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Hermitian LCD codes
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Abstract

We propose a method for a classification of quaternary Hermitian
LCD codes having large minimum weights. As an example, we give a
classification of quaternary optimal Hermitian LCD codes of dimen-
sion 3.

1 Introduction

Linear complementary dual (LCD for short) codes are codes that intersect
with their dual codes trivially. LCD codes were introduced by Massey [13]
and gave an optimum linear coding solution for the two user binary adder
channel. Recently, much work has been done concerning LCD codes for both
theoretical and practical reasons (see e.g. [5], [6], [7], [11] and the references
given therein). For example, if there is a quaternary Hermitian LCD [n, k, d]
code, then there is a maximal entanglement entanglement-assisted quantum
error-correcting [[n, k, d;n− k]] code (see e.g. [11]). From this point of view,
quaternary Hermitian LCD codes play an important role in the study of max-
imal entanglement entanglement-assisted quantum error-correcting codes. In
addition, Carlet, Mesnager, Tang, Qi and Pellikaan [6] showed that any code
over Fq is equivalent to some Euclidean LCD code for q ≥ 4 and any code
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over Fq2 is equivalent to some Hermitian LCD code for q ≥ 3, where Fq

denotes the finite field of order q and q is a prime power. This is also a
motivation of our study of quaternary Hermitian LCD codes.

It is a fundamental problem to determine the largest minimum weight
d4(n, k) among all quaternary Hermitian LCD [n, k] codes and classify qua-
ternary optimal Hermitian LCD [n, k, d4(n, k)] codes for a given pair (n, k).
It was shown that d4(n, 2) = ⌊4n

5
⌋ if n ≡ 1, 2, 3 (mod 5) and d4(n, 2) =

⌊4n
5
⌋ − 1 otherwise for n ≥ 3 [10] and [11]. Recently, it has been shown

that d4(n, 3) = ⌊16n
21

⌋ if n ≡ 5, 9, 13, 17, 18 (mod 21) and d4(n, 3) = ⌊16n
21

⌋− 1
otherwise for n ≥ 6 [2] and [11]. More recently, Ishizuka [8] has completed a
classification of quaternary optimal Hermitian LCD codes of dimension 2.

Araya, Harada and Saito [2] gave some conditions on the nonexistence of
certain quaternary Hermitian LCD codes having large minimum weights ([2,
Theorem 9]). The aim of this note is to propose a method for a classifica-
tion of quaternary Hermitian LCD codes having large minimum weights by
following the same line as in the proof of [2, Theorem 9]. As an example,
we give a classification of quaternary optimal Hermitian LCD [n, 3, d4(n, 3)]
codes for arbitrary n. We also give an alternative classification of quaternary
optimal Hermitian LCD [n, 2, d4(n, 2)] codes and a classification of quater-
nary near-optimal Hermitian LCD [n, 2, d4(n, 2)− 1] codes for arbitrary n.

2 Preliminaries

In this section, we give some definitions, notations and basic results used in
this note.

We denote the finite field of order 4 by F4 = {0, 1, ω, ω2}, where ω2 =
ω + 1. For any element α ∈ F4, the conjugation of α is defined as α = α2.
Throughout this note, we use the following notations. Let 0s and 1s denote
the zero vector and the all-one vector of length s, respectively. Let O denote
the zero matrix of appropriate size. Let Ik denote the identity matrix of order
k. Let AT denote the transpose of a matrix A. For a k×n matrix A = (aij),
the conjugate matrix of A is defined as A = (aij). For a positive integer s

and a k × n matrix A, we denote by A(s) the k × ns matrix
(
A · · · A

)
.

A quaternary [n, k] code C is a k-dimensional vector subspace of Fn
4 . The

parameters n and k are called the length and dimension of C, respectively.
A generator matrix of a quaternary [n, k] code C is a k×n matrix such that
the rows of the matrix generate C. The weight of a vector x ∈ Fn

4 is the
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number of non-zero components of x. A vector of C is called a codeword

of C. The minimum non-zero weight of all codewords in C is called the
minimum weight of C. A quaternary [n, k, d] code is a quaternary [n, k]
code with minimum weight d. Two quaternary [n, k] codes C and C ′ are
equivalent, denoted C ∼= C ′, if there is an n× n monomial matrix P over F4

with C ′ = {xP | x ∈ C}. For any quaternary [n, k, d] code, the Griesmer
bound is given by n ≥

∑k−1
i=0

⌈
d
4i

⌉
. Throughout this note, we use the following

notation:

g4(n, k) = max

{
d ∈ Z≥0

∣∣∣∣∣ n ≥

k−1∑

i=0

⌈
d

4i

⌉}
,

where Z≥0 denotes the set of nonnegative integers.
The Hermitian dual code C⊥ of a quaternary [n, k] code C is defined as:

C⊥ = {x ∈ F
n
4 | 〈x, y〉H = 0 for all y ∈ C},

where 〈x, y〉H =
∑n

i=1 xiyi for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Fn
4 .

A quaternary [n, k] code C is called Hermitian linear complementary dual

(Hermitian LCD for short) if C ∩ C⊥ = {0n}. Note that quaternary Hermi-
tian LCD codes are also called zero radical codes (see e.g. [11]). Let d4(n, k)
denote the largest minimum weight among all quaternary Hermitian LCD
[n, k] codes. A quaternary Hermitian LCD [n, k, d4(n, k)] code is called opti-

mal. In this note, we say that a quaternary Hermitian LCD [n, k, d4(n, k)−1]
code is near-optimal. The minimum weight of the Hermitian dual code C⊥

of C is called the (Hermitian) dual distance of C and it is denoted by d⊥.
The following characterization gives a criterion for quaternary Hermitian

LCD codes and is analogous to [13, Proposition 1].

Proposition 2.1 ([7, Proposition 3.5]). Let C be a quaternary code and let

G be a generator matrix of C. Then C is a Hermitian LCD code if and only

if GG
T
is nonsingular.

