by h is equal to the isomorphism between them as two concrete
realizations of the associate group of M. What is the latter isomorphism? The isomorphism
adg takes M to My, BN M to BN My, T to T, and the root « of T"in M to wa. Then the
isomorphism between M” and M(;\ as realizations of the associate group takes M° to Mg,
B° N M?° to BN M§, T to T°, Xqn to Xyran, respects the splittings M” = M° x Wp,
]\40A = M¢ x W built into the construction, and acts trivially on Wg. It is characterized by
these properties. Since (wa)” = w”a” the isomorphism given by h has all these properties
except perhaps the last. To achieve the last we exploit the circumstance that we are not really

working with isomorphisms but rather with classes of them to modify our initial choice of h.

. .. . 5 . -0 5 5 . . .
W acts on L”. Since in its action on G° it leaves P, M°, and B° invariant and since the

normalizer of T in B? is T?, it is clear that on L"

ww =wtw, w e Wp.

That i can be modified in the fashion desired follows immediately from the next lemma.

LEMMA 2.6. Let G", B°, T°, and {X,~} be given. Suppose w” € Q" and that on L"
ww =wiw, we Wg.

Then w” is represented by an element h of the normalizer of T® in G° that commutes with
w in Wg and satisfies

a,dh(XaA) = Xw/\o/\
if o is simple with respect to BP.

We ignore for the moment the last condition and simply try to find an 5 that represents

w” and it is fixed by the action of W on G°. The action of W on G° factors through g(F/F)
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and it is easier to forget about W and deal directly with g(F'/F). Start off with any h that
represents w”. Then

7 — ar(h) = 7(h)h™*

lies in 7 and is a 1-cocycle of g(F'/F') with values in T°. If h is replaced by sh, s € T?, then

1

a,(h) is replaced by 7(s)a,(h)s™"; so our problem is to show that the class of the cocycle is

trivial. Since
ar(hihz) = ar (h)w; (ar(h2))
it will be enough to show this for a set of generators of the centralizer 0, of g(F/F) in Q".

Suppose A is the set of vectors in L ® R invariant under g(F/F). The group QS acts
faithfully on A and, as is easily seen, acts simply transitively on the chambers, that is, the

connected components of the complement of the hyperplanes.
{a € Al{a,a”) =0}
where o’ is any root of 7 in G°. Each orbit O in A" defines a reflection

So:a—>a—(a,oz8) Z a

a”eO

where ag is any element of O. These reflections are each given by an wg in QS and the
collection of wg generates QS . We have to show that each wg is represented by an element of
G° that is fixed by g(F/F). Replacing G° by a subgroup if necessary, we may suppose that
0 = A”. Since the question only becomes more difficult if G° is replaced by a finite covering
group, we may suppose G° is the product of a torus and a finite number of simple, simply

connected groups. The torus may be discarded. Let

GézﬁGf, Té:ﬁTiaa Q/\:ﬁQ:7
=1 =1 1=1
and

T

N N

w” =Wan = sz‘ .
i=1
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If 7(G9) = GY then

T(w; ) = w; .
Suppose g(F/E) is the stabilizer of G% in g(F /F). Then w; commutes with g(F/F). Suppose
it is represented by h1 in G¢ which is fixed by g(F'/E). Set

hj = T(hl)

where 7 is any element of g(F'/F) that takes G¢ to G9. Then h; is well defined and

h= ﬁhj
j=1

is fixed by g(F/F) and represents w”.

We are now reduced to a situation in which G° is simple and simply connected and
g(F/F) acts transitively on A”. There are two possibilities. The group G? is of type A; or
Aj. In the first case g(F/F) acts trivially and there is nothing to prove. In the second we may
take G to be SL(3,C), T° to be the group of diagonal matrices, B° to be the group of upper

triangular matrices, and the collection { X, } to consist of

o O O

1
0
0

o O O
o O O
o O O
o = O

Then A(G®, B, T°,{X,~}) consists of the trivial automorphism and the automorphism

0 0 1 0 0 1
H— |0 -1 0]|'H "0 -1 0
1 0 0 1 0 0
We may take h to be
0 0 1
0 -1 0
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Suppose w” is arbitrary in 2" and is represented by an & in G° that is fixed by g(F/F).
In order to complete the proof of the lemma we have to show that there is an s in 7 that is

fixed by g(F/F) such that
ad(hS)Xa/\ = Xw/\a/\, O/\ S A/\.
Let
adh(XaA) = C(O/\)Xw/\a/\.
Clearly c(ta”) = c(a”) for 7 € g(F/F). We may choose d(a”), o € A", such that
d(ta’) = d(a”) and such that

d(a™)I9F/PN = (o).

If t in T satisfies

then

rcg(F/F)

is the required s.

Suppose ¢ is an automorphism of G such that ] '7 (1) is inner for all 7 € g(F/F).
For example ¢; could be defined over F. If 9 is an isomorphism of G; with a quasi-split
group G, we define the automorphism ¢ of G by transport of structure. We have seen already
that ¢ determines an automorphism ¢” of G*. By transport of structure again we obtain an

automorphism go? of G ? It is easily seen that gp? depends only on ¢; and not on 9.
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LEMMA 2.7. Suppose P; is a parabolic subgroup of G, over F' and PlA 18 a parabolic subgroup
of G" whose class corresponds to that of Py. Let My be a Levi factor of Py over F and
MIA, which we take as the associate group of My, a Levi factor of PIA. Suppose g € G1(F)
normalizes M. If pq is the restriction of Adg to My and cp? the associated automorphism
of M1A , there is an element h in the normalizer of M1A in G¢ such that 1" is the restriction

of Adh to M, .

Suppose that g is only in G (F') but that g~ 17(g) lies in M, (F) for each 7. Then we can still
define go? and the lemma remains valid. We work with the weaker assumption. The advantage
is that if ¢ is an isomorphism of G with a quasi-split group G such that ¢ ~!7(¢)) = adm,

with m, € M(F') for each 7 then ¢ (g) continues to satisfy the weaker assumption, for

V(g T(W(9)) = (g~ ' m.7(g)m; ") € M(F)

if M = (M;). We prove the lemma for the group G. P is replaced by P = (P, ) and M,
by M. gis now in G(F). We choose B and T such that B C Pand T C M.

We may compose g with any element of M (F) and thus suppose that g(B N M)g~! =
b M,gTg~! =T. Since g is determined by these conditions modulo T,

gr(g~") €T, Teg(F/F).

In particular g represents an element w of (2 fixed by g(F/F). Let w” be the corresponding

element of QS.

We construct G”, B°, T°, and {Xn} corresponding to G, B, and T" and realize w” by an
h that satisfies the conditions of the preceding lemma. If we take P" to contain B it is clear

that Adh is equal to @] on M".

For the next lemma we work in the category of tori over F. Suppose S is such a torus.
Then S admits by construction a special distinguished splitting. Also L” is a covariant

functor of S and

S° = Hom(L",C*)
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is a contravariant functor. So is S”*. ®(S), which consists of classes of continuous homomor-

phisms of Wr into S”, is also contravariant. We write a homomorphism ¢ as

We compose 1 and @5 by setting
v1p2(w) = a1 (w)az(w) X w.

This composition is actually defined for the classes and turns ®(.S) into an abelian group. II(.S)
is the group of continuous homomorphisms of S(F') into C*. Although the following lemma

is valid over any local field, we prove it here only for the real and the complex field.

LEMMA 2.8. On the category of tori over F' the group-valued functors ® and I1 are isomor-
phic.

When F' is C the lemma is particularly easy. Any homomorphism from the topological

group C* to C* may be written as

= em N Zazb _ eaz—i—bi

where a and b are two uniquely determined elements of C whose difference lies in Z. If
¢ € ®(9) is a continuous homomorphism from C* to S" = S?, let p(2) = a(z) x z,z € C*,
and

M (a(z)) = PACLR A

where ;1 and v are uniquely determined elements of L ® C whose difference lies in L. Associate

to  the element of 7 of I1(.S) defined by
mit— u(t)v(t) = el H)+ (v H)
where H € L" ® C is defined by

At) =eM) N e L
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That the map ¢ — 7 gives the required isomorphism of functors is easily seen.

Now let F'be R. Let ¢ be an honest homomorphism from Wx to S”. Let p(w) = a(w) X w

and

M (a(z)) = 2020z 5 e X

If o is the nontrivial element of g(C/R) then v = ou. Let
a(lxo)=a, acS°.

and let
M(a) = 2™ 0A) N e LC.

Ao is determined modulo L and

X+ 0oX=-(p—v) (modL).

1
2
(o and v are determined by the class of ¢ alone but )\ is determined only modulo the sum of

L and
{A—oAXe L®C}.

We write an element ¢ in S(C) as e where H in L ® C is defined by
At) =eMH) Xe L

t lies in S(R) if and only if
H—oH € 2mil".

Define 7 by
7T(t) — e()\o,H—aﬁ)—f—(u/ZH—kaﬁ)‘

This is permissible, for if ¢ is 1 then H & 2mi L and

o, H — o H) + (g,H—kaﬁ) — (Mo + 0o + g - %,m € 2mil.
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On the other hand, if 7 is given extend it to a quasi-character 7’ of S(C). Let

7' (t) = ok, H)+(p2, H).

Define ;v and Ao by
K K
= + Ao, Op2 5 0
so that
H1  Ol2
= 1+ Oop2, Ao 5 5
Then

1 1
Ao+ 0Ny = §{u1 + oy — p2 —opg} = §{u1 + ope — opy — pe }(modL)

and
M1+ O — Op1 — fi2 = [L — Of.

All we have to do is check that ;1 is determined by 7 alone and that \g is determined modulo

the sum of L and {\A — ocA|X € L ® C} by 7.

For this we may suppose that 7 is trivial. If H € L™ ® C then
1 = W/(6H+Uﬁ) — o{mH)+(op,H)
and = 0. If \* € L™ and 0 A" = \" thereisan H € L™ ® C such that
2miANN = H — o H.

Thus
<)\0, )\/\> eZ.

It follows immediately that
X €L+{A—0oAXe L®C}.

There is one fact to be verified.
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LEMMA 2.9. The functor from ® to Il respects restriction of scalars.

We consider restriction of scalars from C to R. Let S be a torus over C and S the torus

obtained by restriction of scalars. Then
S(R) = Hompg (SpecR, S) ~ Hom¢ (Spec C, S) = S(C).

We denote corresponding elements in S(R) and S(C) by s and 3. L is the group of functions
on g(C/R) with values in L and g(C/R) operates by right translation. If \; = A(1), Ay = A(0)
then

A(s) = A1(8)o(A2(5)).

Ifs=efl",HY ¢ " @ Cthens = e with H = (H~,H ) and
H+oH=2H"H ), H-0cH=0,

and

B HY) (0 H™) _ (Mo, H—oH)+(u/2,H+oH)

if
- .

,u:(,u,u), )‘O+§(:UJ l/,O)~

Thus if the quasi-character 7 of S(C) is given by /i, 7, the associated quasi-character 7 of S(R)
is given by p and Ao.

One the other hand let » : W — 57 be given by ¢(2) = @(z) x z and let
M\ (a(z)) = 2PNz A,

S is the set of functions on g(C/R) with values in S°. If ¢ : w — a(w) x w is obtained from

¢ by the restriction of scalars functor, then
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One calculates easily the corresponding 1 and A\ and finds that they have the correct values.

Now take G connected and reductive. Let Zg be its center. We want to use the previous
lemma to associate to each element ¢ in ®(G) a homomorphism X, of Z¢(F') into C*. Since
Z¢ is not affected by an inner twisting, we could, but do not, suppose that G is quasi-split. Let
Gaq be the maximal torus in Z and let G be the quotient of G by G,aq. If G4 is the adjoint

group of G we have the following diagram

Zag
T\
1—)Grad—>G_>Gss_>1
N
Gad

in which the horizontal line is exact. A pair B, T"in GG determines By, Tss and B,q, Taq. Using
these to build the associate groups, we obtain
1« G°f « G° « Go + 1

Nt
ad
in which the horizontal line is exact.
In particular we have amap ®(G) — ®(Graa), so thatevery element ¢ in ®(G) determines

a homomorphism of G,,q(F) into C*. Thus when Z is connected we are able to define X,.

In general let

M = Hom(Zg ® F,GL(1)).

M is a g(F /F) module and there is surjection 7 : L — M whose kernel is the lattice generated
by the roots. Let ¢ : Q — M be a surjective homomorphism of g(F'/F)-modules with Q free
over Z. Let

L={\p)n\) =<p}

and let
A= {(a,0)|a € A}.
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From L and A and the cocycle defining G' we construct G. The surjection L — L obtained
by projection on the first factor yields an injection G — G and a surjection G"* — G” whose

kernel is a torus over C, namely
Hom(N",C*) = S°

if N is the kernel of L — L and S is the torus over F associated to the g(F/F)-module N.

Moreover Gyag = Z# is the torus defined by Q.

There is an exact sequence

1 — Hom(S(F'),C*) — Hom(Zg(F'),C*) — Hom(Zg(F'),C™).

Every element of ®((G) determines an element of the middle group and hence of the last.
If $, and P, in ®(G) have the same image in ®(G) then, after an appropriate choice of

representatives,

where a(w) € S° and

Y(w) = a(w) X w

is an element of ®(.S). Thus the images of @; and P, in ®(G,aq) differ by an element in
the image of ®(.5). By the functoriality of Lemma 2.8, they determine the same element of
Hom(Zg(F),C™).

The next lemma will allow us to define X, ¢ € ®(G); it will remain, however, to verify

that it is independent of the choice of ().

LEMMA 2.10. Suppose G and G" are objects in G(F) and ¢ : G — G is a surjective

morphism. Suppose that the kernel of ©” is a torus S° in the center of G°. Then

Hom(Wp,G") — Hom(Wg, G")
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18 surjective.

The assumption does not depend on the representative chosen. If T is a Cartan subgroup

of G° then

0

T =¢" (17)

is a Cartan subgroup of G°. 1f L and " are the lattices of rational characters of T° and T'

then L — L" is injective and the quotient is torsion-free. Let
¥ € Hom(Wr,G").

We may assume that

P(C*) C T°.

Let
M (Y2 x 1)) = A (VA7)

where yand v liein L ® Cand yu — v € L. Themap L — L" leads to surjective maps L — L

and L ® C — C. Lift uto fiand v to 7 in L ® C so that i — 7 lies in L.

Define (2 x 1) in T° by
A (@h(z x 1)) = 2BADZ@A AN e T
Lift /(1 x o) arbitrarily to 1)(1 x o) and set, in general
Y(zx o) =Pz x 1)P(1 x o).

Let

Y(w1)P(wz2) = a(wr, w2)P(wiws),

where a(wy,w2) is a continuous 2-cocycle on Wy with values in S . What we have to do is

show that there is a continuous function b(w) on Wr with values in S° such that

b(s1)w1(b(we))a(wy,ws) = b(wiws).
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What we do is introduce the extension K of topological groups defined by this cocycle and

show that it splits continuously.

This is clear if F = C; so take F = R. Let N” be the lattice of rational characters of S°.

