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Abstract. We discuss the classification of solutions to the zero-surface-tension
model for Hele-Shaw flows in bounded and unbounded regions with suction and
injection. We use results from the theory of univalent functions to derive estimates
for certain geometric properties of the fluid region in the injection case.

1. Introduction. Recently Howison et al. [8, 9, 11, 12] have proposed a classifi-
cation of the evolution of the free boundary between fluid and air in a Hele-Shaw
cell in the “suction” case, essentially dividing such solutions into those that blow up
and those that do not. Our aim is to extend this classification to include some cases
missed in the earlier study, to interpret our examples in the light of the Carathéodory
theorem of univalent function theory, and finally, to give some estimates for the lin-
ear dimension of the fluid region in the injection case.

We use the following simple dimensionless model (Howison [10] and references
therein):

—APZQ([)é(X, y)’ (1)
for the pressure p in the fluid region D(t), which is a bounded or unbounded simply-
connected open region in the plane, together with the zero-surface-tension dynamic
boundary condition

p=0 (2)
and the kinematic boundary condition
OF
< _vF. =0
57 ~ VE-Vp (3)

on the moving boundary F(x,y,t) = 0. Here the right-hand term in (1) is a
mathematical model for a sink or a source of strength Q(¢) at the origin. Finally,
the initial fluid region is given by

D(0) = D, (4)
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The above model can be reformulated in terms of a complex potential and an auxiliary
mapping of the fluid region onto a fixed canonical domain, the unit disk U = {{ € C:
I£| < 1} (see Hohlov [6] and Howison [10] for surveys of the method). Let us
denote such a mapping f: U — D(t) by z = f({, t), normalized by the conditions
f(0,t) =0, f(0,t) >0. The moving boundary in the model is the boundary of
the domain D(¢) = f(U, t), where f is a solution of the nonlinear boundary value
problem

af,0f\ _ Q) B
m(ﬁ a?)‘?’ =1, (5)

fE,0=1/1&), (LU,

where the initial domain D, = f,(U) is given. We consider only the case when
Q(t) = Q is constant, since nonconstant @ can be treated by a change of time
variable. We note that Q < 0 corresponds to suction and @ > 0 to injection, but
we also note that the problem is formally time-reversible (Q — -Q,p — —p,t —
—1); there is, however, a considerable difference between the two cases in that the
injection case is well posed at least in its weak formulation, while the suction case
is not (see Howison et al. [11] for discussion of this point, to which we also return
below). Here we shall be concerned with the classical solution, which can blow up
(via nonanalyticity of the moving boundary) in either case; roughly speaking, in the
injection case, the solution can be continued beyond the blow-up time, while in the
suction case, this is generally impossible, and the blow-up is terminal.

In Sec. 2, we shall assume that Q < 0 (suction), and we shall give several examples
illustrating the various kinds of behaviour that can occur when D(t) is finite. In
Sec. 3, we discuss these solutions in the context of Carathéodory kernel convergence.
Sections 4 and 5 contain some geometric estimates for the well-posed case (Q > 0).

2. Classification of flows in bounded regions. It is possible to construct many ex-
plicit solutions to the Hele-Shaw problem using the nonlinear boundary value problem
(5). The idea is simply to choose a functional form for f({, ) depending on one or
more parameters that are functions of time and then to find differential equations for
these functions from (5). Naturally this procedure does not work for all functional
forms, but it can be shown that whenever f({, ) is a rational function (which in-
cludes polynomials as a special case), then it does yield an explicit solution. All the
examples we give below are rational functions, and further details of these solutions,
together with a review of the literature on exact solutions, are given in (Hohlov [6],
Howison [10]); thus, here we simply cite the formulae (which can be verified using
(5))-

A. Solutions removing all the fluid from a finite region. This case is straightforward
because the problem is time-reversible.

THEOREM 1. Let D, be a bounded domain and suppose that for some 7, the area
of the domain D(T,) is equal to zero:

\D(T,)[ = 0;

then the initial domain is a disk centred on the sink. This is the only such case.
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The solution for the initial domain D, = {z € C: |z| < Ry} is given by the

mapping
S, 0=\/Ry+Qt/n L,

and there is a natural stopping time for the model. This is the time 7, = —|D,|/Q
when the limiting domain D(T,) = f(U, T,) is the point z = 0 and the linear
measure of the residual region of fluid is equal to zero.

B1. Solutions that develop singularities in the moving boundary in finite time and
before it reaches the sink. This was in fact the first type of nontrivial solution for Hele-
Shaw flows in bounded regions to be constructed by complex analytic methods (see
the review in Hohlov [7]). The ill-posed character of the model with suction means
that the solution develops a singularity, frequently a cusp, in the moving boundary
in finite time; the velocity of the cusp point is infinite. The minimum distance from
the moving boundary to the sink may or may not vanish at the blow-up time (the
latter case is discussed in Sec. B2).