Throughout this note, we use the above characterization without men-
tioning this.

A quaternary code C is called Hermitian self-orthogonal if C ⊂ C⊥. A
quaternary code C is called even if the weights of all codewords of C are even.
A quaternary code C is Hermitian self-orthogonal if and only if C is even [12,
Theorem 1]. In addition, a quaternary code C is Hermitian self-orthogonal

if and only if GG
T
= O for a generator matrix G of C.
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3 Background materials

Let C be a quaternary Hermitian LCD [n, k, d] code. Define an [n + 1, k, d]

code Ĉ as Ĉ = {(x, 0) | x ∈ C}. The following lemma was given for binary
LCD codes and ternary LCD codes [1, Proposition 3]. The argument can be
applied to quaternary Hermitian LCD codes trivially.

Lemma 3.1 (Ishizuka [8]). Let Cn,k,d denote all equivalence classes of quater-
nary Hermitian LCD [n, k, d] codes. Let Dn,k,d denote all equivalence classes

of quaternary Hermitian LCD [n, k, d] codes with dual distances d⊥ ≥ 2.

Let Ĉn−1,k,d denote all equivalence classes containing Ĉ1, Ĉ2, . . . , Ĉt, where

C1, C2, . . . , Ct denote representatives of Cn−1,k,d and t = |Cn−1,k,d|. Then

Cn,k,d = Dn,k,d ∪ Ĉn−1,k,d.

For a classification of quaternary Hermitian LCD [n, k, d] codes, by the
above lemma, it is sufficient to consider a classification of quaternary Hermi-
tian LCD [n, k, d] codes with dual distances d⊥ ≥ 2.

According to [11], we define the k × (4
k−1
3

) F4-matrices Sk by inductive
constructions as follows:

S1 =
(
1
)
,

Sk =

(
Sk−1 0T

4k−1
−1

3

Sk−1 Sk−1 Sk−1

0 4k−1
−1

3

1 1 4k−1
−1

3

ω1 4k−1
−1

3

ω21 4k−1
−1

3

)
if k ≥ 2.

The matrix Sk is a generator matrix of the quaternary simplex [4
k−1
3

, k, 4k−1]

code. It is known that the quaternary simplex [4
k−1
3

, k, 4k−1] code is a con-
stant weight code. More precisely, the code contains codewords of weights 0
and 4k−1 only. Thus, for k ≥ 2, the quaternary simplex [4

k−1
3

, k, 4k−1] code

is even. By [12, Theorem 1], the quaternary simplex [4
k−1
3

, k, 4k−1] code is
Hermitian self-orthogonal for k ≥ 2.

Let hk,i be the i-th column of the k × (4
k−1
3

) F4-matrix Sk. For a vec-

tor m = (m1, m2, . . . , m 4k−1

3

) ∈ Z
4
k
−1

3

≥0 , we define a k ×
∑ 4

k
−1

3

i=1 mi F4-matrix

Gk(m), which consists of mi columns hk,i for each i as follows:

Gk(m) =
(
hk,1 · · ·hk,1hk,2 · · ·hk,2 · · ·hk, 4

k
−1

3

· · ·h
k, 4

k
−1

3

)
. (1)

Here mi = 0 means that no column of Gk(m) is hk,i. Throughout this note,
we denote by Ck(m) the quaternary code with generator matrix Gk(m).
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Remark 3.2. By considering all vectors m ∈ Z
4
k
−1

3

≥0 with n =
∑ 4

k
−1

3

i=1 mi, it is
possible to find representatives of all equivalence classes of quaternary [n, k]
codes with dual distances d⊥ ≥ 2 as Ck(m).

The following lemma was given for k = 2, 3, 4 in [11]. The argument can
be applied to arbitrary k trivially.

Lemma 3.3. Suppose that k ≥ 2 and s is a positive integer. Let m =

(m1, m2, . . . , m 4k−1

3

) be a vector of Z
4
k
−1

3

≥0 with n =
∑ 4

k
−1

3

i=1 mi. If Ck(m) is

a quaternary Hermitian LCD [n, k, d] code, then the quaternary code C with

generator matrix (
S
(s)
k Gk(m)

)

is a quaternary Hermitian LCD [n + 4k−1
3

s, k, d+ 4k−1s] code.

The following lemma was given for k ≥ 3 [2, Lemma 7]. The argument
can be applied to k = 2 trivially.

Lemma 3.4. Suppose that k ≥ 2. Let m = (m1, m2, . . . , m 4k−1

3

) be a vector

of Z
4
k
−1

3

≥0 with n =
∑ 4

k
−1

3

i=1 mi. If the quaternary LCD [n, k] code Ck(m) has

minimum weight at least d, then

4d− 3n ≤ mi ≤ n−
4k−1 − 1

3 · 4k−2
d, (2)

for each i ∈ {1, 2, . . . , 4
k−1
3

}.

The following lemma was given for binary LCD codes and ternary LCD
codes [3, Lemmas 4.3 and 4.4]. By following the same line as in the proof
of [3, Lemmas 4.3 and 4.4], we have the following lemma trivially.

Lemma 3.5. Suppose that ℓ ≥ 1 and k ≥ 2. Let C and C ′ be quaternary

Hermitian LCD [n, k] codes with dual distances d(C⊥) ≥ 2 and d(C ′⊥) ≥ 2.
Suppose that there are quaternary Hermitian LCD [n, k] codes D and D′

satisfying the following conditions:

(i) C ∼= D and C ′ ∼= D′,
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(ii) D and D′ have generator matrices

G =
(

S
(ℓ)
k G0

)
and G′ =

(
S
(ℓ)
k G′

0

)
,

where G0 and G′
0 are generator matrices of some quaternary Hermitian

LCD [n− (4k−1)ℓ
3

, k] codes C0 and C ′
0, respectively.