Consider the inverse image of C* in K. This extension of C* splits. Write an element in it as

sxz=¢cl x¢*

withzinCand Hin N ® C. Let

sz) — eJ(H)+zu+EV « e?

o(e
with prand v in N ® C. Applying o again we see that v = —o(u). Moreover p + o(u) must
lie in N. In fact o must fix the square of any lifting of 1 x ¢ to H. Since this square is of the

form s x (—1),

emilnto(n) — q

and p+ o(u) € 2N. Set
poolp) s ptolu)

T 4

and

052’7—5, B:7+6

Then p =2(y+6),a — = —20liesin N and o(«) + . = 3, 0(B) — o(u) = a. We replace
the original splitting over C* by

€% — e*¥EB o,

Since

(7078 x %) = HE@HWFTEB) =0  F _ g2BHEa 7

this new splitting is respected by the action of o.
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We have still to split the extension completely. Choose a representative h of 1 x o in H.
Let h? = s x (—=1). Let S = el and H = H, + H_, witho(H,) = Hy,0(H_) = —H_.
Replacing h by
(e H+/2 % 1)h

if necessary, we may suppose that H; = 0. Since o(s) = s, 2H lies in 27iN. Write
H=7mi(A—0o(N))
with A € N ® C. We may modify the splitting over C* once again, replacing it by

e — ez)\—i-EU()\) X 7.

In this new splitting over C*, h? is given by

eH—m)\—i—ﬂ'ia()\) Xx —1=1x —1.

We have now split the extension completely.

To show that x, is independent of () is easy. Suppose ()1, ()2 together with (;, (> are two
possible choices. Since we may replace the pair ()1, Q2 by (03, Q1 or 03, Q2 with

Q3 = {(p1,p2)[C1(p1) = C2(p2)}

there is no harm in supposing that ()1 is given by a surjective homomorphism & : Q1 — Q2.

When this is so, Lemma 2.8 shows immediately that (); and ()2 give the same quasi-character
Xep-

The following fact follows easily from the construction and Lemma 2.9.
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LEMMA 2.11. The map ¢ — X, respects restriction of scalars.

Let Z” be the center of G°. The action of Wr on Z” is well defined and so is the group
H'(Wg, Z"), where it is understood that only continuous cocycles are to be considered. If

0 € ®(G) and a € HY (W, Z") define ap by

ap(w) = a(w)p(w).

As is implicit in the notation and is easily verified the class of ap depends only on that of «
and . Thus the group H'(Wg, Z") acts on ®(G). We should also be able to make it act in

II(G). To do this we associate to v a continuous homomorphism 7, of G(F) into C*.

Let Gqer be the derived group of G, G the simply connected covering group of Ger,

and Goraq the quotient of G by G4er. We have
GSC

LN

_)

1 — Gder G — Gcorad — 1.

Passing to associate groups we have

Gé
TN )
1 < G4, < G° < Go,qa < 1

Suppose we have a diagram

1
5
1
e Q- Qe e
1
!
1
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in which the vertical and horizontal lines are exact, B and D are tori, and G(F) — G(F) is

surjective. For example if R is the kernel of Gs. — G and
K =Hom(R®r F,GL(1))

we could take a free g(F'/F) module P that maps surjectively to K, set L equal to the group
of pairs (\,p), A € L., p € P, with the same image in K, and A equal to {(c, 0)|cc € A}, and

define G by means of L, A, and the twisting defining G. Passing to associate groups yields

This diagram gives Z” as the kernel of D° — B° and hence a map of H'(Wg, Z") into the
kernel of H'(Wg, D°) — H'(Wpg, B°). By Lemma 2.8 every element 3 of H'(Wg, D°) =
®(D) yields a quasi-character of D(F) and hence of G(F). It is trivial on B(F) and hence
gives a quasi-character of G(F) if and only if 3 becomes zero in H! (W, B°). In particular
every element o of H' (Wr, Z") yields a quasi-character 7, of G(F). If G; and G are possible
choices for G so is @1 Xa ég. Using this, one shows easily that 7, does not depend on the

choice of G.

LEMMA 2.12. The map o — ., respects restriction of scalars. If ¢ = ayp then

Xo(2) = ma(2)xp(2), 2 € Z(F).

The first assertion follows easily from Lemma 2.9 and the construction. Suppose G is

the group for which we are trying to prove the second assertion. Let G be quasi-split and let
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1) be an isomorphism of G and G such that 1 ~!7(1)) is inner for 7 € g(F/F). We may so
construct G; and G that Y lifts to @E : G1 = G. Dy and D will be the same and

é1 — D1
b |
G — D

will be commutative. Since 1) restricted to Z; is defined over /' and yields an isomorphism

of Z1 with Zg9 and since
Xe(1(2)) = X0 (2)
if o € (G — 1) = ¢(G), we need only prove the lemma for G.

If T and T are corresponding Cartan subgroups of G' and G, defined over F' and lying in

Borel subgroups over F', then

T° « D°
T )
T° + ZN

is commutative. Thus on T'(F'), 7, is the quasi-character defined by the image of « in
H(Wpg,T%) = &(T).

Although we do not need to know it, it could be observed that T'(F) — D(F) is surjective
because H'(g(F/F), Ty.) = 0. Thus 7, is determined by its values on T'(F).

Now consider the objects used to define x,,. We had a surjection ®(G) — ®(G). If p is
the image of % then Y, is determined by the image of @ in ®(G";aq). But @fad = Tfad and,

by Lemma 2.10, ®(7") — ®(T';aq) is surjective. Thus for ¢ € ¢(G) there is an 7 that lies in the

image of ®(T) — ®(G) and lifts to 77 in the image of ®(T) — ®(G) such that 7 and P have the
same image in ®(Graq). Then Xo = Xn- If 1 is the image of 3 in ®(T) then, by construction
almost, Y, is the restriction to Zg(F) of the quasi-character of T'(F) associated to 3. Since Z",
the center of @6, is the inverse image of Z” in G’ we may choose 1’ corresponding to ¢’ to be
the image of 743, if 7 is the image of « € H*(Wg, Z"), in H*(Wg,T°) = ®(T). The lemma
now follows.

Notice that if ¢ : H — G is defined over F' and has an abelian kernel and an abelian

cokernel then we can associate to it a homomorphism " : G* — H".
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3. The definitions. The group G(F) is a Lie group. Let g be the tensor product of its Lie algebra
with C, let 2 be the universal enveloping algebra of g and let 3 be its center. A (continuous)
representation m of G(F) on a Banach space V' will be called irreducible if V' contains no
nontrivial closed invariant subspaces; it will be called quasi-simple if the elements of 3 act on

the infinitely differentiable vectors as scalars.

Let 7 be irreducible and quasi-simple. Let K be a maximal compact subgroup of G(F)
and let 4 and v be irreducible representations of K on the finite-dimensional spaces X and Y.
Suppose we have K-homomorphisms ¢ and 1 of X and Y into V" and its dual V* respectively.
Suppose moreover that () is infinitely differentiable for all x € X. Let ¥ = ¥, , be the
function on G(F') with values in X* ® Y* defined by

Y(g) : (z,y) — (m(9)C(z),n(y)).

Then V is a spherical function on G(F') of type p*, v*, if u* and v* are contragredient to i, v.

If we regard the elements of 2 as left-invariant differential operators on G(F') then
Z® =k(Z2)V, Ze3,

if 7(Z) = k(Z)I. Because 7 is quasi-simple and irreducible, 7(z) is a scalar for z € Zg(F)

and
V(gz) = m(2)¥(9g)-
If G°(F) is the connected component of G(F') then

G(F) = KG°(F) = KZa(F)Gge (F)

(cf. [11]); so V¥ is determined by its restriction to G, (F'). Notice also thatif v € V, v* € V¥,

and (7(g)v,v*) = 0 for all g then either v or v* is zero.

It follows from these considerations and Proposition 9.1.3.1 of [16] that

dim Homg (X,V) < oo,
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so that any representation of K occurs with finite multiplicity in V. Let Vi be the space of
K-finite vectors. Every vector in Vi is infinitely differentiable so that both 2 and K operate
on Vk. The representations m and 7’ on V and V' are said to be infinitesimally equivalent
if the representations of the pair 2, K on VJ. are algebraically equivalent. Since any two
maximal compact subgroups of G(F') are conjugate, this notion does not depend on the choice
of K. II(G) will be the set of infinitesimal equivalence classes of irreducible quasi-simple
representations of G(F'). We shall usually not distinguish between a representation and its

class.
To every ¢ in ®((G) we are going to associate a finite but nonempty set I, in II(G) such
that the following conditions are valid.
(i) If ¢ # ¢’ then I, and II;, are disjoint.
(ii) If 7 € II, then
(2) = x,(2)I, z€ Zg(F).

(iii) If ¢’ = ap with « € HY (W, Z") then

IT, = {7 @ mlm € T, }.

(iv) If n : H — G has abelian kernel and cokernel, if ¢ € ®(G) and ¢’ = n/(p), then the
pullback of any 7 € IL, to H(F') is the direct sum of finitely many irreducible, quasi-simple

representations, all of which lie in II..

(v) If ¢ € ®(G) and one element of II, is square integrable modulo Zg(F') then all
elements are. This happens if and only if ¢ (W) is contained in no proper parabolic subgroup
of G".

We remark that the representation 7 is said to be square integrable modulo the center
if 7 = ( ® 7’ where ( is one-dimensional and where 7/, which operates on V’, is such that
| f'(7'(g)v") |? is an integrable function on Zg(F)\G(F) for any K-finite v’ € V' and any

K finite linear form f’ on V.
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(vi)If € ®(G)istempered then all elements are. With respect to a distinguished splitting,
write p(w) = a(w) x w. The elements of II,, are tempered if and only if {a(w)|w € Wr} is

relatively compact in G”.

7, acting on V/, is said to be tempered if f(7(g)v) satisfies the weak inequality for any

K-finite v € V and any K-finite linear form f on V.

Since we can always restrict scalars, we may as well take F'tobe R. Let p € ®(G). Let Abe
the Zariski-closure of the image of Wr under the composition of ¢ with the homomorphism
of G/ into the group of automorphism of g”, the Lie algebra of G°. Let B be the Zariski-
closure of the image of C*. Since the elements in the image of C* commute and are, by
assumption, semisimple they can be simultaneously diagonalized. Thus every element of B
is semisimple. The same is true for A4, because A2 C B. Since A is clearly supersolvable we
may apply Theorem 5.16 of [13] to see that ¢(Wg) normalizes a Cartan subgroup S° in G°.
Since the group of automorphisms of S is discrete, (C™) must centralize S°. Consequently
g(C/R) = C*\Wg actson S°, on M" = Hom(S°,C*),on M = Hom(M",Z),and on M QR.

Suppose g(C/R) fixes a point A in M @ R. If P" is the parabolic subgroup of G defined
by the condition that o is a root of S in P° if and only if (A, a”*) > 0 then p(Wg) lies in P".

We shall first define I, under the assumption that ¢(WWR) is contained in no proper
parabolic subgroup of G”. Then if \ is fixed by g(C/R)

Ao’y =0
for all a”.

LEMMA 3.1. If ®(G) contains a ¢ with the property that o(WR) is contained in no proper
parabolic subgroup of G" then Gaer has a Cartan subgroup Tyer with Tger(F) compact.

We have a map G — G’ 4, that yields ®(G) — ®(Gger). Replacing ¢ by its image
in ®(Gg4er), we may suppose that G = Gge,. Then M N2 Ris spanned by the roots of al.
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Consequently the nontrivial element o in g(C/R) fixes no element of M ® R but 0 and act as

—1.

Let ¢ be an isomorphism of G with a quasi-split group G’. Choose a Borel subgroup B’
of G’ over R and a Cartan subgroup 7" of B’. Use G’, B/, and T" to build G", B° and T° as
a concrete realization of the associate group. Replacing ¢ by another homomorphism in the
same class, we may suppose that S° = T, so that M = L. There are, however, two actions
of o on L", the one built into the construction of G, which we denote by A — o\”, and the

one defined by ¢, which we denote by A — G\, There is an w” in Q" such that
o\ =who\.

Since 7 acts as —1, 0 commutes with & and w”. Let w be the element of (¥, the Weyl group of

T’, corresponding to w”.

Because any two quasi-split groups differing by an inner twisting are isomorphic, we may

suppose that o acts on G’(C) in such a way that
o\(oT) = a(\(t)), teT'(C),

and

o(X!)=X.,, aecl.

oo

Here the X/, are appropriately chosen root vectors in the Lie algebra of G. Define X_, so
that if H, = [X,, X_.] then a(H,) = 2. The algebraic automorphism of G’ defined by
t — w(t), Xo — Xy commutes with the action of o and its square is 1. It is of course
inner. We use the cocycle a1 = 1, o, = w to twist G’ and obtain G”. G” contains the Cartan

subgroup 1" obtained by twisting 7”. Since
Mwot) = a(A(t))

T"(R) is compact.



Classification of irreducible representations 40

There is an isomorphism 7 of G” with G such that £ = =}

o(n) is inner. We may suppose
that n(T") = T is a Cartan subgroup of G over R for which the compact part of T'(R) has
maximal dimension. What we have to do to show that T'(R) is compact is to show that ¢,
which normalizes 7", actually centralizes 7", for then 7 : 7" — T is defined over R. We use

an idea that can be found in many places. If t € 7" (C) and \ is a rational character of 7" then

Mo(t)) = o(A(t)™1). Thus

Mo€(t)) = o (A€ ™Y = o(67AB) 1) = 7 A(a (1) = Mo (?))

and o = 0&. Since éo =1, £2 = 1.

Suppose aisarootof 7" and {& = —a. Consider the subgroup H” of G that s generated
by T”(C) and the one-parameter subgroups exp zX/, exp zX” , z € C. H” is invariant
under o and { and H = n(H") is defined over R. I claim that H. is isomorphic to SL(2) over
R and that 7T}, the inverse image of 7" in Hy. is the Cartan subgroup whose set of real points is
noncompact. This clearly contradicts the definition of 7" and shows that o # —a for all a.. To
prove the assertion about Hy., we start from the observation that we may choose X/ and X" |
so that [X[), X" | = —H] with o(H]/) = 2 and so that o(X)) = X” . Theno(X” ) = X[
Let{(X]) =aX",, &X”,) =0X/. Then

[aXZon ng] = _H(/)Z;

so ab = 1. However the relation £0(¢) = 1 shows that a@ = bb = 1. Recall that, on C, o is

complex conjugation. Choose s in 7" (C) such that

a(s)ta(s) = a.
Replacing 1 by n o ads, we suppose that a = b = 1. Set

H, = U(H&/)? Xo = T](Xg), X o= _n(XH)'

«
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Then

Thus H,, X,, X_, span a Lie algebra that, together with the action of o on it, is isomorphic to

the Lie algebra of SL(2). Since H, lies in the Lie algebra of 7T, this gives the required assertion.

Let M" be the lattice of rational characters of T". Since «a + £« is different from 0 for all

« there is a point H in the dual of M"” ® R such that
(@ +&a, H) = (o, H+EH) #0

for all . But £ fixes H + £ H and therefore fixes the chamber in which it lies. Since ¢ is inner

this is possible only if £ centralizes T".

The lemma proved, we return to the original G and ¢. Although it is not important, we
choose for the sake of definiteness an isomorphism v of G’ with a quasi-split group G, with
¢_10(¢) inner, choose B’ and T’, construct G°, B°, T° accordingly, and take the associate
group to be G = G° x WR. We also suppose that ¢(Wg) normalizes T°. Write p(w) =
a(w) x w. If z € C* then a(z) € T°. Let

M (a(z)) = Az,

If A — A" denotes the action of o on L" defined by ¢ then v = Gu,u = gv. Also if
a=ua(lxo),

M(ao(a)) = M (a(-1)) = (—1)rA"D,

If (o, \) = 0 for all roots o then \" is a rational character of G° and we may define
A" (a). Notice in particular that («, \*) = 0 for all roots « if A = G\". The next lemma is

critical.