The classical solution ceases to exist at the time when the cusp forms, but it is
possible to subdivide these solutions into (a) solutions that cannot be continued
beyond the blow-up time, such as the cardioid solution of Polubarinova-Kochina
(1945) which we describe below, and (b) solutions with a free boundary that is regular
analytic both before and after the cusp formation.

Polubarinova-Kochina’s example is the quadratic mapping f({, ) = a,(£){ +

a, ()¢ 2 where a, and a, satisfy the nonlinear system of algebraic equations

a,(t)ay(t) = a}(0)ay(0),
a’ (1) +2a5(t) = a;(0) + 2a5(0) + Q1/.

If, for example, 4,(0) = 1, a,(0) = 1/4, then blow-up occurs at t = T, =
—-9n(1 — 2_2/3/3)/Q when a, = 2743, a, = 27773 At this time a 3/2-power cusp
has appeared at the image of { = —1, and the solution cannot be continued for

t > T, without some regularization of the model (see Fig. 1 on p. 780).

For our second example, we consider a cubic mapping f({, ¢) = a,(1)¢ +a2([)C2 +
a,(1)¢ . In general this function produces a 3/2-power cusp corresponding to a
simple zero of 8f/8(, but with the appropriate choice of 4;(0), it is possible to
arrange for the cusp to be of 5/2-power type, and it is shown in Howison [8] that in
this case the solution is regular analytic both immediately before and after the blow-
up. We choose the cusp to occur at the image of { = 1, and then blow-up occurs when
al(T*) + 2a2(T*) + 3a3(T*) = 0. If in addition al(T*) + 8a2(T*) + 27a3(T*) =0,
then the cusp is a 5/2-power one. It is straightforward to arrange this by suitable
choice of the initial data (see Figs. 2 and 3 on pp. 780 and 781, where the captions
give details of the parameters used).

Solutions of this type can be constructed using higher-degree polynomials to obtain
higher-degree cusps (7/2-power from quartic f({, t), 9/2-power from quintic, and
so on), although as seen above, the initial values of the a, are very special. Contin-
uation beyond the blow-up time occurs only for (2N + 1)/2-power cusps (Howison
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FiG. 1. The cardioid solution.

F1G. 2. The cubic solution, showing a 5/2-power cusp at ¢ = T,
when a, =1, a, =-4/5, a;=1/5.

[8]), although for the polynomial f({, ) eventual blow-up without continuation is
guaranteed before all the fluid has been extracted and before the moving bound-
ary reaches the sink (Fig. 3). This fact was known to Galin {3], but his proof was
incorrect. A correct proof is as follows.
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FiG. 3. The cubic solution near the cusp. From right to left, ¢ =
T* — 0.00042|Q/n|, T" (the 5/2-power cusp), T* + 0.0010|Q/x|,

T" +0.0019|Q/n|. At the last of these, a, = (3/5)"*
3/2-power cusps have formed.

, and two

THEOREM 2. When the initial mapping function is a polynomial of degree N > 2,
cusp formation is guaranteed before the moving boundary reaches the sink.

Proof. Suppose that the polynomial is f,({) = EHNZI an(t)C" , where a,(0) # 0;
then substitution into (5) yields N ordinary differential equations for the coefficients
a,(t), of which the first yields the area relation

d & 2
7, 2_nla,|"=0Q/x,
n=1

and the last relates a, and a, via

%(afv a,) =0.

Now if the area of D(¢) reaches zero or the moving boundary reaches the sink at
the stopping time T,, then |a,(7,)] = O (see Theorem 3 below). However, this
contradicts the fact, which follows from the second of the differential equations, that
a,(O"a,(t) = a,(0)" @, (0) #0.

Before moving on, we remark that it is likely that blow-up can occur by means
other than a zero-angle cusp in the moving boundary. Since problem (1)-(4) (or (5))
is formally time-reversible, one may speculate that injection into a domain with, for
example, piecewise analytic boundary (such as a square) might in the right circum-
stances produce a sequence of domains with analytic boundaries whose time reversal
would blow up without a cusp. However, very little seems to be known about even
the existence of classical solutions with this behaviour.

B2. Solutions in which the moving boundary reaches the sink leaving residual fluid
in a finite region. A time reversal argument, involving reversal of the sequence of
domains created by injection at a source initially situated at the boundary, suggests
that this situation is possible and indeed there is a variety of exact solutions for
this case. We describe three rational solutions of this type. In the first, the residual
domain has an analytic boundary (a circle) containing the sink; in the second, it is a
cardioid with the sink at the tip of the cusp, illustrating blow-up with a cusp at the
sink; in the third, it consists of two circles touching at the sink, a case in which the
connectivity of D(f) changesat t=T,.