Then C ∼= C ′ if and only if C0
∼= C ′

0.

4 Characterizations of quaternary Hermitian

LCD codes

In the rest of this note, we use the following notation:

rn,k,d = 4k−1n−
4k − 1

3
d, (3)

for a given set of parameters n, k, d.

4.1 Theorem 4.1 and its proof

By following the same line as in the proof of Theorem 9 in [2], we have the
following theorem.

Theorem 4.1. Suppose that 4d − 3n ≥ 1 and 4rn,k,d ≥ k ≥ 2, where rn,k,d
is the integer defined in (3). Then there is a one-to-one correspondence

between equivalence classes of quaternary Hermitian LCD [n, k, d] codes with
dual distances d⊥ ≥ 2 and equivalence classes of quaternary Hermitian LCD

[4rn,k,d, k, 3rn,k,d] codes with dual distances d⊥ ≥ 2.

Proof. Let C be a quaternary [n, k, d] code with dual distance d⊥ ≥ 2. Since

d⊥ ≥ 2, by Remark 3.2, there is a vector m = (m1, m2, . . . , m 4k−1

3

) ∈ Z
4
k
−1

3

≥0

such that C ∼= Ck(m) and n =
∑ 4

k
−1

3

i=1 mi. Since the minimum weight of
Ck(m) is d, we have

4d− 3n ≤ mi,

by Lemma 3.4. Thus, the generator matrix Gk(m) in (1) of Ck(m) consists

of at least 4d − 3n columns hk,i for each i ∈ {1, 2, . . . , 4k−1
3

}. Note that
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4d − 3n ≥ 1 from the assumption. Hence, we obtain a matrix G of the
following form:

G =
(

S
(4d−3n)
k G0

)
, (4)

by permuting columns of Gk(m). Here G0 is a k× (n− (4k−1)(4d−3n)
3

) matrix,
noting that

n−
(4k − 1)(4d− 3n)

3
= 4

(
4k−1n−

4k − 1

3
d

)
= 4rn,k,d.

Since SkSk

T
= O, we have GG

T
= G0G0

T
. Since C is Hermitian LCD, we

have
4rn,k,d ≥ rank(G0) ≥ rank(G0G0

T
) = rank(GG

T
) = k. (5)

Let C0 be the quaternary code with generator matrix G0. It follows from (5)
that C0 is a quaternary Hermitian [4rn,k,d, k] LCD code. From the assumption

k ≥ 2, the quaternary code C ′ with generator matrix S
(4d−3n)
k is a Hermitian

self-orthogonal [n′, k, d′] code, where

n′ =
(4k − 1)(4d− 3n)

3
and d′ = (4d− 3n)4k−1.

By Lemma 3.3, we have

d = d0 + d′ and d0 = 3

(
4k−1n−

4k − 1

3
d

)
= 3rn,k,d.

Hence, if there is a quaternary Hermitian LCD [n, k, d] code C with dual
distance d⊥ ≥ 2, then there is a quaternary Hermitian LCD [n, k, d] code C ′

such that C ∼= C ′ and C ′ has generator matrix of form (4). In addition, G0

is a generator matrix of some quaternary Hermitian LCD [4rn,k,d, k, 3rn,k,d]
code.

Now let C and C ′ be quaternary Hermitian LCD [n, k, d] codes with dual
distances d(C⊥) ≥ 2 and d(C ′⊥) ≥ 2. By the above argument, there are
quaternary Hermitian LCD [n, k, d] codes D and D′ satisfying the following
conditions:

(i) C ∼= D and C ′ ∼= D′,
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(ii) D and D′ have generator matrices

G =
(

S
(4d−3n)
k G0

)
and G′ =

(
S
(4d−3n)
k G′

0

)
,

where G0 and G′
0 are generator matrices of some quaternary Hermitian

LCD [4rn,k,d, k, 3rn,k,d] codes C0 and C ′
0, respectively.

It follows from Lemma 3.5 that C ∼= C ′ if and only if C0
∼= C ′

0. This completes
the proof.

The above theorem says that for a given set of parameters n, k, d a clas-
sification of quaternary Hermitian LCD [n, k, d] codes is obtained from that
of quaternary Hermitian LCD [4rn,k,d, k, 3rn,k,d] codes, where 4rn,k,d ≤ n.

4.2 Modification of Theorem 4.1

As the next step, by following the same line as in the proof of [3, Theorem 4.7],
we modify Theorem 4.1 to the form which is used easily by adding some
assumption (6) on minimum weights for our study in Section 5 (Theorem 4.3).

Assume that we write

n =
4k − 1

3
s+ t,

where s ∈ Z≥0 and t ∈ {0, 1, . . . , 4
k−1
3

−1}. In addition, assume the following:

the minimum weight d is written as

d(s, t) = 4k−1s+ α(t),

where α(t) is a constant depending on only t.

(6)

The condition 4d−3n ≥ 1 in Theorem 4.1 is equivalent to that s ≥ s′
( 4

k
−1

3
s+t),k,d(s,t)

,

where

s′
( 4

k
−1

3
s+t),k,d(s,t)

=
4r

( 4
k
−1

3
s+t),k,d(s,t)

− t

4k−1
3

+ 1. (7)

From (3), we have

r
( 4

k
−1

3
s+t),k,d(s,t)

= 4k−1

(
4k − 1

3
s+ t

)
−

4k − 1

3
d(s, t)

= 4k−1t−
4k − 1

3
α(t).

(8)

From (7) and (8), we have the following:
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Lemma 4.2. Both r
( 4

k
−1

3
s+t),k,d(s,t)

and s′
( 4

k
−1

3
s+t),k,d(s,t)

depend on only k, t

and do not depend on s.