Classification of irreducible representations 42

LEMMA 3.2. Suppose h = axw, withw = 1x 0, lies in G", normalizes T®, and ha” = —a/

for every root o*. Then ac(a) € T and, if § is one-half the sum of the positive roots with

respect to any order,
M(ao(a)) = (~1)*2 i\ (@) = (=1 a)
if = AN+ hAN.
Of course an h satisfying the conditions of the lemma does not always exist. When it does

a is any element of the normalizer of 7 in G° that takes positive roots to negative roots.

That ac(a) € T° and that 25 = § — hé is clear. If s € T° and h is replaced by sh then
ao(a) is replaced by
sh(s)ao(a)

where h(s) = hsh™!. Since " (a) becomes
p"(sa) = A (s)hA" (s)u" (a)

and

A (sh(s)) = M (s)hA" (s)

we are free to replace h by sh. Thus we may suppose that a € G2, or, more simply, that G, and
hence G2, is semisimple. Since it only makes the matter more difficult we may then replace G
By Gaq and G° by ng, which is simply connected. Then the whole situation factors and we

may finally assume that G° is simple and simply connected.

Suppose " is the largest root with respect to the given order [2]. Then o(Xgr) = nXpga

with n = +1. If o acts trivially on G° then 1 = 1. In general I claim that if
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is the expression of " as a sum of simple roots and if  is one-half the sum of those n(a") for
which o # ga” and (a”,0a”) # 0 then 7 = (—1). This statement is not true for 3 alone
but for any positive root

=) m(a")ah

fixed by o. Of course n(a”) is to be replaced by m(a”) and n by n(y”), where

We prove it by induction on m = Y _ m(a’).
If m = 1 then [ = 0; but by construction 7(y") = 1. Suppose m > 1, so that v is not

simple. Choose a simple root a; such that (v",a;) > 0. If oy = ocr), then (7", ) =

(v, a}). If o = ap then3” = A" — @ is also a root and
Xon = [Xop, X3n s

so n(v") = n(7"). Moreover I(v") = I(7"). If a; # a, and (a;,ay) = 0 then 7 =

AN — @) — ay is a root. The integers (") and I(7") are equal. Since

X’VA = [X [XagvXW’\]] = [Xag ) [Xaf ) XWA]L

af’
n(y") =n("). If (af,a;) # 0 then o = 04? + Ozg is a root and
Xan = [Xaf ’ onzA];

son(a”) = —1. If v = o” we are done. Otherwise 7" = v —a” isaroot, [(7") = (") +1,
and n(y") = —n(7") because
XFYA = [XaA,XWA].

Since (8", a”) > 0 for all positive roots, every root perpendicular to $” is a linear
combination of simple roots perpendicular to it. Let H® be the connected subgroup of G?°

corresponding to the Lie algebra generated by { X, |(a”, 3") = 0}. H" = H° x Wg C G"
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is also an associate group and we may assume the lemma has been proved for it. Let .J° be
the group corresponding to the Lie algebra generated by Xgn, X_gr. J° is also invariant
under Wg. The groups H° and J° commute with each other. Let a; be an element of H?
normalizing 7 and taking positive roots in H° to negative roots. Let ay be an element of J°
normalizing T° and taking 3" to —3". a; fixes 3”. Thus if o/ is positive and (o, ") > 0,
then (a1, ") > 0 and a1’ is positive. But (aa”, ") = —(a”,8") < 0 s0 aza” is
negative. The product a;ay takes every positive root to a negative root and we may take
a = ajas. Since as centralizes H?, aq X (I1xo)inH " takes every positive root to its negative.
By induction

M(aro(ar)) = (~1)Zrie")

if To = {a > 0] (a, B) = 0}. J° is covered by SL(2,C). We may suppose that

0 1 0 0
(0 0 )—)Xg/\, (1 0 )—>X_IBA_

Then the action of ¢ lifts to conjugation by

((1) (—01)l > '

Since we may take a to be the image of

as0(as) is the image of

Thus
N (a20(az)) = (~1) (DA,

To prove the lemma we have to show that

BN = > (o, M) (mod2).
(o 5A) %0
aFfB
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If a >0, (o, ") # 0, and if @ # f3 then {«, ") — «v is also a positive root and is different
from «. Thus the right side is I’ (3, \"") if

=5 X s =5 {Tlasn 1= 6. 1= Yate) -1,

Zig a>0
(o, BN)#0

It would be enough to show that { = I’(mod2).

To finish up we make use of some standard facts [2]. The order & of a Coxeter element is
' + 1. If o acts trivially then [ = 0. But if ¢ acts trivially then « itself must take every root to
its negative. This forces I’ + 2 to be even ([2], p. 173). If o does not act trivially the roots are all
of the same length. There is an « in A such that (o, 8") = 1 ([2], p. 165). Since (26, ™) = 2

o’ (ao(a) = (~1)'""".
However h acts on the Lie algebra of G°, and
h(Xa/\) = CX_QA, h(X_aA) = an/\, h([XaA,X_a/\]) = —[XQA,X_QA].

This forces cd to be 1; so

o (ao(a))Xon = h3(Xan) = Xon
and [ — !’ is even.

There is another lemma to be verified before we can define II,.

LEMMA 3.3. Suppose p € ®(G), p(Wg) is contained in no proper parabolic subgroup of
G, o(Wg) normalizes T°, and

M (p(2)) = 22z e X,

Then {u,a”) is different from 0 for all roots o”. Moreover p(WR) normalizes no other

Cartan subgroup of G°.
Suppose (i1, ) = 0. X, is fixed by ¢(2), z € C*. Let h = (1 x o) and set

U=X.+ h(XaA>.
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Then hU = U. Let h be the space of vectors H in the Lie algebra of T° for which o (H) = 0.
Then h+CU is the Lie algebra of a Cartan subgroup of G° normalized by o(Wg). Itis however,
clear that the action of o on the roots does not take every root to its negative. This we know is
incompatible with the assumption that (1W/R) is contained in no proper parabolic subgroup
of G". Thus {(u, a”) is never 0 and the centralizer of ¢(C*) in the Lie algebra of G° is exactly

the Lie algebra of T°. The second assertion of the lemma follows.

If n € G° and

¢t w — np(w)n ™!

satisfies the conditions of the lemma, with 1, v replaced by 1/, 7/, then n must normalize 7
and p = npu, v = nv. Consequently the orbit of 1 under the Weyl group is determined by

the class of ¢ alone. Since 4t — v € L and

<M - b O/\> = <:u - EUﬂO‘A> = 2<:u70/\>

the number (i, o”) is real for all . Since it is different from 0, we may choose ¢ in its class

so that (i, ™) > 0 for all @ € A”. This done, the only way we may modify ¢ is to replace it

by

¢ tw— sp(w)s™!

with s € T°.

We have observed that if (o) = 0 for all roots «, we may define A" (a), where p(1 X o) =

a X (1 x o). Choose Ao € L ® C such that
AN (CL) _ 827T1:<A0,)\A>
for such \". \g is determined modulo

L+Y Co+{A-FA|XeL®C}
acA
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or, since o = (a — oav) /2,

L+{\—\|AeL®C}

We know that (i, a”) is real and different from O for all «. Let

1
(5 = 5 Z «
(m,0)>0
andset 1 = pu—90,vy =opu1 =v+90. Thenpy —vy = pu—v —29 € L,because p — v € L. If
A" € L” then, by Lemma 3.2,

67Ti</,L—V,>\/\> _ AA(aa(a)) _ e7T’L'<25,>\A>+<>\0—|—E>\0,>\/\>;

SO
Ao+ Ao = ’“2_ (modL).
Thus
A 1 — N 1 N AN
<,u,0é > = §<,UJ_O'”7O~/ > = §<,UJ1 -, >+ <67a >

= <)\() +6)\0,()4/\> —|— <5, Oé/\> = 1
modulo Z and (u, o) is integral. If (u, @) > 0 then
<:u170/\> = <:U’70/\> - <57 O/\> = <:U’>O/\> —-1>0.

Let S be a Cartan subgroup of G over F' for which S(R) N Gger(R) is compact. We may
choose the isomorphism 1 of G with G’ so that ¢/(S) = T’. The isomorphism allows us to
identify L, the lattice of rational characters of 7", with the lattice of rational characters of S.
Then the semidirect product 7° x g(C/R) with o acting on T° as & becomes the associate
group of S. As in the proof of Lemma 2.8, 111, 1, and )¢ then define a homomorphism y of
S(R)into C *. However since 9 is not uniquely determined, 111, 1 and \g are only determined

modulo the action of the Weyl group. Although the elements of the Weyl group of S may be
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represented by elements of G(C) their action on S is defined over R. If we replace p1, 1 and
Ao by wpi, wry = Gwpy, and wAg, which is congruent to Ag modulo {\A =\ | A € L ® C},
then y is replaced by X’ : t — x(w™'(t)). Let X,, be the set of these quasi-characters y. X, is

determined by the class of ¢ alone.

To verity that the sets I1,, which we shall soon define, are disjoint and exhaust the classes
of representations of G(R) that are square-integrable modulo the center, we shall need the

following lemma.

LEMMA 3.4. Suppose G has a Cartan subgroup S over R such that S(R) N Gger(R) is
compact and X is an orbit of the Weyl group in the set of quasi-characters of S(R). Then

there is a unique ¢ € ®(G) such that o(WR) is contained in no proper parabolic subgroup
of G" and such that X = X,.

We have first to observe that an h in G” that satisfies the conditions of Lemma 3.2 exists.
Let ¢ be an isomorphism of G with a quasi-split group G’ such that ¢y~ 1o (1)) is inner. If B’
and 7" are chosen as usual, we may suppose that ¢(S) = T’. We have to show that there is
an element w” of the Weyl group of T° such that w”oca” = —a” for all . This is equivalent
to showing that there is an element w of the Weyl group of 7" such that woa = —« for all a.
w and w” will then be corresponding elements. Let ¢y () ~!) = adn, with n in the normalizer

of 77, then
—p ) =0 () =¢ " (Yo (v Hoa) = ¢~ (noa)

and noa = —a. We take w to be the element of the Weyl group represented by n.

Let & be the action on 7°, L, and L determined by such an h. We regard T°, with the
action o, as the connected component of the associate group of S. If x € X choose 11, 1 and
Ao so that

x(t) = oMo, H—GH)+(p1/2,H+5 H)
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ift =e liesin S (R). Given X, y11, v1, and \g are determined modulo the action of the Weyl

group. Also p; — 14 € L and, since 7a” = —a”,

(1 —v1,0") = ( — o, o) = 2(u1, a”)

is real. Choose an order on the roots so that (i1, @) > 0 if o’ is positive; let § be one-half
the sum of the positive roots a with respect to this order, and set 1 = p1 + 6, v = . Since
the 6 which arise in this way differ by an element of the Weyl group that fixes 111, the orbit of
i, v, and Ao under the Weyl group is determined by X, alone. The various p are certainly

nonsingular. To be definite choose the unique one that is positive with respect to B°.

If ¢ is normalized in the way described earlier, it is clear that X = X, only if
M(p(z)) = 220z 4 e €.

Fixan h = b x (1 x o) satisfying the conditions of Lemma 3.2 and choose a representative \.
If X = X, and ¢ gives rise to this particular A\ then ¢(1 x 0) = a x (1 x 0) with a = sb,
s € T° and

M0 = AN a) = M (5)A" ()

if (o, \") = 0 for all a. An s in T satisfying this condition always exists. We will be able to
extend ¢ to Wp if

N(ao(a)) = emi=rA")
for all \"*. By Lemma 3.2 the left side is

627ri(5,)\/\)+27ri(>\0+5>\0,>\/\>

Since
H1 — 1
2

= )\0 + E)\O (modL)

it equals the right side. As for the uniqueness, if \*(s) = 1 whenever («a, \) = 0 then, in

particular, \*(s) = 1 when 7\ = \" and s = to(t~!) with t € T°. Then sh = tht 1.
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Choosing a different representative for Ay forces the same kind of change in s; so the class of

 is determined uniquely by X.

Suppose ¢(WR) is contained in a parabolic subgroup P of G”*. Then ¢(Wy ) is contained
in a Levi factor M” of P” and normalizes a Cartan subgroup of M?°. But y is regular; so 17
is the only Cartan subgroup centralized by ¢(C™) and therefore the only Cartan subgroup
normalized by ¢(Wg). P’ must then contain T°. Since (1 x o) takes each root to its
negative, P" is G

Suppose S and S’ are two Cartan subgroups of G such that S(R) N G4 (R) and S'(R) N
Gaer(R) are compact. There is a g € G(C) such that adg(S) = S’. The restriction of adg to S
is defined over R and

X,={xoady' | x € X{P}.

If g € G(R) then g = g1g2 where ¢; lies in GY_ (R) and g» lies in the normalizer of S.
If 2 is the Weyl group of S and €2; consists of those elements in ) with a representative in
G4, (R), the connected component of Gger(R), and w is the image of g, in {2 then g — Q w is

a well-defined map of G(R) into 21 /€. The inverse image of ©; in G(R) is

Go(R) = S(R)Gy.,(R) = SR)G*(R) = Zc(R)Gaer (R)-

If x € X, and y; is defined above, choose an order on the roots so that (i1, a”) > 0if avis
positive and let § be one-half the sum of the roots positive with respect to this order. By Harish-
Chandra’s theory of the discrete series there exists for each such pair x, J a unique irreducible
representation o (x, 6) of Go(R), square-integrable modulo the center, whose character on the

set of regular elements in S(R) is

sgnwy (ws)ed @H—H)
e(@) )
= A(s)
Here s = el is a regular element in S(R) and

Ais)= J[ @—e ).

(8,an)>0
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(@), which is 1, depends on G alone.

It is clear that, if x € X, X' € X/, the representations mo(x,d) and mo(x’,d’) are

equivalent if and only if ¢ = ¢’ and there is an w € ; such that § = wd’ and

forall s € S(R). If g € G(R) has image Q;w in Q;\Q, mp = m(x, §), and
mo(h) = mo(ghg™"), h € Go(R),
then m(, = mo(x/, 0’) with wd’ = 6 and x’(s) = x(ws). Thus the representations
m(x,0) = Ind(G(R), Go(R), mo(x; ))

are irreducible. We set
I, = {7(x,9) | x € X,}.

If the image of G(R) in 2, \(2 has e elements, then II,, contains
[Q : Ql]/e

classes.

Before explaining why conditions (i) to (vi) are, insofar as they apply to the II, already

defined, fulfilled, we verify a simple lemma.

LEMMA 3.5. The restriction of an irreducible quasi-simple representation m of G(R) to
G (R) is infinitesimally equivalent to the direct sum of finitely many irreducible repre-

sentations of G, (R).

Letmacton V. Let K be a maximal compact subgroup of G(R) and let K° be KNG, (R).