In the first example, the mapping is a special case of the three-parameter rational
function a(t){(1 + b(1)¢)/(1 + ¢(1)¢), chosen to have the correct form at t = T, .
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Itis

(2a* = o’ + Qt/7) — (&’ + aQt/7)
20%({ - a)

f&,n=¢

>

where a = a(t) is the root of the algebraic equation
2a° - (201/n + 5)a* + Q*F/nt =0,

satisfying the condition lim,_’_n/Q a(t) = —1. The initial domain D, = f(U, 0) is
given by the mapping f({, 0) = {(4 — \/5/2{)/2({ — \/5/2), and the stopping time
T, is —n/Q . At this moment the moving boundary reaches the sink and the residual
region of fluid is the disk {z € C: |z + 1| < 1}; see Fig. 4.

Our second example is obtained by composing the example just given with the
cardioid solution yielding a rational function which is the ratio of a quartic to a
quadratic. The details are complicated, but the upshot is sketched in Fig. 5; the
residual domain is a cardioid with the sink at the tip of its cusp. This example thus
illustrates blow-up by a 3/2-power cusp reaching the sink.

Our third example is a special case of the rational mapping a{(1 +b2C2)/(1 +c262)
with the parameters chosen so that the final domain consists of two equal circles
touching at z=0. It1is

fiC,n= LS/Z [\/(1 —a®)?+16a° —4Qt/m - 1 + o’
2a (6)

+ (1= ) (/1= a2 + 160> — 1 +a)/2(1 - al?)| |

where a = a(¢) is the unique root of the equation

3+az_\/(1 —-a’)’ + 16a3—2\/(1 - o) + 160 +4Qt/n =0

FiG. 4. A solution for which the moving boundary reaches the sink
while remaining analytic.
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FiG. 5. A 3/2-power cusp forms just as the moving boundary reaches
the sink.

at the interval (0, 1), which tends to 1 as t — T, = —4n/Q. The initial domain
D, = f(U, 0) is given by the mapping

3-al - 2a,t*
fg o= BT m20l) g,
6,/a(1 — ayl?)
The stopping time 7, is —4n/Q. At this moment two cusps form at the sink and

the residual region of fluid is the union of the two unit disks {z € C: |z || <1},
and the sink is at the common point of their closures (Fig. 6).

FiG. 6. A solution leaving two discs as the moving boundary reaches
the sink.
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Note that this solution is different from that of Richardson [17], who described
injection at equal rates from the points z = x1, thereby generating two expanding
discs which touched at the origin; thereafter the fluid region was simply connected.

3. Hele-Shaw flows and the Carathéodory theorem of kernel convergence. In this
section we relate our examples to the concept of Carathéodory kernel convergence.
We recall the following definition (see Aleksandrov [1], Duren {4]):

Let {D(t)}tG[a,b]’ 0 < a < b < oo, be a continuous one-parameter family of do-
mains in the complex plane. Then if the origin is an interior point of ﬂte[a,b]{D(t)}
for ¢ sufficiently close to, but not equal to, T, € [a, b], the kernel of the family
{D(t)},ela,b] with respect to the origin is defined to be the largest domain D_ con-
taining the origin such that, for any compact subset Z° of D_, there exists 6§ = 6(%)
such that Z c D(t) forall tefa,d], O<|t—-T,|<d.If O¢€ ﬂtela,b]{D(l)} for
all re€fa,b], 0<|t—T,] <6, but there is no neighbourhood of the origin that lies
in ﬂ,ela’b]{D(t)} , the kernel is defined to be {0} ; in this case the kernel is termed
degenerate. Note that in general the kernel D, does not coincide with the domain
D, .
TLet {D,},en be a sequence of domains in the complex plane The sequence {D,}
converges to D, in the sense of Carathéodory if every subsequence of {D,} has
the same kernel. The continuous family {D(t)} converges to D, for t — T, in
the sense of Carathéodory (D(t) — D, for t — T,) if every discrete subsequence
{D(z,)}, €la,b] of {D(¢)} has the same kernel.

The Caratheodory Convergence Theorem is the following: Suppose that {D(¢)} is
a continuous family of simply-connected domains, each of which contains the origin
and none of which is the whole plane; let D, be its kernel. Let f, map the unit
disc |{| < 1 onto D(r) with f,(0) = O,ﬂ(O) > 0. Then f, — f, uniformly on each
compact subset of |{| < 1 if and only if D(t) — D, # C for + — T,. Moreover,
f,(U) =D, . In the case of convergence, if D, = {0}, then f, =0 and vice versa.

This theorem enables us to state a general result for Hele-Shaw flows in which the
moving boundary reaches the sink.

THEOREM 3. If the moving boundary 8D(¢) of the continuous family {D(?)},
t € [0, T,], of solutions of the Hele-Shaw flow moving boundary problem (1)-
reaches the sink at ¢t = T, , the kernel D, of {D(t)} is degenerate, i.e., =
and f({,T,)=0.