From (7), we have

4r
( 4

k
−1

3
s+t),k,d(s,t)

=
4k − 1

3

(
s′
( 4

k
−1

3
s+t),k,(4k−1s+α(t))

− 1

)
+ t. (9)

From (8) and (9), we have

3r
( 4

k
−1

3
s+t),k,d(s,t)

= 3

(
4k−1t−

4k − 1

3
α(t)

)

=
3

4

(
4k − 1

3

(
s′
( 4

k
−1

3
s+t),k,(4k−1s+α(t))

− 1

)
+ t

)

= 4k−1

(
s′
( 4

k
−1

3
s+t),k,(4k−1s+α(t))

− 1

)

+
1

4

(
−

(
s′
( 4

k
−1

3
s+t),k,(4k−1s+α(t))

− 1

)
+ 3t

)

= 4k−1

(
s′
( 4

k
−1

3
s+t),k,(4k−1s+α(t))

− 1

)
+ α(t).

(10)

By Lemma 4.2, (9) and (10), we have the following:

Theorem 4.3. Write n = 4k−1
3

s+t ≥ k, where s ∈ Z≥0 and t ∈ {0, 1, . . . , 4k−1
3

−
1}. Assume that d is written as d(s, t) = 4k−1s+α(t), where α(t) is a constant

depending on t. Let r denote the integer r
( 4

k
−1

3
s+t),k,d(s,t)

defined in (3). Let

s′ denote the integer s′
( 4

k
−1

3
s+t),k,d(s,t)

defined in (7). Suppose that 4r ≥ k ≥ 2.

Then there is a one-to-one correspondence between equivalence classes of qua-

ternary Hermitian LCD codes with dual distances d⊥ ≥ 2 and parameters

[4r, k, 3r] =

[
4k − 1

3
(s′ − 1) + t, k, 4k−1 (s′ − 1) + α(t)

]

and equivalence classes of quaternary Hermitian LCD code with dual dis-

tances d⊥ ≥ 2 and parameters
[
4k − 1

3
s+ t, k, 4k−1s+ α(t)

]
,

for every integer s ≥ s′.

9



The above theorem says that for a given set of parameters k, t, α(t) a

classification of quaternary Hermitian LCD [4
k−1
3

(s′ − 1)+t, k, 4k−1 (s′ − 1)+

α(t)] codes yields that of quaternary Hermitian LCD [4
k−1
3

s+t, k, 4k−1s+α(t)]
codes for every integer s ≥ s′. We remark that the assumption (6) on the
minimum weight is automatically satisfied for our study in Section 5.

4.3 Consequence of Theorem 4.3

We end this section by giving a consequence of Theorem 4.3.

Corollary 4.4. Write n = 4k−1
3

s+t ≥ k, where s ∈ Z≥0 and t ∈ {0, 1, . . . , 4k−1
3

−
1}. Assume that d is written as d(s, t) = 4k−1s+α(t), where α(t) is a constant

depending on t. Let r denote the integer r
( 4

k
−1

3
s+t),k,d(s,t)

defined in (3). Let

s′ denote the integer s′
( 4

k
−1

3
s+t),k,d(s,t)

defined in (7). Suppose that 4r ≥ k ≥ 2.

If there is no quaternary Hermitian LCD code with dual distance d⊥ ≥ 2 and

parameters

[4r, k, 3r] =

[
4k − 1

3
(s′ − 1) + t, k, 4k−1 (s′ − 1) + α(t)

]
,

then there is no quaternary Hermitian LCD code with dual distance d⊥ ≥ 2
and parameters [

4k − 1

3
s+ t, k, 4k−1s+ α(t)

]
,

for every integer s.

Proof. For s ≥ s′, the assertion follows directly from Theorem 4.3.
Suppose that there is a quaternary Hermitian LCD [4

k−1
3

s′′+t, k, 4k−1s′′+
α(t)] code with dual distance d⊥ ≥ 2 for some s′′ < s′ − 1. Then, by

Lemma 3.3, there is a quaternary Hermitian LCD [4
k−1
3

(s′−1)+t, k, 4k−1(s′−
1) + α(t)] code with dual distance d⊥ ≥ 2. This is a contradiction.

The above corollary is an improvement of [2, Theorem 9 (ii)] by adding
some assumption (6) on minimum weights.
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5 Quaternary optimal Hermitian LCD codes

In this section, by Theorem 4.3, we give a classification of quaternary opti-
mal Hermitian LCD codes of dimension 2 and a classification of quaternary
optimal Hermitian LCD codes of dimension 3.

5.1 Classification method

Here we suppose that k ∈ {2, 3}. As described in Remark 3.2, it is possible
to find representatives of all equivalence classes of quaternary Hermitian
LCD [n, k] codes with dual distances d⊥ ≥ 2 as Ck(m), by considering all

vectors m = (m1, m2, . . . , m 4k−1

3

) ∈ Z
4
k
−1

3

≥0 satisfying n =
∑ 4

k
−1

3

i=1 mi and the

condition (2). In addition, any quaternary [n, k, d] code is equivalent to some
code with generator matrix of form

(
Ik A

)
, where A is a k×(n−k) matrix

and the weight of the first row of A is exactly d− 1. Hence, we may assume
without loss of generality that

m1 ≥ 1, m2 ≥ 1 and
∑

i∈Sk

mi = d if k = 2, (11)

m1 ≥ 1, m2 ≥ 1, m6 ≥ 1 and
∑

i∈Sk

mi = d if k = 3, (12)

where Sk denotes the support of the first row of Sk. In this way, we found all
quaternary Hermitian LCD [n, k, d] codes which must be checked further for

equivalences. For calculations of determinants of GG
T
for generator matrices

G, the NTL function determinant [15] was used. To test equivalence of
quaternary codes, we used the algorithm given in [9, Section 7.3.3] as follows.
For a quaternary [n, k] code C, define the digraph Γ(C) with vertex set V

and arc set A, where

V = C ∪ ({1, 2, . . . , n} × (F4 \ {0})),

A = {(c, (j, cj)) | c = (c1, c2, . . . , cn) ∈ C, j ∈ {1, 2, . . . , n}}

∪ {((j, y), (j, ωy)) | j ∈ {1, 2, . . . , n}, y ∈ F4 \ {0}}.