Since 7(z) is a scalar for z € Z(R) and since

[K : Ko(KNZg(R))] < o0



Classification of irreducible representations 52

every irreducible representation of K occurs with finite multiplicity in the restriction of 7 to
K. Let p be an irreducible representation which actually occurs and g¢; . . ., g, be a complete
set of representatives for the cosets of Z¢(R)GS,.(R) in G(R). If £ is the character of p let U;

be the range of the projection

E_/§ g; 'kg;)dk.

U; is finite-dimensional. Let £ be

¢(k)m(k)dk

Ko
If U is a closed nonzero subspace of V' invariant under Gg . (R) then U N (3_; U;) is not

zero. If it were

0 =m(g;)E;U = En(g;)U

for each j. But V is contained in the closure of

> w(g)U

and EV # 0. As a consequence, among the closed nonzero subspaces of V' invariant under

G4, (R) thereis atleast one minimal one W. The representation of G4, (R) on W isirreducible.

Choose a maximal collection A ..., h; from {g; ..., g, } such that

I
Zﬂ'(h W

=1

is direct. Each 7(hq)W is invariant and irreducible under G4, (R). Moreover

@w(m)w

is dense in V and therefore contains all K -finite vectors. The lemma follows.
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If Q(G) is the group of elements in the Weyl group of S that can be realized in G(R)
then the character of 7(x, d), which certainly exists as a distribution, is given on the regular

elements of S(R) by the function

sgnwy (ws)ed @H—H)
e(G) Y A
Q2(G)

It follows that the sets I, that have been defined so far are disjoint.

Suppose 7 is an irreducible quasi-simple representation of G(R) on V that is square-
integrable modulo the center. By the previous lemma the restriction of 7 to Go(R) is the
direct sum of finitely many irreducible quasi-simple representations, each of which is clearly
square-integrable modulo the center. Let my be one of them and let my act on V5 C V. By the
theory of the discrete series, G has a Cartan subgroup S over R, so that S(R) N Gger(R) is
compact and there is a x and a ¢ such that 7 is m(x, 6). By Lemma 3.4 there is a ¢ such that

X € Xo,. If g1 ..., g, are a set of representatives for Go(R)\G(R) then
V2P (g W
i=1

because the representations h — mw(g;hg; 1) are inequivalent. If g;g = h;g; and

v = @ m(g; I)Ui
then
m(g)v = Prlg; )]
with v} = m(h;)v;. Mapping v to the function on G(R) whose value at hg;, h € Go(R) is
m(h)v; we obtain an infinitesimal equivalence of m with 7(, d). This shows at least that (v)

will be a consequence of (i) and that the union of the sets II, will contain all classes that are

square-integrable modulo the center.

Supposen : H — G has abelian kernel and cokernel and ¢’ = 7" (¢) where ¢ € ®(G) and

©(WR) is contained in no proper parabolic subgroup of G”. Then ¢'(WR) is contained in no
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proper parabolic subgroup of H”. It follows from the preceding lemma that the restriction of
any irreducible quasi-simple representations m of G(R) to H(R) is, infinitesimally, the direct
sum @ m; of finitely many irreducible quasi-simple representations of H(R), for the map
HS, (R) — GY..(R) is surjective. If 7 is square-integrable modulo the center so is each ;. We

consider the restriction of 7(y, d). 7(x, d) restricted to Go(R) is the sum

D mw xw o)
21\ Q2(G)
and 7o (w ™1y, w™1§) restricted to Hy(R) is irreducible. It is clearly equal to mo(w ™t x’,w™14")
if / is the quasi-character s — x(7(s)) on the inverse image of S(R) in H(R) and if ¢’ is the
pullback of 4. It is also easy to see that X, = {x' | x € X} Thus 7(x, §) restricted to H(R) is

@ ﬂ(w_lxl,w_ldl)
Q2 (H)\Q22(G)
with ' € X, and condition (7v) is satisfied.
Condition (i7) is clear when the center of G is connected. In the general case it follows
from (iv) and the definition of x,. Condition (7i¢) is clear when G e, is simply connected. In

the general case it follows from (iv) and the definition of 7.

If the quasi-simple irreducible representation 7 is square-integrable modulo the center

and if C is the quasi-character of G;,q(R) defined by
m(z) =((2)] z € Graa(R),

then 7 is tempered if and only if ¢ is a character. This is so if and only if (u, H) is purely
imaginary whenever H € L" x C satisfies cH = H and (a, H) = 0 for all a. On the
other hand, if p(w) = a(w) X w then {a(w) | w € WR} is relatively compact if and only if
{a(z) | z € C*} is. This is so if and only if

z = e:l? — AA(G(Z)) — Z<M’AA>E(EH’>\A> — e</L,Z)\A+EE)\A>
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is a character of C* for each \", that is, if and only if (u, H) is purely imaginary when
H € L™ ® C satisfies 7H = H. Any such H is a sum of terms of the form z\" +Z &\ where

A" is either a root o’ or satisfies (a, A") = 0 for all a. If \* = o” then
e\ + TN = (x — 7).

Since (p,a”) is real, (i, xA\" + TTA") is purely imaginary. If (a, \") = 0 for all « then
o\ = o\, Condition (vi) is now clear.

Before completing the definition of the sets 7, we remind ourselves of some properties
of induced representations. Suppose P is a parabolic subgroup of G over R, N its unipotent
radical, and M = P/M. Suppose p is an irreducible quasi-simple representation of M (R) on
a Banach space V. Lifting, we may also treat p as a representation of P(R). If p € P(R) let
dp(p) be the square root of the absolute value of the determinant of the restriction of Adp to
the Lie algebra of N. Let I(V') be the space of continuous functions on G(R) with valuesin V
that satisfy

¢(pg) = op(p)p(p)e(9), p€ P(R).

I(V') is a Banach space; let I, be the representation of G(R) on it by right translations.

There is a quasi-character (, of Z(R) such that I,,(2) is the scalar (,(2) when z € Z¢(R)
and a unique positive real-valued quasi-character £, of G(R) such that [(,(z)| = ,(z) if
z € Zg(R). There is also a quasi-character (;, of Zj/(R) such that p(z) is the scalar (;(2) if
z € Zpu(R) and a positive quasi-character £, of M (R) such that [(;,(2)| = &/,(2) if 2 € Zg(R).
Cp is the restriction of ¢, to Zg(R). If 7 is an irreducible quasi-simple representation of G(R)

we may also define £/ and (/..

Suppose p* is a quasi-simple irreducible representation of M (R) on V* and there is an
M (R)-invariant bilinear form

(v,v") = (v,v*) € C
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onV x V*. We may introduce I(V*), I,., and the bilinear form

(o2 9) = /K (o (k). b (k) dk

on [(V) x I(V*). It is known to be G(R)-invariant. Any K-finite continuous linear form on
I(V) is of the form ¢ — (p, 1) for a suitable ¥ in I(V*). We want to investigate the function
(I,(g)p, 1) for K-finite ¢ and .

Let X be the lattice of rational characters of P’ and Y the lattice of rational characters of
M, aq. Thereisaninjection X — Y thatleads toisomorphisms X @ R—Y @R, X  C—Y ®C.

We identify these two spaces. If D(P) is the set of invariant elements of X ® R, then every
A=> z;\in D(P), \; € X, x; € R defines a positive quasi-character 7 of M (R) by

m(g) =M@, g€ M®R).
i
7 is a representation on C. If P is minimal over R, we take 7} to be 7'(';1 and ¢ and v to be

identically 1 on K and set
oa(9) = (Iny (9), ¥)-

As usual = is the function ¢y.

Recall that if 7 is a quasi-simple, irreducible representation of G(R) on W that is square-
integrable modulo the center, and u and v are K -finite vectors in W and its dual, then (7 (g)u, v)

is bound by a constant times (.. (¢)=a(9g).

We now prove an easy sequence of lemmas. G is a reductive linear group over R. There
is a hermitian form on the underlying real vector space that is invariant under K and with
respect to which G(R) is selfadjoint. Every g € G(R) is a product g = kh where k € K and
h is selfadjoint and positive with respect to the given form. Let [(g) be the norm of logh. We
choose an abelian subgroup A of G(R) every element of which is selfadjoint and positive and
which is maximal with respect to this property. A is then connected and G(R) = KAK. If P

is a given parabolic subgroup over R we may, and do, take A in P(R).
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If we choose ¢ : G—G’ where G’ is a quasi-splitand 1)~ (1)) is inner, if B’ and 7" have
the usual significance, and if P’ = 1(P) contains B’ and ¢(A) C T” as we may suppose, then
X ® R may be regarded as a subspace of L ® R. Let D" (P) be the set of A € D(P) such that
(A, ™) > 0if aisaroot of T"in N’ = ¢)(N). Let D" (P) be its closure. If P is minimal let
AT (P) be the set of ain A such that a(a) > 1if ais a root of 77 in N'.

LEMMA 3.6. Let P be minimal over R. There is an integer d and a constant ¢ such that
¢a(a) < ema(a)dp (a) (1 +U(a))?
ifae A*(P), \e D (P).

The group G(R) = P(R)K. Write g = p(g)k(g). p(g) is not uniquely determined but
mA(p(g)) and dp(p(g)) are and

Px(a) Z/K(Sp(p(ka))ﬂA(p(k:a))dk.

By Lemma 3.3.2.3 of [16]

ma(p(ka) < my(a).

Thus
oa(a) < mx(a)po(a) < c7r>\(a)(51§1(a)(1 + Z(a))d.

The last inequality is a consequence of Theorem 8.3.7.4 of [16].

LEMMA 3.7. For each \ € 5+(P) there is a positive constant c¢(\) such that

oa(a) = c(N)mr(a)dp' (a)
for alla € AT(P).

To prove this we remind ourselves of an integration formula (cf. [4]). Let P be for

the moment any parabolic subgroup over R. Let N be the unipotent radical of a parabolic
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subgroup over R opposed to P. G(R) is again P(R)K and we write g = p(g)k(g). If f is
any continuous function on K N p(R)\ K then, with a suitable choice of the Haar measure on

N(R),
(3.1) / F(R)dk = / 52, (p(m)) f (k () )dm
K N(R)
Take P to be minimal over R, take

f(k) = dp(p(ka))mr(p(ka)),
and write p(7) = p1, k(1) = k1. Then

1

kia = p] taa"'7a
and
op(p(k1a))mx(p(kia))
equals
{6p" (p1)m3  (p1)) HOp(a)mr(a)) H{op (p(a™ Ta))ma(p(a™ Ta)) }.
Consequently

{65 (p)7y " (p1)H8p(p(a™Ta))ma(p(a™ ' T2a)) }dr.

N(R)

or(a) = Sr(a)mala) |
Substitute ana~! for 7 to obtain

5?(@)@(@)/ {05 (p(ama™"))m* (p(amia™)) H{p (p(7))ma(p(7))mr (p(W)) }d.

N(R)

All we have to do is show that for a given A € E+(P) the integral is bounded below by a

positive constant as a varies over At (P). If U is a relatively compact subset of N (R) so is

U aUa™t.

a€AT(P)
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Since the integrand is continuous and positive, the required estimate is certainly valid.

We shall eventually have to make use of a well-known result of Bhanu-Murty-Gindikin-
Karpelevich. If P is a parabolic subgroup of G over R that contains the minimal P we may
set P| = v(Py), Nj = 1)(N1). Suppose P; is opposed to P and N is its unipotent radical. If

(A, a”) > 0 whenever « is a root of 7" in N7 then

(3.2) / 5 (p(R))ma (p(7) ) < 0.

N1(R)

If P and Py are two parabolic subgroups of G over R and P C P, then D(P) C D(F).
Also if £ is any positive quasi-character of G(R) there is a A in D(G) such that £ = ).

LEMMA 3.8. Suppose P is a parabolic subgroup of G over R. Suppose p and p* are two
irreducible quasi-simple representations of M(R) on V and V* respectively. Suppose that
there is a nontrivial M (R)-invariant pairing V- x V* — C. Let K' be the projection of
K N P(R) on M(R) and suppose that for any two K'-finite vectors v and v* there is a

constant ¢ such that
[(p(m)v,v*)| < c&,(m)=p(m), me M(R).

Suppose &, = m\ with A € D" (P). If P contains the minimal Py then \ € D" (Py) and for
any two K-finite @ and v in [(V) and I(V*) there is a constant ¢ such that

(L, (g)p, )| < cor(g), g€ GR).

As usual we suppose that )(P) = P’ and ¢ (P)) contain B’. If o is a root of 7" in N,
that is also a root in n’ then (\, @) > 0. If v is a root in N/, but not in N’ then (), o) = 0.
Consequently A € E+(P0).

If k € K, g € G(R) write kg = pky, p € P(R), k1 € K, and let m be the projection of p
on M (R). Then

19 ) = [ (olha). 6Nk = [ (Gp)ol)e(ha). 6(h)k

K
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There are functions ; in I(V'), functions ¢; in I(V*), and continuous functions a;, b; on K

such that
p(hk) = > ai(k)pi(h), (hk) =D b;(k)v;(h)
for h € G(R) and such that ¢;(1), 1;(1) are K’-finite. Then

(6p(p)p(p)e(k1), Y(k1),¢(k)) = dp(p) Z ak(k1)bj (k) {(p(m)ei(1),1;(1)).
There is therefore a constant ¢ such that

(0P (p)p(P)p (K1), Y (K))| < cdp(p)ma(m)Ens (m).

We may lift M to a Levi factor of P, chosen so that M (R) is selfadjoint with respect to
the given hermitian form. Then K N M (R) is a maximal compact subgroup of M (R) and
KN M(R)= KnP(R). The function v, (g) is given by

[ sntmtkaymmranar~ [ { [ o S, (o k) o)

K

Set p(kg) = p = nm, n € N(R); then
ukg = unu™tumk;

and unu~! € N(R) C No(R). P} = Py N M is minimal parabolic subgroup of M over R.
Write um = poko, po € Pj(R), Py € K N M(R). Then

dp, (po(ukg)) = dp(m)dp; (po)-

Because A € D(P)
Ta(po(ukg)) = mx(m).

Thus

o) = [ artmmm{ [ drg i

/ dp(m)ma(m)Ep (m)dk.
K

Since 6p(p) = dp(m), the lemma follows.

The right side is
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COROLLARY 3.9. Assume in addition that A € D(G) C D(P). Then
[(Tp(9)e, )] < ema(9)Zc(9)-
One has only to observe that when A € D(G)
oa(9) = mA(9)Ec(9)-

We shall have to make use of some results from [6] that are considerably more serious
than those of the preceeding lemmas. We recapitulate them in the form we require. Two
conjugacy classes p and p’ of parabolic subgroups of G over R are said to be associate if we
can find P € p, P’ € p’ such that P and P’ have a common Levi factor. Given P and the Levi
factor M, for which M (R) is selfadjoint, we may, with no loss of generality, assume that it is

the common factor, for we may replace P’ by a conjugate.

If p is a quasi-simple irreducible representation of M (R) we may define I, with respect
to P or to P’. To distinguish the two possibilities we write I 5 A f " To apply the results of [6]
we take p to be square-integrable modulo the center. It then satisfies the conditions of Lemma
3.8. In fact, we may suppose, since it is only the infinitesimal equivalence class of p and I,
that interests us, that V is a Hilbert space and that 7, ' ® p is unitary. Then we take V* to be

the dual space to V and p* to be the representation contragredient to p. If (u,v) is the inner

product on V' then

(1)) = /K (p(k), (k) dk

is an inner product on I (V). If we assume in addition, as we must, that p satisfies the condition

of the corollary, then 75 ' (9)I,(g) is unitary with respect to this inner product.

For a general quasi-simple irreducible p, the elements of £ operate on the infinitely differ-
entiable vectors in I (V) as scalars. Moreover the restriction of 1 /1: to K contains any irreducible
representation of K with finite multiplicity. Exploiting, for example, the fact that the characters

of irreducible quasi-simple representations of G°(R) are functions, one sees that / f admits a
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finite composition series. Our present stronger assumptions on p, which imply the existence
of an inner product on (V') with respect to which the operators I,(g) differ by a scalar from
a unitary matrix, allow us to conclude that I, is infinitesimally equivalent to the direct sum of
finitely many irreducible quasi-simple representations. From Lemma 8 and Theorem 3 of [6],
we conclude that if 1 f and [ 5 " have an irreducible constituent in common then the classes of

P and P’ are associate.

If P and P’ have the common Levi factor M, then, by computing the character, one sees
that 1 5 and / 5 are infinitesimally equivalent ([6], § 11). By Lemma 12 of [6], the representa-
tions I /f and 5 are infinitesimally equivalent if and only if there is an A in the normalizer of M
in G(R) such that p’ and m — p(hmh~!) are infinitesimally equivalent. What does not appear
so clearly in [6] is that if | f and | 5 have an irreducible constituent in common, then there
is an h in the normalizer of M in G(R) such that p’ and m — p(hmh~1) are infinitesimally

equivalent.

This is an important point. We shall return to it after some considerations that are,
unfortunately, only implicit in [6]. We take up once again the assumptions of Lemma 3.8.
Suppose ¢ € V*is KN M(R) finite. If ¢ € I(V) is K-finite then p(k) € V is K N M (R) finite
forall k € K and {¢(k)|k € K} spans a finite-dimensional subspace of V. There is therefore

a constant ¢ such that
[(p(m)ep(k), )\ < ema(m)Enr (m)

forallm € M(R) and all k € K. Suppose p € I(V), 9 € V*, and

p Lem)e(k), )|

(3:3) D e () Za (m)

= [lelly < oo
If U is a compact subset of G(R) and p(kg) = n(kg)m(kg) then
{m(kg)|lk € K,g € U}
is relatively compact. Set m; = m(kg), k1 = k(kg), and let my € M (R); then

[(p(m)(kg), p(m2)i)| = 8p(ma)[{p(my mma ) (ki), v))|
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which is bounded by

1

ey (my 'mmy)Za (my fmmy) < ma(m)Za(m).

For the last inequality see Proposition 8.3.7.2 of [16].

It follows easily from these considerations that if f € C2°(G(R)), if ||¢'||4 < oo, and

¢=5qwuié®f@@@ww

then

(3.4) lim |[1,(g9)e — I,(h)¢lly = 0.
g—h

Notice in particular that if ¢ is K -finite there is an f such that

= I,(f)e.

Ifp € V* et I(V, 1)) be the setof all p € (V) satisfying (3.3) and (3.4). If v is a compactly

supported measure on M (R) and

P = p(m)ipdv

M(R)

then I(V,¢') 2 I(V,%). In particular I(V, 1)) is the same for all nonzero K N M (R) finite
vectors ¢. If I(V,1) contains the K-finite vectors then the restriction of I, to I(V,) is

infinitesimally equivalent to .

LEMMA 3.10. Suppose p satisfies the conditions of Lemma 3.8 with A\ € D(P)*. Suppose
M is a Levi factor of P with M(R) selfadjoint and PN P = M. If N is the unipotent

radical of P, v € V*, and ¢ € I(V, 1)) then

/'<ﬂmxwm

N(R)
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1 absolutely convergent.

We may take g = 1. Write m = nmk, n € N(R), m € M(R), k € K. Then

[{p(m), )| = dp(m)[(p(m)p(k), ) < cdp(m)ma(m)ZEar(m).

We have seen that if Py C P is minimal then
/ dpo(po(m))ma(po(m))dn
N(R)

is infinite; it equals

/ / op, (po(uﬁu_l)ﬂx(po(uﬁu‘l))dﬁ.
NR) JKAM(R)

Since po(unu~t) = po(un) we may proceed as in the proof of Lemma 3.8 to see that this double

integral equals
/ dp(m)mx(m)Zy (m)dn.
N(R)
The lemma follows.

We set
/ (p(ng), ydn = M(p,9;g).

N(R)
It is clear that

M(p,v;gh) = M(1,(h)p,v;g)

and that
M(p, p(m)y, g) = 657 (m)M (@, 4;m™"g).

Let Vi be the space of vectors ¢ in V* for which I(V, ¢) contains the K -finite vectors. V{

is invariant under M (R). If ¢ is K-finite

¥ = M(p,9,1)
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isa K N M (R)-finite linear form on V. There is therefore a K N M (R)-finite vector M (y) in
V such that

M(p,p,1) = (M(p), )
for ¢ € Vi
The map p x = — pn of P(R) x N(R) into G(R) is a diffeomorphism of P(R) x N(R)
with an open subset of G (R). If fisan infinitely differentiable complex-valued function on

N(R) with compact support X and v € V is K-finite, define ¢ € I(V) by

p(pn) = f(@)ép(p)p(p)v.

The set
Y={meMR)NRMKNX # o}

is compact. If m € M (R) and mk = nymin,n; € N(R),m; € M(R),7n € X thenm = mymy
with my € Y. Thus if ¢ is K N M (R)-finite

[{p(m)(k), ¥)| < ema(ma)Zar(ma) < 'mx(m)ZEnr(m).

Given 1 we can clearly choose v and f such that M (p,1,1) # 0. If din C>(g(R)) is a
sufficiently close approximation to the delta-function and ¢’ = I,,(d)¢ then M (¢', 9, 1) is also

not zero. Since ¢’ € I(V, 1) we have the following lemma.

LEMMA 3.11. If ¢ € V* is K N M(R)-finite there is a ¢ € I(V,) such that
M(p,,1) # 0.

If M(R) is selfadjoint and A C P(R) then A C M(R). Let A(P) be the centralizer of
M(R) in A and let AT (P) consist of those a in A(P) for which a(a) > 1if ais a root of 7’ in

N’. We say that a — oo in AT (P) if a(a) — oo for all such a.
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LEMMA 3.12. Suppose that ¢ € I(V) and ¢ € I(V*) are K-finite. If m € M(R) is fized,
then

(Io(am)p, ) = 65" (a){¢y(a)M (p,9(1),m) + o(mx(a))}

as a — oo in AT (P).

Since |(,,(a)| = mx(a) the error term is smaller than the principal term if M (¢, (1), m) #

Replacing ¢ by I,(m), we suppose m = 1. ¢ may no longer be K-finite.

(I (a)p, ) = / (o (ka), (k) dk.

K

The integrand is clearly a function on K N P(R)\ K. Choose P and N as in the previous lemma
and write @ = nmk, n € N(R), m € M(R), k € K. Applying (3.1) we see that the integral is

equal to

/ 52 (m) (i (ka), (k). d.

N(R)

1 1 1 1

Let a~'na = nymik;. Since ka = m~'n"'na = m™'n"taa"'7a the intergrand is

dp(m)dp(a)dp(ma){p(m™ ami)p(ks), v (k).

1

If we substitute anna ! for @ so that @ = nymiky, ana™' = nmk the integral becomes

3 @Ga) [ Bnlm)an(m)pm™ ) (), w(k))dn.

N(R)

All we have to do is show that

lim [ dp(m)dp(ma)(p(m™ ma)e(ky), (k))dm = M(p, (1), 1).
a—00 N(R)

In a moment we shall show that we may take the limit under the integralsign. Sinceana™! — 1,

we may suppose thatn — 1, m — 1, k — 1. The integrand approaches

op(ma)(p(ma)e(ks), v(1)) = (p(n),¥(1))
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and the lemma follows.

The integral is dominated by a constant times

Sp(m)op(my)ma(m™tm) 2 (m™ my).

Choose Py C P such that Py(R) O A and such that Py is minimal over R. As usual let
Pj = PyN M. Since

Ep(m~tmy) = / 5pé(p6(um_1m1))du,
KnM(R)

it is enough to show that the integral of

1

dp(m)dp(my)my (m*1m1)5P0, (po(um™"my))

is uniformly small on the complement of a large compact set in N(R) x (K N M(R)).

Choose a Py C P that is opposed to F so that

Write an element of No(R) as Ty = ngmoko, no € No(R), mg € My(R), ko € K. If fisa
function on K N My(R)\ K then

/Kf(k)dk = /NO(R) 61230(m0)f(k0)dﬁ0.

If Ny = No N M then No(R) = Ny(R)N(R). Let iy = m)7iy; let ) = nomav, ny € Ni(R),
mo € M()(R), ke KN N(R), let vﬁlv_l = ngmsks, ng € N()(R), ms € Mo(R), ks € K. We
may suppose

mo = MgMg, k}o = K3'LL.

Then the integral is equal to

/, / 8, (mamg) f (ksv)dmidmg.
No(R) /N(R)
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Replacing 71 by anja™! so that ngmsks = vania~ v~ we obtain
p g y

61;2(61,) // / 51230(m2m3)f(k311)dﬁ1dﬁ6.
No(R) /N(R)

On the other hand, if n = nmk

/K f(k)dk = /N . (5123(m){ /K - f(uk:)du}dﬁ.

1 we obtain

) [ s [ mM(R)ﬂuk)du}(m

where nmk is now amna 1.

Replacing i by ana™

Thus

/ 5%(m){/ f(uk)du}dﬁ:/ / 62 (moms) f (ksv)dm, dmy.
N®) KAM(R) (R JNR)

If X is a compact set in NE] (R) x N(R) = No(R) with complement CX, then
Y={neNR)necPR)X}
is also compact. If f is positive

5§D(m){ / f(uk)du}dﬁ < [ 52 (mama)f(ksv)dmydr).
ey KnM(R) CxX

Take f to be the function

0p' () (a)ma(po(ka))dpo(po(ka)).

1 1 1

If ana™" = nmk, then uka = um™"n~"an and

52(m) f (uk) = 5p(m)Sp(my ) (m ™~ m1)Sp, (ph(um ™ amy))
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if m = nymiky. Observe that

5P(CL) = 5p0((1)

and that, more generally,

dpo(m) = dp(m)dp;(po(m))
for all m in M (R).
To finish the proof of the lemma, we show that
b (mams) f (ksv)

is dominated on No(R) by an integrable function that is independent of a. Let vijv~! =

ngmgyky, ng € No(R), my € My(R), ky € K. Since kzva = mglnalaﬁo and mg = mams,
0, (mams) f (ksv) = 0, (m2)dp, (mama)ma(ms ' ma)
mg does not depend on 77;. Consider the function
dp, (m3m4)7u(m§1m4)

on N(R). Replacing 7; by v~!

Thereisa d in DT (Fy) such that

n1v we may, for the present purposes, suppose that v = 1.

dp,(m) =ms(m), m e My(R).

Thereisa 8,1 > 8 > 0, such that § — S\ also lies in D" (Fy). Let « = 1 — 3. By Lemma 13 of
[4],

T5—pBx (m3) S 17 7Ta)\<m§1m4) S 1.

By the formula of Bhanu-Murty-Gindikin-Karpelevich [3], the function

Ts+px (M)
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is integrable on N(R). It does not depend on a. Since the transformation 7; — v~ !mv is

unimodular, it remains only to observe that, by the same formula,
// 51236(m2)dﬁ6 < 00.
No(R)

We still suppose that A € D(P™). The space I(V, 1) is the same for all nonzero K N M (R)-

finite ¢). Denote it by Ip(V') and provide it with the norm
@l + sup [lp (k)]
keK
This norm depends in no essential way on v. The subspace
L(V) ={p € Io(V)IM(p,9,9) = 0 for all g € GR)}

is also independent of 1. It is closed and G(R)-invariant. The quotient J(V') = Io(V) /1 (V)
is not zero. Let J, be the representation of G(R) on it. When we want to indicate the presence

of P we write J 5 instead of J,,.
LEMMA 3.13. The representation J, is irreducible.

Suppose I2(V) is a closed invariant subspace of Ip(V) and I1(V) ¢ I2(V) ¢ Io(V). If
v* € V*is K N M (R)-finite then the function
p = M(p,07,1)
on Iy(V) is continuous. If it vanishes on all K -finite functions in I5(V') it vanishes identically
on I5(V). Then
0= M(I,(g)p, 0", 1) = M(p,v", 9)
for all ¢ € I5(V). This is impossible unless VV* = 0. On the other hand, there is a K-finite

function 1) in I(V*) that is not zero but is orthogonal to I>(V'). Then (I,(g)p, I;(k)y) = 0 for
allg € G(R)and all k € K. If ¢ in I5(V) is K-finite we may apply Lemma 3.12 to see that

M(p,9(k),1) =0

for all k. This in turn implies that ¢)(k) = O for all k£, which is a contradiction. The lemma

follows.
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LEMMA 3.14 (a) Suppose p and p' satisfy the conditions of Lemma 3.8 with respect to P and
P’ respectively. Suppose X € DT (P) and N € DY(P'). If JPP and Jplfl are infinitesimally
equivalent there is an h € G(R) such that P' = hph™', M' = hMh~!, and such that
m — p'(hmh™1) is infinitesimally equivalent to p.

(b) Suppose p satisfies the conditions of Lemma 3.8 with respect to P and A € DT (P).
Suppose p’ satisfies the conditions of Corollary 3.9 with respect to P'. If P # G, then Jf

18 infinitesimally equivalent to no constituent of Ji/.

We may certainly suppose that P and P’ both contain Py minimal over R, that A C Py(R),
and that M (R) and M’(R) are selfadjoint.

If 7 and 7’ are two irreducible quasi-simple representations of G(R) on W and W/,
respectively, then m and 7’ are infinitesimally equivalent if and only if for any K-finite vector
w € W and any K-finite linear form f on W there are a K -finite w’ € W' and a K -finite linear

form f’ on W’ such that

forall g € G(R). If S(r) is the set of all v € D(F) such that for any K-finite f and w there is

a constant ¢ such that

on AT (Py) then

S(m)isaconvex set. We introduce the Killing form B(u, v) on L&R. Itis positive semidefinite.

If S(7) is not empty there is a unique point v(7) in its closure such that
b(v(m),v(m)) = inf{B(v,v)|v € S(7)}.
If wis J!" there is a K-finite ¢ in Io(V') and a K-finite ¢ in I(V*) such that

f(m(g)w) = (1,(9)e,¥)
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for all g. By Lemmas 3.6 and 3.8, the closure of S(7) contains A.

We may choose a K-finite ¢ in I(V*) such that 1) is orthogonal to I (V') and such that
(1) # 0. We may also choose a K-finite ¢ in Io(V') such that M (p,,1) # 0. Applying
Lemma 3.12 to this pair we see that if v = \ + p belongs to S(r) then p(a) > 1ifa € AT (P).
Since A € DT (P), B(\, i) is then nonnegative and

B(v,v) = B(A\,A\) +2B(A\, 1) + B(p, 1) = B(A, ).

Thus v(7) = A

If o satisfies the conditions of Lemma 3.9 and 7’ is a constituent of [ 5 " then we can find

¢’ and 9’ such that

F'(7(gw') = (L (9)¢", ¢')-
It follows readily from Lemma 3.6 and Corollary 3.9 that \" lies in the closure of S(7’). Since
N € D(G)=D"(G), BIN,N)=0and v(7') = X.