Then, two quaternary [n, k] codes C and C ′ are equivalent if and only if Γ(C)
and Γ(C ′) are isomorphic. We used nauty [14] for digraph isomorphism
testing.
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All computer calculations in this section were done by programs in the
language C. In addition, few verification was done by Magma [4]. Let Cn,k,d
denote our equivalence classes of quaternary Hermitian LCD [n, k, d] codes
with dual distances d⊥ ≥ 2 obtained by the above method. Especially, we
verified by Magma that C is a quaternary Hermitian LCD [n, k, d] code
with dual distance d⊥ ≥ 2 for C ∈ Cn,k,d, and C and C ′ are inequivalent for
C,C ′ ∈ Cn,k,d with C 6= C ′.

5.2 Quaternary optimal Hermitian [n, 2] LCD codes

The largest minimum weights d4(n, 2) were determined in [2], where d4(n, 2)
are listed in Table 1. Recently, Ishizuka [8] has completed a classification of
quaternary optimal Hermitian LCD codes of dimension 2. Here we present
an alternative approach to the classification by using Theorem 4.3.

For n ≥ 2, write n = 5s + t, where s ∈ Z≥0 and t ∈ {0, 1, . . . , 4}. Let
r = r5s+t,2,d4(5s+t,2) and s′ = s′5s+t,2,d4(5s+t,2) be the integers defined in (3)

and (7), respectively. For each 5s+ t, we list d4(5s+ t, 2), s′ and r in Table 1.
Then d4(5s+ t, 2) is written as 4s+α(t), where α(t) is a constant depending
on only t. Since d4(5s+ t, 2) satisfies the assumption (6) in Theorem 4.3, we
have the following:

Proposition 5.1. There is a one-to-one correspondence between equiva-

lence classes of quaternary Hermitian LCD [4r, 2, 3r] codes with dual dis-

tances d⊥ ≥ 2 and equivalence classes of quaternary Hermitian LCD [5s +
t, 2, d4(5s + t, 2)] code with dual distances d⊥ ≥ 2 for every integer s ≥ s′,

where r and s′ are listed in Table 1.

Table 1: d4(n, 2), s
′ and r

n d4(n, 2) s′ r n d4(n, 2) s′ r

5s 4s− 1 5 5 5s+ 3 4s+ 2 2 2
5s+ 1 4s 4 4 5s+ 4 4s+ 2 5 6
5s+ 2 4s+ 1 3 3

By the method given in Section 5.1, our computer search completed a
classification of all quaternary optimal Hermitian LCD [4r, 2, 3r] codes with
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dual distances d⊥ ≥ 2 for r listed in Table 1. The numbers N4(4r, 2) of all
inequivalent quaternary optimal Hermitian LCD [4r, 2, 3r] codes with dual
distances d⊥ ≥ 2 are listed in Table 2. In addition, our computer search
completed a classification of all quaternary optimal Hermitian LCD [5s +
t, 2, d4(5s + t, 2)] codes with dual distances d⊥ ≥ 2 for s < s′, where s′ is
given in Table 1. The numbers N4(5s + t, 2) of all inequivalent quaternary
optimal Hermitian LCD [5s + t, 2, d4(5s + t, 2)] codes with dual distances
d⊥ ≥ 2 are also listed in Table 2. From Proposition 5.1 and Table 2, we have
the following:

Proposition 5.2. (i) Suppose that t ∈ {0, 1}. Then there are 2 inequiv-

alent quaternary optimal Hermitian LCD [5s + t, 2] codes with dual

distances d⊥ ≥ 2 for every integer s ≥ 2.

(ii) Suppose that t ∈ {2, 3}. Then there is a unique quaternary optimal

Hermitian LCD [5s + t, 2] codes with dual distances d⊥ ≥ 2, up to

equivalence, for every integer s ≥ 0.

(iii) There are 5 inequivalent quaternary optimal Hermitian LCD [5s+4, 2]
codes with dual distances d⊥ ≥ 2 for every integer s ≥ 3.

Of course, the above classification coincides with that given in [8].

Table 2: N4(n, 2)

n N4(4r, 2) N4(5s+ t, 2) (s < s′)

5s N4(20, 2) = 2 N4(5, 2) = 1 N4(10, 2) = 2 N4(15, 2) = 2
5s+ 1 N4(16, 2) = 2 N4(6, 2) = 1 N4(11, 2) = 2
5s+ 2 N4(12, 2) = 1 N4(2, 2) = 1 N4(7, 2) = 1
5s+ 3 N4(8, 2) = 1 N4(3, 2) = 1
5s+ 4 N4(24, 2) = 5 N4(4, 2) = 1 N4(9, 2) = 3 N4(14, 2) = 4

N4(19, 2) = 5

5.3 Quaternary Hermitian LCD [n, 2, d4(n, 2)− 1] codes

Similar to the previous subsection, here we give a classification of quaternary
near-optimal Hermitian LCD [n, 2, d4(n, 2) − 1] codes. Similar to Proposi-
tion 5.1, we have the following:

13



Proposition 5.3. There is a one-to-one correspondence between equiva-

lence classes of quaternary Hermitian LCD [4r, 2, 3r] codes with dual dis-

tances d⊥ ≥ 2 and equivalence classes of quaternary Hermitian LCD [5s +
t, 2, d4(5s+ t, 2)−1] code with dual distances d⊥ ≥ 2 for every integer s ≥ s′,

where r and s′ are listed in Table 3.