If P and P’ contain Py, D (P) and Dt (P’) are disjoint unless P = P’. This gives the
second part of the lemma and half of the first. We now suppose that P = P, M = M’ and
show that if J f and J 5 " are infinitesimally equivalent then so are p and .

Let ¢ in I(V*), with ¢(1) # 0, be K-finite and orthogonal to I1 (V). Let ¢ lie in Ip(V)
but not in I; (V') and be K-finite. Then there exist ¢’ and ¢/’ that satisfy analogous conditions

with respect to p’ such that
{o(9)e, ) = (I (9)¢", ¥').

Applying Lemma 3.12 we see that

= M(p, p*(m~")y(1)1) = M(p,(1)m)

is equal to

(p'(m)M(¢"), 4" (1)).
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Since M () # 0, it follows that p and p’ are infinitesimally equivalent.

There is a point mentioned earlier that remains to be settled. We have to show that if p and
p' satisfy the conditions of Lemma 3.9 with respect to P and [ f and / 5 contain infinitesimally
equivalent irreducible constituents then there is an / in the normalizer of M in G(R) such that

p/ and m — p(hmh~1) are infinitesimally equivalent.

We have defined the quasi-character 7, on M (R) for v € D(P). The same formula

Tq

m,(g) = H [Ai(g)

if z =) x;\; serves to define it for v € D(P) ® C. Set p, = m, ® p. All the representations

p, act on the same space. Take v in iD(P) and consider the functions

fY(9) = (Ip,(9)p, )

where p € I(V) and ¢ € I(V*) are K-finite. Let h run over a set of representatives for the
normalizer of M in G(R) modulo M (R). If v does not lie in a certain finite set of hyperplanes
the quasi-characters ¢/ : a — p,(hah™!) of A(P) are distinct and if fp is defined as in [6]

then, by Theorem 5 of that paper
fp(m) = 0 (m)
h
where
Oy (am) = ¢ (a)0y(m), a € A(P).
By Lemma 3.12 and by Lemma 9 of [6], 67 (m) has the form
07 (m) = (p, (m)M, (), ¢ (1))

where M, () lies in V. M, (¢) is a meromorphic function of v in a neighborhood of iD(P)
and its singularity can be killed by a product of linear factors. Let p” be the representation

m — p,(jmh~1). Since I,,, and I,n. 1t follows that 0} is of the form

(i (m) M) (), N ()
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where M"(¢), N (1)) are K N M (R)-finite vectors in V and V*. They too are meromorphic

in a neighborhood iD(P) and their singularities can be killed by a product of linear factors.

Let A1,..., A\, be a basis for D(P). If a = (a1,...,a,) is an r-tuple of non-negative

integers set
,

lo(m) = [ [{logmx, (m)}*.

i=1
Let {h} be a set of representatives for the normalizer of M in G(R) modulo the group of those
g in the normalizer for which p? : m — p(gmg~1) is equivalent to p. If the reader is willing to

admit* that, for a fixed m, f}(m) depends continuously on v € iD(P), he can conclude that
F2(m) =YY la(m)(p" (m)eh, vh)
h a

where the sum on « is finite and " and 1" are K N M (R)-finite vectors in V and V'*.

If M is also a Levi factor of P’ then a similar result holds for f2,(m). Since not all of the
functions fp,(m) can vanish identically, we conclude that from a nonzero matrix coefficient of
any irreducible constituent of / f we can retrieve at least one nonzero matrix coefficient of one

of the representations p. This yields the required assertion.

We are now in a position to complete our definition of sets IL,. Let P be minimal among
the parabolic subgroups of G" containing ¢(Wg). The group G may be represented as a
semidirect product G° x Wg. Since C* C WR acts trivially we may divide out by it to obtain
the algebraic group G° x g(C/R). The image of P” is also algebraic and we may use the
theorem that any two maximal fully reducible subgroups in an algebraic group are conjugate
to conclude that (W) is contained in a Levi factor M” of P". By assumption the class of P
lies in p"(G). Let P be a parabolic subgroup of G over R whose class corresponds to that of
P”. Since p(WR) is contained in no proper parabolic subgroup of M” the earlier definition,

together with Lemma 2.4, associates to ¢ a finite set I, (P, P") in II(M).

* The author leaves him to struggle with his conscience.
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Suppose ¢(WR) is contained minimally in both P” and P”. Then
(P*NPMN? D (PPN PN

and the right side is a parabolic subgroup of G° ([1], Proposition 4.4). The right side is the
connected component of the left. Since the left contains ¢ (1R ) which projects onto W, it is
a parabolic subgroup of G”. Since it is contained in P” and contains ¢(WR) it is equal to P".
By the same proposition P’ contains a maximal reductive subgroup of P°. Reversing the roles
of the two groups we see that P° contains a maximal reductive subgroup of P°. Since any
two maximal reductive subgroups of P° or of P’ have the same dimension, P° and P’ havea
common maximal reductive subgroup. As before, we can divide G” by C* C G" = G° x Wg
to obtain an algebraic group. C* is contained in P N P" and the quotient of P"* N P" by C*
is an algebraic group. Take a maximal reductive subgroup in it which contains the image of
©(WR). Let its inverse image in P N P" be M. M” contains ¢(Wg) and therefore projects
onto WR. Since [12] any two maximal reductive subgroups of the quotient of P"* N P" by C*
are conjugate, M” contains a Levi factor of P° and of P°. Thus M" itself is a Levi factor of
P” and of P".

Since the set IL, (P, P") does not depend on M”, we may, for our purposes, fix M" and
let P", which does affect IL,(P, P"), vary over the parabolic subgroups of G" with M" as
Levi factor. Since the pair (M, P) together with the set II,,(P, P") is determined only up to
conjugacy we may assume that M too is fixed. It will be supposed that M (R) is selfadjoint,

although this is not important.

If D(M) is the space introduced in the proof of Lemma 2.5 and M is a Levi factor of P
then D(M) = D(P). Let A\ = A\, (P, P") in D(M) be defined by the condition that

if p € II,(P,P") and z € Zp(R). We observe next that P and P" may always be so

chosen that A, (P, P") € D" (P). In fact, if we vary P and P” simultaneously as in Lemma
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2.5 we may let P vary over all parabolic subgroups of G with M as Levi factor without
affecting I1,,(P, P") or A\, (P, P"). For at least one such P, A, (P, P") € D' (P), the closure
of the chamber corresponding to P. From now on we only consider pairs P, P" for which
Ao (P, P") € D" (P). There is, moreover, a unique parabolic subgroup P; of G over R such
that P, O M and A\, (P, P") € D*(Py). P, contains P and there is a unique P;” containing

P” such that P; and P, lie in corresponding classes.

We can characterize P;” in terms of M” and ¢(Wg) alone, without reference to P and
P”. For this we shall have to take cognizance of the way M" is identified with the associate
group of M. We recall that we choose an isomorphism ) of G with a quasi-split group G,
containing B’ and 1", so that ¢~ (1)) is inner and so that v)(P) 2 B’ and M’ = (M) 2 T".
We then use G’, B/, and T” to construct G°, B®, T® and G = G° x Wg. Conjugating M”"
and P, and therefore also ¢, but that does not matter, we arrange that P" D B° and that
M” D T°. The construction of G” is such that this M” can be trivially identified with the

associate group of M. We may also suppose that o(C*) C T° x C*.

Now that everything is explicit, let us recall how the restriction of ¢/, p € IL,(P, P"), to
the connected component of M,,4(R) is determined by ¢. We write p(w) = a(w) x w with
respect to the splitting G° x Wg. As before let & be the action of o € g(C/R) on T?, L, and

L" determined by ¢. Choose p and v = g in L ® C' such that
M(a(z)) = 22N zA%

Any s in the connected component of M,,4(R) may be written as s = e, where H = G H lies

in L ® C and (o, H) = 0 if awis a root of 7" in M’. Then
C,/J(S) — o(nw/2,H+5H) _ (u.H)
Write © = p1 + po where Gy = p1, oue = —ps. Because ¢(WR) is contained in no proper

parabolic subgroup of M”, (u1,a”) = 0if a” is a root of T° in M?. Since ji — Tu = 2z lies
in L,

<:u27H> = <M27ﬁ> = <5M275ﬁ> = _<M27H>
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and (u2, H) is purely imaginary. A similar calculation shows that
Re(u, H) = (Rep, H).

Thus

e e | YOl

if Rep; = Y x; ;. It follows that if A = A, (P, P") then A\ = Repq. Thus P is determined by

the condition that a” is a root of 7° in P? if and only if (Reju1, ™) > 0.

PlA is therefore determined by ¢ alone. P; is then any parabolic subgroup of G over
R containing M whose class corresponds to that of P;"*. P and P” are then any pair with
P C P, P" C P, whose classes correspond. Choose a Levi factor M7 of P; over R that
contains M. P N M; = P’ is a parabolic subgroup of M;. If p € II,(P, P") we may consider
the irreducible constituents of I 5 ', a representation of M (R). Let IT), be the set formed by
the infinitesimal equivalence classes of these constituents as p varies over IL,(P, P"). We
have to observe that pr C II(M,) is independent of the choice of P and P”. Since pr is not
affected if we simultaneously conjugate P’ and IL, (P, P") with an element of M7 (R), we need
only check that IT, is independent of P”. But if we change P" then, by Lemma 2.5, we may
change P and hence P’ so that IL,, (P, P") is not affected. Since I” "and I pﬁ/ are infinitesimally
equivalent if P’ and P are two parabolic subgroups of M; with M as Levi factor, the set II;,

does depend only on ¢.

We have normalized ¢ so that PlA contains B°. Suppose ¢’ is normalized in the same way
and gives rise to the same P1A . We shall need to know that if I}, and pr, have an infinitesimal
equivalence class in common then ¢ and ¢’ determine the same element of ®(G). If II/, and
H:D, have an element in common then, as we can see from our review of the results of [6],
the images ¢(WR) and ¢’ (WR) may be supported to lie in the same M ", no proper parabolic
subgroup of which contains either of them. We may choose, tentatively, the same P and P” for

both of them. Then there are a p in I1,(P, P"*) and a p’ in IL» (P, P") and a g in the normalizer
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of M in M;(R) such that p is equivalent to m — p/(gmg~'). If ¢ is the restriction of adg to

M and wlA the associated automorphism of M” then, by condition (iv),

n (o (P, P") = {m = p(gmg™")|p € T, (P, P")}.

¥ ()

By Lemma 2.7, there is an h in the normalizer of M” in M{ such that on M" the operator
adh is equal to ¢, . We may replace ¢ by adh o . Then II,(P, P") and I (P, P") have an
element in common; so ¢ and ¢’ belong to the same class in ®(M;) and hence in ®(G).

We are now able to introduce II, in general. II, consists of the classes J f L, p € I,

By Lemma 3.14, together with the preceding discussion, these sets are disjoint. The other

conditions on the sets II, are built into their definition.

4. Exhaustion. It remains to prove the following proposition.
PROPOSITION 4.1. The sets I1,,p € ®(G), exhaust II(G).

We agree to call an infinitesimal equivalence class essentially tempered if it is a constituent
of some I, where p satisfies the conditions of Corollary 3.9 and is square-integrable modulo

the center. To prove the proposition, we have only to prove the following Lemma.

LEMMA 4.2. [f 7 is an irreducible quasi-simple representation of G(R), there is a parabolic
subgroup P of G over R and an essentially tempered representation p of M(R), M = P/N,
such that A € DY (P) and such that 7 is infinitesimally equivalent to J,.

A has the same meaning as in Lemma 3.8. Notice that, by Lemma 3.14, p and P are
uniquely determined by 7. The lemma reduces the problem of classifying the classes of
irreducible quasi-simple representations of G(R) to that of classifying the classes of essentially

tempered representations of the various M (R).

Let m be given. The first, the easy, step is to find P. Let m acton V. If g € G(R) and v*
lies in the dual space of V' define 7*(g)v* by

(v, 7 (g)v") = (m(g~")v,v%).
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If f € CX(G) define 7*(f)v* by

It is clear that

7 ()" < ||v*||/G(R) [F(9)lll(g)ll dg-

It is also clear that every K -finite vector v* is a finite linear combination
v = Y e
i
Let V* be the set of all v* for which

lim [|7*(g)v" — 7" (h)v*[| = 0
g—h

for all h. Since V* contains all vectors of the form 7*(f)v*, it contains all K -finite vectors. The
representation 7* on V* is continuous and the pairing (v, v*) — (v, v*) is G(R)-invariant.
Let X be a finite collection of classes of irreducible representations of K. Let V(X)
and V*(X) be the direct sum of the subspaces of V' and V* transforming according to the
representations in X. Consider the function ¥ from G(R) to the dual W (X) of V(X) ® V*(X)
defined by
U(g) :u®@v— (n(g)u,v).

Choose a parabolic subgroup Py of G minimal among those defined over R. We suppose

that A C Py(R). D(Fp) and the Lie algebra 2 of A are in duality over R in such a way that

ma(expH) = M)

It will be convenient to shuck some of our earlier notation, which is not always appropriate to

our present purposes. Write D(Fy) = Do + D, where Dy is orthogonal to 2 N gger and D is
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orthogonal to 2( N g,aq. D has as basis the roots a1, . . ., o, of A simple with respect to Py(R).

The Killing form B(u, v) is nondegenerate on D and zero on Dy. Define 1, ..., 3, in D by
B(Oéi, ﬂ]) = 61]

By Theorem 9.1.3.2 of [16] there is a countable subset L(m, X) in D(F,) ® C such that in

the interior of AT = AT (F,) an expansion
(4.1) U(a) =e O N py(H)eMH
AEL(m,X)

is valid. ¢ is one-half the sum of the roots of A positive with respect to ;) and taken with
multiplicity. @ = e and p), is a polynomial function of H with values in W (X) that does not

vanish identically.

If A and p belong to D(Py) ® C we write A > p if

ReX = Reu + Z Ti00

1=1

with z; > 0. Let E(7, X) be the set of A maximal in L(7, X) with respect to this order. As in

[16], E(m, X) is finite. There is a simple fact to be verified.
LEMMA 4.3. The set E(m,X) is the same for all X for which W (X) is not zero.

If X and 2) are two finite collections of classes of irreducible representations of K we may

also introduce a function ¥ with values in the dual W (X,9)) of V(%) @ V*(2)) by
U(g) :u®@v = (m(g)u,v).

Thus V¥ also admits an expansion of the form (4.1). We introduce E (7, X,9)) and show that it
is the same for all X and ) for which V(X) # 0 and V*(2)) # 0.
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It is clear that if X1 C X5 then every element of E(m, X1,9)) is dominated by an element
of E(m,X2,9). If V(X) is different from 0 then every K-finite vector in V' is a finite sum

with u; € V(X), X; € 2, the universal enveloping algebra of g. If

then
(m(g)m(X)u,v) = X f(g)-

Ifue V(X),veV*®) then (m(g)m(X)u,v) is a coordinate of the W (X, %)) valued function
XU¥(g). It follows from Theorem 9.1.2.9 of [16] that every exponent in the expansion of
(m(g)m(X)u,v) is dominated by an element of E(r, X,9)). This if V(X;) # 0and V(X2) # 0
then every element of F (7, X1,%)) is dominated by an element of E' (7, X2,9)) and conversely.

The two sets are therefore the same.

We define a double action w — 71 (k1 )wTe(k2) of K on W (X%,92)) by

(k) wra(ks) : u @ v — w(n(ky Hu @ 7 (ko)v).
We may interchange the roles of I and V* and of X and 2), replacing 7 by 7*. If w, the element
of the Weyl group of A that takes positive roots to negative roots, is represented by k € K,
then
(u, 7 (a)v) = (m(a™")u,v) = (r(w(a™ ")) (k)u, 7" (k)v).

Thus ¥(a) is replaced by
(K™ (w(a™))ma(k)

and

E(?T*,QJ,%) = {_W(A)‘)‘ € E<7T7%7QJ)}'
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It follows that E(7*, X,9)) is also independent of ).

We all also need some simple geometric lemmas. We recall that B(o;, ;) < 0if i # j
and that B(3;, 8;) > 0 for all i and j. If F'is a subset of {1,...,7} let D be the subspace of
D spanned by {3;|i € F}. Ifi € Flet 8] = f3;;if i € F let 3" be the orthogonal projection of

3; on the orthogonal complement of D . Define " by
B(af,ﬁf) = 0ij.
Ifi ¢ Fthen af = o;. If i € F then

OzZF =4 + Z CikOlk; -
kgF
If k is not in F' then

{ak|k & F'} is a basis for the orthogonal complement of D and B(ax, ;) < 0if k # [. Since
{BE |k ¢ F} is the dual basis, B(3%", 3} > 0. Therefore 3/ is a linear combination of the
a, with nonnegative coefficients. Since B(a;, ax) < 0, B(ay, 85) < 0for k ¢ F and ¢;;, > 0.

Thus if ¢ and j belong to F' and @ # j

B(af,af) = B(af',a;) = B(ay, o) + Z cikB(og, a;) < 0.
ke F

The inequality B(af , af ) < 0is also valid if one of i and j does not lie in F.
For each I’ let e be the characteristic function of

{\ € D(R)|B(a],A) >0, i€ F, B(8,A\) <0, i¢F}.

LEMMA 4.4. If A € D(P,) then

Y er(d) =1

F
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Suppose B(a;, A) > 0 for all i. Then B(af",\) > 0 for all i and all F. Since the basis
{8]} is dual to {a] } and B(a]',af) < 0 fori # j, B is a linear combination of the af
with nonnegative coefficients and B(8/,\) > 0 for all i and F. Thus ex(\) = 0 unless

F ={1,...,r} when ep(\) = 1. Thus all we have to do is show that e is a constant.
A hyperplane defined by an equation B(al',\) = 0 or B(8,\) = 0 for some i and F
will be called special. If A is any point in D(Fy) and if B(a;, ) > 0 for all i, then for any

sufficiently small positive real number a
er(A) =er(A —ap)

for all . Moreover A — ap lies in no special hyperplane. To show that € is a constant we have
to show that it is constant on the complement of the special hyperplanes. For this we have
only to verify that it is constant in a neighborhood of a point Ay lying in exactly one special

hyperplane.

For this we may disregard all those I’ which lie neither in
Sy = {F|B(af, ) =0 for some i € F}

nor in

sy = {F|B(BF, \o) = 0 for some i ¢ F}.

The sets S and S are disjoint. F' = {1,...,7} does not belong to S2. We can introduce
a bijection between S; and Sy. If F; € S; and ozZF with ¢ € Fj is orthogonal to Ao set
Fy = Fy — {i}. o and B/ both lie in the space spanned by {3;|j € Fi} and are both
orthogonal to {3;|j € F>}. Thus they are multiples of each other and F, € S. It is clear that

Fy, — Fj is a bijection. Since

L= B(a;", 8;) = Bla;". 5;*),
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ol is a positive multiple of 3;2. We have relations

F>
J

Bi*=B" +d;B8°, j¢ P

Fy

F .
« :ajl—i—cjozi, J € Fy,

Near \g

SlgnB(ﬁsza)‘) :SignB(ﬂflv)‘>7 j ¢F17

signB(al?,\) = signB(afl, A), JE€Fs.

Moreover, either B(al™, \) > 0 or B(57?, \) < 0 but not both. Thus €5, + £, is constant

near \g. The lemma follows.

If A € D(P) let F = F()) be the unique subset of {/, ..., r} such that
B(af',\) >0, icF,

b(BI,N) <0, igF.

Let A\Y be the projection of A on the sum of Dy and Dp. Then B(a;, A°) > 0 for all 7 and
B(a;,\°) > 0if i € F. This is clear because B(a;,\°) = 0if i ¢ F and B(a;,\°) =
B(af';\%) = B(al',\)ifi € F. Let \ = \Y + \. Then
)\1 = szaz

igF

Notice that
b; = B(8;,A") = B(8],A") = B(8', ) <.

LEMMA 4.5. Suppose A and p lie in D(Py) and

r
)\O—FZCZ‘OQ’:,LLO—FV—{- Z djOéj.
i=1 JEF (1)
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Suppose ¢; < 0, v € D, Blay,v) =0 ifi & F(u), and B(Bi,v) > 0 ifi € F(u). Then
N0 = 0.

Certainly \° — p° € D. If i € F(u) then
(42) B(ﬂl, )\0 - ,LLO) = —c; + B(ﬁz, V) Z 0.

Ifi ¢ F(u) then

Ifi ¢ F(p)

with e; > 0; so

B(BF A" =% >0
Moreover
BE=pi— > a;B
JEF (1)
and

aj = B(8i, B;)|B(Bj,B;) = 0.

For (4.2) we conclude that
B(Bi, A’ = p®) = B(5],\° — ) > 0.

The lemma follows.
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COROLLARY 4.6. iF' \ = i then \° = p.

If A > p then
A+ Zciozi =u
i=1

with ¢; < 0. Since

A= )\0 -+ Z biOéfL'
i@F(\)

with b; < 0 and

on = ,MO + Z djOéj
JEF (1)

the corollary follows.
Since the set E(m, X) is the same for all X with W (X) # 0 we may denote it by E(7).

Consider

L7, %) = {\°|A = ReX, X € L(m, %)}

and

E%m) = {\°|]A=ReXN, X € E(m)}.

Suppose 0 liesin LO(, X). Thereisa X' € E(r)suchthat \' > 1/; then A = Re\ = = Rey/
and \° = ;0. Thus LY(rr, X) has a maximal element A and \° € E°(r). We fix such a A\° once
and for all. Since A’ lies in the closure of D" (F) there is a unique P containing P such that

AY € DT (P). This will turn out to be the P which appears in Lemma 4.2.

To obtain the representation p we have to apply some results that appear in an unpublished
manuscript of Harish-Chandra [5] but, to the best of my knowledge, nowhere else.

D(Py) is the sum of D; = D(P) and its orthogonal complement D,. A isa product A; As,
where A; = A(P) = {ef/|H1 Dy} and Ay = {ef|H1D;}. Let L (7, X) be the projection of
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L(7,X) on D; ® C. The first result we need from [5] is that ¥(a) = ¥(a1,as) = ¥(e, ay)

admits an expansion

(4.3) e” O N gy, (Hy,ag)eM Y
A1 GLl(ﬂ',}:)

valid for a; in the interior of A} = A1 (P). ¢»(H,az) is a polynomial function of H; whose
coefficients are analytic functions of az. The degrees of thee polynomials are bounded. If

=efl ¢ AT = AT(P) then

(4.4) O (Hy,az)e (A1 =3, Hy) ZPA eA—0H)

where the sum is taken over all A € L(m, X) whose projection on D ® C'is A;.

To exploit this expansion we have to generalize some considerations to be found in §9.1.2
of [16]. The generalization being quite formal, we shall be as sparing as possible with proofs.

Choose a Levi factor M of P over R such that M (R) is selfadjoint. Let p, m, n, € in g be
the complexifications of the Lie algebras of P(R), M (R), N(R), and K and let 3, 91, 0, and
A be their universal enveloping algebras. Let q be the orthogonal complement of m in £ N gqe;-
As on p. 269 of [16], but with a different result, we define 9 to be the image of the symmetric
algebra of q in 2L.

Note that

dim q=dim g—dim p=dimn

and that

dim g =2dim q+ dim m.

Let K1 = K N M(R). Itis a maximal compact subgroup of M (R). Let U be a compact
subset of M(R) with U = K U = UK;. As m varies over U the eigenvalues of adm in the

orthogonal complement of m in gqe, lie in compact subset of C*, say

{z% < |4 gR}.
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Let A] (R) be the set of all @ in A; such that a(a) > R for every root of A; in n. If m = ma,

my € U, a € AT (R) the centralizer of m in g lies in m. Moreover
(4.5) g=adm(q) ®m q.

To see this one has only to verify that
adm(q) N (m+q)=0.

Since m and q are invariant under K; and M (R) = K; AK; we may suppose that m4, and
hence m, lies in A. Suppose X lies in the above intersection. Let 6 be the automorphism
of G(C) such that (g~!) is the conjugate transpose of g with respect to the hermitian form

introduced earlier. 6 is a Cartan involution. Let H lie in the Lie algebra of A; and set
Xy = (adH)*X.
Then Xy € tand ad m(Xpg) € . Consequently
adm(Xpy) = 0(adm(Xy)) =adm ™ (Xg)

and

ade(XH) = XH.

Since ad m has only positive eigenvalues and since its centralizer in g is m, this equation implies
that Xy € m. Thus
(ad H)3X = ad H(Xy) = 0.

However, ad H is semisimple; so Xy = 0. Since H was arbitrary in the Lie algebra of A4;, X

lies in m. Since both m N g and m N ad m(q) must be zero, X is zero.

The relation (4.5) yields an isomorphism

A>adm(Q)@MRIQ>OQIMR Q.
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If X € A we let X,, be the corresponding element on the right. The function ¥ restricted to
M (R) yields a function on M (R) with values in W (X). If X € 9t we denote the result of
applying X to this function at the point m by W(m, X). The actions 71 and 75 of K on W (X)
yield actions of €. Let X — X ™ be the involution of £ defined by X~ = —X, X c £. If X € 2
and

Xm =) Xi®Y,®Z

then
XW(m) = 7(Z7)¥(m, Yi)2(Z]).

Let P = 0(P). Then P is defined over R and P N P = M. Moreover
g=mn+m+q

and

A = NMA.
X =>YZ,Y, €M Z; € Qthen
Xm=) 10Y;® Z
Suppose X € 0. Let X = #(X), X € n. Then
Y=X+X
liesin q. Let X’ = adm(X),Y/ = 6(X’) and

Y =X'+X =X+ 60(adm(X)).

Since

adm(Y) = X' +adm(X) = X' +0(adfd(m)(X))

we have

O({adm —adf(m)}X) =Y’ —admY.
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We are still assuming that m = mia, m; € U, a € Af (R); the restriction of ad m — ad §(m) to
n is therefore invertible. Let {§ be the ring of functions generated by the matrix coefficients of

its inverse. § does not contain 1. Replacing X by {ad m — ad #(m)}~1X, we see that

X = Z film)adm(X;) + Zgi(m)Z@-
with f;, g; in § and X, Z; in Q. Then
X =) filmXi@1o1l+) g(mleleZ.
One proves more generally by induction on the degree that
(4.6) Xm =Xo+ Y _ film)X;

where f; € §, X; € Q ® M ® Q and where X € M ® Q ~ ML is uniquely defined by the
conditions that X — X € n%l.

Notice that as a function of a € A]" an element of § is a linear combination of products
of the functions {a(a) — a~!(a)} ™1, a a root of A; in n with coefficients that are analytic

functions of m;. Moreover {a(a) — a~!(a)} ! admits an expansion.

(4.7) S e @nrD )

n=0
fora = efl in AT (R).
If X € D, the centralizer of K in %, and if M (X) is the linear transformation of W (X)

adjoint to the operator

uRv = m1(X)u®v

on V(X) ® V*(X) then
XU = M(X)T.
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A% € D; was fixed some time ago. There is at least one \? € L; (7, X) with Re\? = \°.
Fix such a \). If m € M(R) we write m = kyaky with ki, ks in K; and a in A. We write

a = aias9, a1 = e, and set
®(m) = 6<A(1)_57H>7'1(k2_1)¢/\(1)(H17a2)7'2(k1_1>-

Because of the uniqueness of the expansion (4.3), ® is well defined. The elements of R @M @ K
acton ®. X ® Y ® Z sends ¢ to ¢’ with

&' (m) = 1(Z27)P(m, Y)m2(X").
Let X € ® and let X be defined as in (4.6); then Xy € R ® M ® K and
(4.8) Xo® = M(X)®.
To see this we start from the equation X U (m) = M (X)W (m). If we set ma = kiazke and
Ox, (Hi,ma) = 1 (ky ')px, (Hi, az)a (k')
the function M (X)W (m) has an expansion

Y. M(X)¢a (Hyma)eM =0,
>\1€L1(7T,X)

The function X ¥ (m) is equal to

XoU(m) + > fi(m)X;(m).

Xo and the X; are acting as elements of 8 ® 9 ® K. Because of (4.7) each f;(m) has an

expansion

Z €1 (m2)6_<”1’H1>
1
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valid for my € U, a; € A (R), where U is a compact setin M (R) and R = R(U) is chosen as
before. 1; runs over the projections on D; of sums of positive roots of A in n. The sums are
not empty and ji; is never zero. We may, for convergence offers no difficulty (cf. 16), apply
X; to ¥ term by term, expand the product f;(m)X; ¥ (m) formally, add the results, and then

compare coefficients of the exponentials e‘**~%H1) on both sides of the equation.

We are interested in the terms corresponding to A{. If we incorporate the exponential, the
term on the right is M (X)®(m). At first sight the term on the left seems more complicated.
Suppose, however, that ; is the projection on D; of a sum of positive roots of A in n, v; lies
in Ly(m,X),and v; — 1 = AJ. Let \? be the projection of A in L(, X) and let A = Re\’; let

1 be the projection of v' and let v = Rer’. Then
ReA! = \°

and, if as before we define 1° to be the projection of v on the sum of Dy and D F(v), then

Revi = v+ Z cjo; =V —|—Zbo¢z+ Z cjoy

JEF(N) JEF(N)
with b; < 0. Also
ST S
JEF(N)

with d; > 0. Moreover, at least one d;, with i € F'()), is positive. We have
NI
JEF(N)

It follows from Lemma 4.5 that v° = A\°. By the very choice of A\°, 10 is therefore equal to \°.
However if i € F'(\) then
B(Bi,yo - )\O) = dz - bz

Since this is positive for at least one %, 9 #* AY. This is a contradiction. The term on the left in

which we are interested is therefore X(®(m). The relation (4.8) follows.
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® contains 3. As a linear space 2( is a sum
M+ M + NMn + nNin

and

3 C M+ nn.

Thusif X € 3 = 3¢ then X belongs to M and in fact to 35,. The map X — X is an injection
of 3¢ into 35 and turns 3, into a finite 3-module. Notice also that M (X)) is a scalar m(X)I
if X € 3¢q.

According to (4.4) the restriction of ® to A has an asymptotic expansion 3~ py (H )eA =%

where ) runs over those elements of L (7, X) whose projection on D; ® C'is A}. Suppose v/
is one of the indices for this sum. Let v = Re v’ and define 1° as before. We can again apply

Lemma 4.5 to see that 1Y = \°. Thus if F' = {i|B(;, A°) > 0} then F' = F(v) and

(4.9) Re{B(B%,v)} <0, ig¢F.