Table 3: d4(n, 2)− 1, s′ and r

n d4(n, 2) − 1 s′ r n d4(n, 2) − 1 s′ r

5s 4s − 2 9 10 5s + 3 4s 10 12
5s + 1 4s − 1 8 9 5s + 4 4s + 1 9 11
5s + 2 4s 7 8

Our computer search completed a classification of all quaternary near-
optimal Hermitian LCD [4r, 2, 3r] codes with dual distances d⊥ ≥ 2 for
r listed in Table 3 and all quaternary near-optimal Hermitian LCD [5s +
t, 2, d4(5s + t, 2) − 1] codes with dual distances d⊥ ≥ 2 for s < s′, where
s′ is given in Table 3. In Table 4, we list the numbers N ′

4(4r, 2) of the in-
equivalent quaternary near-optimal Hermitian LCD [4r, 2, 3r] codes and the
numbers N ′

4(5s+ t, 2) of the inequivalent quaternary near-optimal Hermitian
LCD [5s+ t, 2, d4(5s+ t, 2)−1] codes. From Proposition 5.3 and Table 4, we
have the following:

Proposition 5.4. (i) There are 15 inequivalent quaternary near-optimal

Hermitian LCD [5s, 2, 4s−2] codes with dual distances d⊥ ≥ 2 for every

integer s ≥ 7.

(ii) There are 7 inequivalent quaternary near-optimal Hermitian LCD [5s+
1, 2, 4s− 1] codes with dual distances d⊥ ≥ 2 for every integer s ≥ 5.

(iii) There are 8 inequivalent quaternary near-optimal Hermitian LCD [5s+
2, 2, 4s] codes with dual distances d⊥ ≥ 2 for every integer s ≥ 5.

(iv) There are 22 inequivalent quaternary near-optimal Hermitian LCD [5s+
3, 2, 4s] codes with dual distances d⊥ ≥ 2 for every integer s ≥ 8.

(v) There are 12 inequivalent quaternary near-optimal Hermitian LCD [5s+
4, 2, 4s+ 1] codes with dual distances d⊥ ≥ 2 for every integer s ≥ 6.
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Table 4: N ′
4(n, 2)

n N ′
4(4r, 2) N ′

4(5s + t, 2) (s < s′)

5s N ′
4(40, 2) = 15 N ′

4(5, 2) = 1 N ′
4(10, 2) = 5 N ′

4(15, 2) = 9
N ′

4(20, 2) = 11 N ′
4(25, 2) = 13 N ′

4(30, 2) = 14
N ′

4(35, 2) = 15
5s+ 1 N ′

4(36, 2) = 7 N ′
4(6, 2) = 2 N ′

4(11, 2) = 3 N ′
4(16, 2) = 5

N ′
4(21, 2) = 6 N ′

4(26, 2) = 7 N ′
4(31, 2) = 7

5s+ 2 N ′
4(32, 2) = 8 N ′

4(7, 2) = 2 N ′
4(12, 2) = 4 N ′

4(17, 2) = 6
N ′

4(22, 2) = 7 N ′
4(27, 2) = 8

5s+ 3 N ′
4(48, 2) = 22 N ′

4(8, 2) = 2 N ′
4(13, 2) = 7 N ′

4(18, 2) = 12
N ′

4(23, 2) = 16 N ′
4(28, 2) = 18 N ′

4(33, 2) = 20
N ′

4(38, 2) = 21 N ′
4(43, 2) = 22

5s+ 4 N ′
4(44, 2) = 12 N ′

4(4, 2) = 1 N ′
4(9, 2) = 2 N ′

4(14, 2) = 7
N ′

4(19, 2) = 8 N ′
4(24, 2) = 10 N ′

4(29, 2) = 11
N ′

4(34, 2) = 12 N ′
4(39, 2) = 12

For each C of the quaternary codes listed in Table 4, there is a vector
(m1, m2, . . . , , m5) ∈ Z5

≥0 with C2(m) ∼= C. For

(n, d) = (32, 24), (36, 27), (40, 30), (44, 33), (48, 36),

the corresponding vectors (m1, m2, . . . , m5) are listed in Table 5. For the
codes listed in Table 4, let V5s+t be the set of the corresponding vectors
(m1, m2, . . . , m5) for the inequivalent quaternary near-optimal Hermitian LCD
[5s+ t, 2, d4(5s+ t, 2)−1] codes with dual distances d⊥ ≥ 2. We verified that
V5(s−1)+t is obtained as:

{(m1 − 1, m2 − 1, . . . , m5 − 1) ∈ Z
5
≥0 | (m1, m2, . . . , m5) ∈ V5s+t}

for s ≤ s′. The corresponding vectors (m1, m2, . . . , , m5) can be also obtained
electronically from http://www.math.is.tohoku.ac.jp/~mharada/qLCD/.

5.4 Quaternary optimal Hermitian [n, 3] LCD codes

The largest minimum weights d4(n, 3) were determined in [2], where d4(n, 3)
are listed in Table 6. In this subsection, we complete a classification of
quaternary optimal Hermitian LCD codes of dimension 3.
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Table 5: (m1, m2, m3, m4, m5)

(n, d) (m1,m2,m3,m4,m5)
(32, 24) (3, 8, 8, 8, 5) (5, 8, 5, 6, 8) (6, 8, 5, 7, 6) (6, 8, 7, 4, 7)

(6, 8, 8, 7, 3) (7, 8, 4, 5, 8) (8, 8, 2, 7, 7) (8, 8, 8, 7, 1)
(36, 27) (6, 9, 7, 6, 8) (6, 9, 9, 6, 6) (8, 9, 3, 8, 8) (8, 9, 8, 2, 9)

(8, 9, 8, 4, 7) (8, 9, 8, 5, 6) (8, 9, 9, 6, 4)
(40, 30) (4, 10, 10, 7, 9) (6, 10, 7, 9, 8) (6, 10, 7, 10, 7) (6, 10, 9, 10, 5)