In spite of the fact that ® is not an eigenfunction of 3, but only of the image of 3¢ in 3/
the considerations of §9.1.3 of [16], and hence those of its appendix as well as those of [5], may
be applied to it. We do not want to apply them to obtain an asymptotic expansion, which we
already have; we want to apply a further result (Theorem 4) of [5] that in conjunction with (4.)

and Lemma 3.7 easily implies the existence of a constant ¢ and an integer d such that
(4.10) s, (M) || @(m)|| < e(1+ 1(m) mxo (m)Zns (m)

for all m. 9, is the projection of 6 on D;.

We had fixed X but we may let it grow without changing A°. Thus
D(m)(u @ v) = B(m; u, )

is defined for all K-finite p € V,v € V*.
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LEMMA 4.7. Suppose v in V* is K-finite. If the function ®(m;m(k)u,v) vanishes identically

m m and k for some nonzero K-finite uw in V' then it vanishes identically for all such u.

The function ¢(m) = (ﬂ(m)u,v>, m = aimsq, a1 = et € Ay, mo = k1agks, as € Ao, kq,

ko € K1, admits an asymptotic expansion " ay, (m;u, v)er =%H1) with

N —6,Hy _ <I>(

axo(m;u, U)e< m,u,v).

Suppose X € 2 and write

For this we have to constrain m; to vary in some compact set U and a; to vary in A (R), R =

R(U). Then
(m(m)m(X)u,v) = Xp(m) = Xop(m) + Z film)Xi¢(m).

The symbol X ¢(m) denotes the value of X applied to the function ¢(g) = (7(g)u,v) at the
point m. Xy and X; are applied as elements of £ ® M ® K.

The considerations used to prove the equality (4.8) show that if v/ = 7(X)u then

(N9 —6,H,

axo(m;u',v) is the coefficient of e ) in the expansion of Xo¢(m).

Xo=) 10Y;®Z;

withY; € I, Z; € K. Applying Z; wereplace the coefficient ayo (m, u, v) by ayo (m, 7(Z;)u, v).
If ®(m, w(k)u,v) = 0 for all m and k, this is zero. If the coefficient is zero before Y is applied it

is zero after. Since every K-finite vector in V' is of the form 7(X)u, X € 2, the lemma follows.

There is certainly at least one K-finite v in V*, which we fix once and for all, such that

®(m; u, v) is not zero for all K-finite wu.

Let T be the Banach space of continuous functions § on M (R) for which

. 6(m)| .
0] = St e s < .
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If m € M(R) let r(m)0 be the function whose value at m is
O(mim)
Let 20 be the space of all § in T for which
lim ||r(m)0 —r(mg)0|| =0
m—mo
for all mg. If u € V is K-finite then

0, :m — 75, (M) P(m;u,v)

lies in 2 because of (4.10). Let ‘U be the closed subspace of 20U generated by the functions
7(1m) 0.

LEMMA 4.8 The representation v of M (R) on U admits a finite composition series.

Let Uy be the space of functions in U of the form
0=r(f)o = / f(m)r(m)@’dm
M(R)
with f € C°(m(R)). If X € 3¢ — 3 and 6 € Yy then
(4.11) X0 =m/(X)0
if m'(X) = m(X’), where X’ is the element of 3,; defined by
X(ms,0)(m) = 75, (m) X' ¢(m).
If K1 = KN M(R),if p; and g9 are two continuous functions on K4, and if 6 € U let

B(m: or, o) — / / o1 (k)0 ik )oo (k) iy da.
K, JK,4
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1£ 0} (k) = o1 (kki ") and @b (k) = s (k3 'k) then

0(kimks; o1, 02) = 0(m, ©f, ©h).

If 0 = r(mq)0,, then

O(m, @1, p2) :7r51(m)//gpl(k‘l)@(kilmmlk;g;u, v)pa(ka)dkydks

= 75, (m)//cpl(k;l)cb(mml,w(kz)u,w*(kl—l)u)goz(kz)dkld@

= 75, (Mm)®(mmy, ', v")

with
u = /902(762)7T(kz)udk‘2, v = /cpl(kl)ﬂ*(kl_l)vdkl.

In particular, if v’ = 0 then 6(m, ¢1,p2) = 0 for § = r(mq)6,, and hence, by continuity, for
any 6 in Uy. There is a closed subspace of finite codimension in the space of continuous
functions on K7, invariant under left and right translations, such that v" = 0 whenever ¢,
lies in this subspace. Factoring out the subspace, we may regard ( as varying over a finite-
dimensional space. Let X1 be a finite set of classes of irreducible representations of K. For
other, more obvious, reasons, if 6 is constrained to lie in the subspace U (X;) of U, spanned by
vectors transforming according to one of the representations in X, then ¢» may be regarded
as varying over a finite-dimensional space. Using (4.11) and a simple variant of Proposition
9.1.3.1 of [16], we conclude that the space of functions m — 6(m; 1, p2), where 6 € U(X;)
and ¢; and ¢ are continuous functions on K7, is finite-dimensional. Since ¢; and 3 may be
allowed to approach the delta-function, we conclude that (X ) itself lies in this space and is
finite-dimensional. Since U is dense in U every irreducible representation of K occurs with
finite multiplicity in Q.

To complete the proof we need a well-known fact, which we state as a lemma.
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LEMMA 4.9 Let X — m/(X) be homomorphism of 3¢ < 3a into C. There are only a
finite number of infinitesimal equivalence classes of quasi-simple irreducible representations
7 of M(R) such that

7(X) =m(X)I

for X € 3¢.

Since there are only a finite number of ways of extending m to a homomorphism of 3,
into C, it is enough to prove the lemma for G = M; that is, we may assume that m’ is already

given on 3js and that

forall X € 3,,.

Let 7 act on W. We saw in Lemma 3.5 that the restriction of 7 to the connected component
MPO(R) is the direct sum of finitely many irreducible representations. Let 7°, acting on W C
W, be one of them. Because of Theorem 4.5.8.9 of [16], there are only finitely many possibilities

for the class of 7°.

Suppose W is the space of all functions ¢ on M (R) with values in WY satisfying
p(mom) = 7" (mo)p(m), mo € M"(R).

M (R) acts on W’ by right translations. There is an M (R)-invariant map from W' to W given
by

p—= Y. g Hel)
moR)\M(R)

We shall verify that W' admits a finite composition series
0=Wo W, gWo & ... W, =W"

Then T must be equivalent to the representation of M (R) on one of the quotients W;_1\W,.

From this lemma follows.
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To show the existence of a finite composition series all we have to do is show that if
0=Wo W1 Z...¢ W, =W

is any chain of M (R)-invariant subspaces then n < [M (R) : M°(R)]. We could instead work
with spaces of K-finite vectors invariant under the pair K, M. If K° = K N M°(R) then W'
admits a composition series of length [M(R) : M°(R)] with respect to the pair K°, 9. Any
chain invariant with respect to this pair, and, a fortiori, any chain invariant with respect to

K, 9, has therefore length at most [M (R) : M°(R)].

We return to the proof of Lemma 4.8. Let 7q,...,7s be the classes corresponding to the
given homomorphism m’. Choose for each i an irreducible representation o; occurring in the

restriction of 7; to K1. Set X1 = {o1,...,04}.

Suppose U" Z U’ are closed M (R) -invariant subspaces of . Let o be a representation
of K occurring in 20° = D”\D’. Let 20(0) be the space of all vectors in 20° transforming
according to 0. (o) is finite-dimensional. Among the nonzero subspaces of 20(o) obtained
by intersecting it with a closed M (R) -invariant subspace of 2%, there is a minimal one 20 (c).
Let 20’ be the intersection of all closed invariant subspaces of 20 that contain 20’ (). Let 20"
be the closure of the sum of all closed invariant subspaces of 20’ that do not contain 20’ (o).
Then 20" Z 20’ and the representation of M (R) on 20"\’ is irreducible. Since it must be

one of 71, ..., Ts, it contains one of o1, ..., 0.

Suppose we have a chain of closed M (R)-invariant subspaces
00U, < ...¢0, =0.

Sinceoneof oy, ..., 0y is contained in the representation of K'; on the quotient of the successive
subspaces, n < dim U(X1). On the other hand, if these quotients are not irreducible the chain

can be further refined. The lemma follows.

Asbeforelet P = §(P). Let 2 be the space of continuous functions ¢ on G (R) with values

in 20 which satisfy the following two conditions:
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(i) If n € N(R) then ¢(ng) = ©(g).

(ii) If m € M(R) then ¢(mg) = 7r5_11 (m)r(m)p(g). The representation of G(R) on U by
right translations is the induced representation I, ? . It is easily seen that every representation

of K occurs with finite multiplicity in /. ? and that
IP(X)=m(X)I, I€3g.

Thus I TF admits a finite composition series. We now show that 7 is infinitesimally equivalent
to a subrepresentation of I,P. For this we have only to define an injection of the K-finite

vectors in V into 2l which commutes with the action of K and 2.

Recall that the vector v was fixed. Suppose u is K-finite. If k; € K; then
d(mky !, w(kik)u,v) = ®(m, 7 (k)u,v).
We define ¢,, in i by
(4.12) ou(mmk) : mqy — ms, (mq)®(mim, 7(k)u,v).

The map u — ¢,, is by our choice of v, an injection; it clearly commutes with the action of K.

To verify that it commutes with the action of 2 we have only to check that

Pr(x)u(1) = (I (X)pu) (1)

Set 9, = p and Yr(x), = ¢'. Then p(m) = ®(m;u,v) and ¢'(m) = ®(m, 7(X)u,v).
Recall that if X is defined as in (4.6) and equals

d1eY,ez

then
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On the right Y; is applied to a function of m and

wi(m) = ®(m,w(Z;)u,v).

X was so chosen that

X—ZYiZieﬁQL

It is clear thatif Y € nand v is K-finite in i then

Thus

IP(X)p(1) = DS IP DI (Z0)e(1) = D01 (Vi) nzi(1):
A close examination of the definition (4.12) shows that 17 (Yi)@r(z,)u(1) is the function m —
Yigi(m).

There must be an irreducible constituent p of the representation r on ¥ such that 7 is
infinitesimally equivalent to a subrepresentation of 1 f. This p is the representation figuring
in Lemma 4.2, which we are still in the process of proving. We must show that p is essentially
tempered. Accepting this for the moment, we show that 7 is infinitesimally equivalent to the

representation .J f :

An easy computation (for a special case, see Chapter 5 of ([16]) shows that I f and Ipﬁ

have the same character and therefore the same irreducible constituents.

Let p act on W. JF was introduced as the representation on the quotient Io(W) /I (W).

All we have to do is verify that 7 cannot be a constituent of the restriction of 1 f to I;(W).

The A = A(p) that figures in Lemma 3.8 is A\°. If 7 is a constituent of the restriction of T f

to I; (W) then, by Lemma 3.12,

(4.13) (r(am)u,v) = 0(5;1(a)7m0 (a))
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if m is fixed in M (R) and a — oo in AT (P). However, Theorem 3 of [5] assures us that the
expansion (4.3) converges decently for fixed as (cf. [16]), Appendix 3). We conclude from (4.13)
and Lemma A.3.2.3 of [16] that the terms of (4.3) with Re\; = A\°. This certainly contradicts
the choice of \°.

We apply Lemma A.3.2.3 in the following manner. Choose \{ € L;(m, X) withReAY = \.

Let as be fixed. If a; = et lies in A; then dp(a;) = el%H1) Thus

Z Ox(Hy, az)eM M) = o(1)

M €ELq (71',}:)

asa; — ooin AT = A1 (P). If ¢ > 0 we can choose R > 0 and a finite subset S of L, (, X)

so that if (o, H1) > R+ eB(H;, H1) when « is a root of A; in n then

)\16[11(71’,%)
and
S b (Hy az)e™ =AM | < e,
A &S
Then
Z o3 (Hl,a2)6<’\1_’\(1)’H1> < 2e.

A ES

Lemma A.3.2.3 then implies that
(650 (1, a2)] < 2¢

for all Hy. Since ¢ is arbitrary pyo (Hy,a9) =0.

It remains to show that p is essentially tempered. Any K-finite linear form on U is a

linear combination of the functionals

0 — 0(m1, 1, p2)

where m; € M(R) and ¢4, @2 are continuous functions on K;. Thus

[f(r(m)0)] < e(1+U(m))* ™ mr, (m)Eas (m).
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A similar inequality is valid for the representation p. Set p’ = 7r;01 ® p. fw € W is K-finite

and f is a K;-finite linear form on W, an inequality
(o (m)w)] < e(1+1(m))* = Ens(m)

is satisfied.

To finish up we have only to prove the following lemma, in which we replace M by G

and p by 7 in order to allow the symbols p, M, and P to take on a new meaning.

LEMMA 4.10. Suppose that m and 7 are quasi-simple irreducible representations of G(R)
on the Banach spaces V' and V* and that there is a nontrivial G(R)-invariant bilinear
pairing (u,v) — (u,v) of V. x V* into C. Suppose there is an integer d such that for every

K-finite u and v an inequality

[(m(g)u,v)| < c(1+1(g))"Za(g)

is satisfied. Then there is a parabolic subgroup P of G over R and a unitary representation

p of M(R), square-integrable modulo the center, such that 7 is a constituent of Iflf.

We start from the expansion (4.1) and show that if A\g € L(7, X) then ReB(5;, \g) < 0
for all 7. If not, there is a linear combination § = ) b;3; with positive coefficients such that
ReB(f, Ao) > 0. Choose Hj in the Lie algebra of A so that (\, Hy) = B(3, A) for all A\. Then
eflo lies in the interior of A™. Taking Lemma 3.6 and the assumption of the lemma into account,

we see that for H in a small neighborhood of Hy

S° paA(tH)et A = o(1)
AEL(7,X)

ast — oo. Applying Lemma A.3.2.3 as before we conclude that p),(H) = 0, a contradiction.

Let
E(X) = {i|Re B(B;, A) = 0}.
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Let E be maximal in the collection of E()). P will be defined by demanding that P D Py, a
fixed parabolic subgroup minimal over R, and that D(P) be spanned by Dy and {5;|i € E'}.

This decided, we turn to the expansion (4.3). There is at least one A} in L; (7, X) with
ReA] = 0. We fix it and define the function ®(m) as before. If \; € Li(m, X) then
Re B(Bi,A\1) < 0 fori € E. This allows us to argue as before and to show that the new
® satisfies (4.8).

It satisfies a much improved form of (4.10). If A € L(7, X) has projection \; in L; (7, X)
and Re A\; = 0 then, by the maximality of E, B(3;,\) < 0 for i ¢ E. Since the set E () is
finite there is a u € D(Fp) such that B(8;, ) = 0 fori € E and B(f;, 1) < 0 fori ¢ E and
such that

B(Bi, 1) = Re B(Bi, )

if A € L(m, X) and the real part of the projection of A on D(P) ® C is zero. Theorem 4 of [5]

implies that there are an integer d and a constant c such that
(4.14) 5, ()@ ()| < e(1 + U(a))Eps(a)etH)

for a = e in AT(P}), where P} = Py N M. Using this inequality instead of (4.10) we proceed
as before to define p. 7 is then a constituent of 1 f . Since it follows easily from (4.14) that p is

square-integrable modulo the center, the lemma is proved.
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