(7, 10, 5, 8, 10) (8, 10, 7, 8, 7) (8, 10, 9, 5, 8) (8, 10, 9, 6, 7)
(9, 10, 9, 6, 6) (9, 10, 9, 8, 4) (9, 10, 10, 2, 9) (10, 10, 1, 9, 10)
(10, 10, 9, 3, 8) (10, 10, 10, 5, 5) (10, 10, 10, 7, 3)

(44, 33) (4, 11, 9, 10, 10) (7, 11, 10, 8, 8) (8, 11, 8, 8, 9) (8, 11, 11, 6, 8)
(9, 11, 6, 10, 8) (10, 11, 10, 3, 10) (10, 11, 10, 6, 7) (10, 11, 8, 5, 10)
(10, 11, 9, 8, 6) (10, 11, 11, 10, 2) (11, 11, 6, 10, 6) (11, 11, 8, 10, 4)

(48, 36) (5, 12, 12, 11, 8) (8, 12, 9, 8, 11) (8, 12, 10, 11, 7) (9, 12, 9, 12, 6)
(9, 12, 10, 9, 8) (9, 12, 10, 10, 7) (9, 12, 11, 6, 10) (10, 12, 6, 9, 11)
(10, 12, 11, 5, 10) (11, 12, 1, 12, 12) (11, 12, 2, 11, 12) (11, 12, 6, 8, 11)
(11, 12, 7, 10, 8) (11, 12, 10, 12, 3) (11, 12, 11, 4, 10) (12, 12, 3, 9, 12)
(12, 12, 4, 9, 11) (12, 12, 5, 7, 12) (12, 12, 6, 7, 11) (12, 12, 7, 9, 8)
(12, 12, 9, 10, 5) (12, 12, 10, 7, 7)

We apply Theorem 4.3 to k = 3. For n ≥ 3, write n = 21s+ t, where s ∈
Z≥0 and t ∈ {0, 1, . . . , 20}. Let r = r21s+t,3,d4(21s+t,3) and s′ = s′21s+t,3,d4(21s+t,3)

be the integers defined in (3) and (7), respectively. For each 21s+ t, we list
d4(21s+ t, 3), s′ and r in Table 6. Then d4(21s+ t, 3) is written as 16s+α(t),
where α(t) is a constant depending on only t. Since d4(21s + t, 3) satisfies
the assumption (6) in Theorem 4.3, we have the following:

Proposition 5.5. There is a one-to-one correspondence between equiva-

lence classes of quaternary Hermitian LCD [4r, 3, 3r] codes with dual dis-

tances d⊥ ≥ 2 and equivalence classes of quaternary Hermitian LCD [21s +
t, 3, d4(21s+ t, 3)] code with dual distances d⊥ ≥ 2 for every integer s ≥ s′.

By the method given in Section 5.1, our computer search completed a
classification of all quaternary optimal Hermitian LCD [4r, 3, 3r] codes with
dual distances d⊥ ≥ 2 for r listed in Table 6. The numbers N4(4r, 3) of all
inequivalent quaternary optimal Hermitian LCD [4r, 3, 3r] codes with dual
distances d⊥ ≥ 2 are listed in Table 7. In addition, our computer search
completed a classification of all quaternary optimal Hermitian LCD [21s +
t, 3, d4(21s + t, 3)] codes with dual distances d⊥ ≥ 2 for s < s′, where s′ is
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Table 6: d4(n, 3), s
′ and r

n d4(n, 3) s′ r n d4(n, 3) s′ r

21s 16s− 1 5 21 21s + 11 16s + 7 6 29
21s + 1 16s− 1 8 37 21s + 12 16s + 8 5 24
21s + 2 16s 7 32 21s + 13 16s + 9 4 19
21s + 3 16s+ 1 6 27 21s + 14 16s + 9 7 35
21s + 4 16s+ 2 5 22 21s + 15 16s + 10 6 30
21s + 5 16s+ 3 4 17 21s + 16 16s + 11 5 25
21s + 6 16s+ 3 7 33 21s + 17 16s + 12 4 20
21s + 7 16s+ 4 6 28 21s + 18 16s + 13 3 15
21s + 8 16s+ 5 5 23 21s + 19 16s + 13 6 31
21s + 9 16s+ 6 4 18 21s + 20 16s + 14 5 26
21s+ 10 16s+ 6 7 34

given in Table 6. The numbers N4(21s + t, 3) of all inequivalent quaternary
optimal Hermitian LCD [21s+ t, 3, d4(21s + t, 3)] codes with dual distances
d⊥ ≥ 2 are also listed in Table 7. From Proposition 5.5 and Table 7, we have
the following:

Theorem 5.6. (i) Suppose that t ∈ {0, 12}. Then there are 7 inequivalent

quaternary optimal Hermitian LCD [21s+t, 3] codes with dual distances

d⊥ ≥ 2 for every integer s ≥ 2 if t = 0 and s ≥ 1 if t = 12.

(ii) There are 12808 inequivalent quaternary optimal Hermitian LCD [21s+
1, 3] codes with dual distances d⊥ ≥ 2 for every integer s ≥ 5.

(iii) Suppose that t ∈ {2, 11}. Then there are 318 inequivalent quaternary

optimal Hermitian LCD [21s + t, 3] codes with dual distances d⊥ ≥ 2
for every integer s ≥ 3.

(iv) Suppose that t ∈ {3, 15}. Then there are 147 inequivalent quaternary

optimal Hermitian LCD [21s + t, 3] codes with dual distances d⊥ ≥ 2
for every integer s ≥ 3 if t = 3 and s ≥ 2 if t = 15.

(v) Suppose that t ∈ {4, 13}. Then there are 4 inequivalent quaternary

optimal Hermitian LCD [21s + t, 3] codes with dual distances d⊥ ≥ 2
for every integer s ≥ 1.
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Table 7: N4(n, 3)

n N4(4r, 3) N4(21s+ t, 3) (s < s′)
21s N4(84, 3) = 7 N4(21, 3) = 5 N4(42, 3) = 7 N4(63, 3) = 7

21s+ 1 N4(148, 3) = 12808 N4(22, 3) = 1871 N4(43, 3) = 9793 N4(64, 3) = 12405
N4(85, 3) = 12781 N4(106, 3) = 12808 N4(127, 3) = 12808

21s+ 2 N4(128, 3) = 318 N4(23, 3) = 135 N4(44, 3) = 288 N4(65, 3) = 318
N4(86, 3) = 318 N4(107, 3) = 318

21s+ 3 N4(108, 3) = 147 N4(24, 3) = 73 N4(45, 3) = 138 N4(66, 3) = 147
N4(87, 3) = 147

21s+ 4 N4(88, 3) = 4 N4(4, 3) = 0 N4(25, 3) = 4 N4(46, 3) = 4
N4(67, 3) = 4

21s+ 5 N4(68, 3) = 1 N4(5, 3) = 0 N4(26, 3) = 1 N4(47, 3) = 1
21s+ 6 N4(132, 3) = 2162 N4(6, 3) = 2 N4(27, 3) = 937 N4(48, 3) = 1948

N4(69, 3) = 2145 N4(90, 3) = 2162 N4(111, 3) = 2162
21s+ 7 N4(112, 3) = 44 N4(7, 3) = 1 N4(28, 3) = 30 N4(49, 3) = 44

N4(70, 3) = 44 N4(91, 3) = 44
21s+ 8 N4(92, 3) = 23 N4(8, 3) = 1 N4(29, 3) = 18 N4(50, 3) = 23

N4(71, 3) = 23
21s+ 9 N4(72, 3) = 1 N4(9, 3) = 1 N4(30, 3) = 1 N4(51, 3) = 1
21s+ 10 N4(136, 3) = 947 N4(10, 3) = 13 N4(31, 3) = 589 N4(52, 3) = 889

N4(73, 4) = 947 N4(94, 3) = 947 N4(115, 3) = 947
21s+ 11 N4(116, 3) = 318 N4(11, 3) = 13 N4(32, 3) = 220 N4(53, 4) = 309

N4(74, 3) = 318 N4(95, 3) = 318
21s+ 12 N4(96, 3) = 7 N4(12, 3) = 2 N4(33, 3) = 7 N4(54, 3) = 7

N4(75, 3) = 7
21s+ 13 N4(76, 3) = 4 N4(13, 3) = 2 N4(34, 3) = 4 N4(55, 3) = 4
21s+ 14 N4(140, 3) = 5736 N4(14, 3) = 156 N4(35, 3) = 3562 N4(56, 3) = 5398

N4(77, 3) = 5709 N4(98, 3) = 5736 N4(119, 3) = 5736
21s+ 15 N4(120, 3) = 147 N4(15, 3) = 28 N4(36, 3) = 118 N4(57, 3) = 147

N4(78, 3) = 147 N4(99, 3) = 147
21s+ 16 N4(100, 3) = 44 N4(16, 3) = 10 N4(37, 3) = 39 N4(58, 3) = 44

N4(79, 3) = 44
21s+ 17 N4(80, 3) = 1 N4(17, 3) = 1 N4(38, 3) = 1 N4(59, 3) = 1
21s+ 18 N4(60, 3) = 1 N4(18, 3) = 1 N4(39, 3) = 1
21s+ 19 N4(124, 3) = 947 N4(19, 3) = 196 N4(40, 3) = 774 N4(61, 3) = 930

N4(82, 3) = 947 N4(103, 3) = 947
21s+ 20 N4(104, 3) = 23 N4(20, 3) = 10 N4(41, 3) = 23 N4(62, 3) = 23

N4(83, 3) = 23
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(vi) Suppose that t ∈ {5, 9, 17, 18}. Then there is a unique quaternary op-

timal Hermitian LCD [21s + t, 3] code with dual distance d⊥ ≥ 2, up
equivalence, for every integer s ≥ 1 if t = 5 and s ≥ 0 if t ∈ {9, 17, 18}.

(vii) There are 2162 inequivalent quaternary optimal Hermitian LCD [21s+
6, 3] codes with dual distances d⊥ ≥ 2 for every integer s ≥ 4.

(viii) Suppose that t ∈ {7, 16}. Then there are 44 inequivalent quaternary

optimal Hermitian LCD [21s + t, 3] codes with dual distances d⊥ ≥ 2
for every integer s ≥ 2.

(ix) Suppose that t ∈ {8, 20}. Then there are 23 inequivalent quaternary

optimal Hermitian LCD [21s + t, 3] codes with dual distances d⊥ ≥ 2
for every integer s ≥ 2 if t = 8 and s ≥ 1 if t = 20.

(x) Suppose that t ∈ {10, 19}. Then there are 947 inequivalent quaternary

optimal Hermitian LCD [21s + t, 3] codes with dual distances d⊥ ≥ 2
for every integer s ≥ 3.

(xi) There are 5736 inequivalent quaternary optimal Hermitian LCD [21s+
14, 3] codes with dual distances d⊥ ≥ 2 for every integer s ≥ 4.

For each C of the quaternary codes listed in Table 7, there is a vector
m ∈ Z21

≥0 with C3(m) ∼= C. The vectorsm can be obtained electronically from
http://www.math.is.tohoku.ac.jp/~mharada/qLCD/. For the codes listed
in Table 7, let V21s+t be the set of the corresponding vectors (m1, m2, . . . , m21)
for the inequivalent quaternary optimal Hermitian LCD [21s+t, 3] codes with
dual distances d⊥ ≥ 2. We verified that V21(s−1)+t is obtained as:

{(m1 − 1, m2 − 1, . . . , m21 − 1) ∈ Z
21
≥0 | (m1, m2, . . . , m21) ∈ V21s+t}

for s ≤ s′.
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