Proof. Let f(, 1) =a(){+3,5, an(t)C" be the univalent mapping of the unit
disk U onto D(1).

Let us suppose that at time 7, a point z, of the moving boundary 0D(T,), the
image of { on |{| =1 reaches the sink z=0.

Applying the Koebe theorem (see Golusin [5] or Pommerenke [16]) we have the
estimate

(3)
{0}

Sa (T =317, T <IfC,, T =0
On the other hand, for any univalent function f the Bieberbach estimates (de
Branges [2]) for the coefficients,

la, (D] < n-la, ()],



SOLUTIONS TO THE ZERO-SURFACE-TENSION MODEL 785

imply that
tlinT1 la,(t)] =0 foranyn=2,3,....

Hence, f({, T,) =0, and we can apply the Carathéodory theorem above to conclude
that the continuous family {D(?)} (€00, 7.1 has the degenerate kernel D, = {0}.

In our examples above, the disc with centre at the sink was the only case in which
D(T,) = D, = {0} . In all other cases, either D_ is more than just {0} (for example,
the cardioid solution), or D, = {0} € D(T,), as when the remaining region is the
disc |z + 1] < 1. In the latter situation, although f({,T,) = 0, f({,t) has a
singularity (in the above example it is a pole) which approaches { = -1 as (1 T,;
f(£, t) tends to zero uniformly inside |{| < 1 but not on any subset of |{] < | that
contains the point { = —1.

4. A geometric estimate for flows in bounded regions. We now move on to give
some estimates for the growth of the fluid region in the injection (well-posed) case.
Thus, we now assume that Q > 0.

THEOREM 4. Let D, be a bounded domain such that a classical solution of the Hele-
Shaw problem with injection from a source of strength Q at the origin and initial
domain D, exists for any ¢ € [0, T]. Then the distance from the moving boundary
0D(t) to the source is bounded below by

dist(D(t), 0) > L\/R*(D,) + Qt/m,

where R(D,) is the conformal radius of the initial domain with respect to the origin.
Proof. Let f: U — D(t), f(0,t) =0, f(0,¢) >0 be a Riemann mapping
function of U onto D(t) such that for any ¢ € [0, T] the classical solution of the
Hele-Shaw problem exists.
Let us note that from the boundary condition (5) it is easy to obtain the integro-
differential representation
d f({, 1) / 1 o 28 = ¢
G =gl gy [ e o e,
Using the assumption that f'(0, ¢) > 0 and taking the limit { — 0, we obtain the
equation
Q

d ., . ’ | 1,08 -2
G 0l= 52170 0lss [ 1 0 b,

Let us write ¢(¢) = |f'(0, t)l2 and 7 = Qt/n; then we obtain the equation

do _
=10 =I(9),

where | _
umsﬁ/|fwﬂm*W>&
U

Using the mean value theorem for analytic functions in U, we have the following

estimate:
2

IO 2 g | [ o176 = 170, 0 = 7

I
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Therefore, x(¢) > 1, and so we have the differential inequality

d¢
E219

which means that ¢(7) > 7+ ¢(0), and consequently
70, 0" 2 Qt/x +11'(0, 0.

Finally, we have the conclusion of the theorem from the Koebe one-quarter theorem
{see Golusin [5] or Pommerenke [16]).

REMARK 1. There is no result corresponding to the one-quarter theorem of Koebe
for estimates of dist(D(¢), 0) from above. To obtain such an estimate for the suction
case, we would need to bound

1 2n ;g
3 | e ds

from above, and this is impossible because the derivative f’ on the boundary may
vanish in the case of loss of conformality (cusp formation of the moving boundary
which, as remarked above, can occur even in the well-posed case).

REMARK 2. The restriction to “classical solutions” means that Theorem 3 does
not apply directly to solutions that develop a cusp in their moving boundary but
nevertheless can be continued, as mentioned in Sec. 2B. In such cases a time reversal
of a suction problem shows that an initially analytic moving boundary can develop
a cusp, albeit of a restricted kind, while remaining regular analytic before and after
the cusp formation. The bound in the theorem would then have to be split into two
stages, one before and one after the cusp formation.

5. Flows in unbounded regions. When the fluid region is unbounded we have a
similar classification of solutions to the Hele-Shaw problem. We need a more precise
formulation of the notion of “unbounded” domain because there are many possibil-
ities; two commonly studied ones are the exterior of a bounded simply-connected
domain as in the “bubble” problem (Howison [9]) and a domain with the moving
boundary going to infinity as in the Saffman-Taylor finger solution for Hele-Shaw
flows in a channel (Taylor and Saffman [18]). Here we only consider the bubble
problem. The equations in this case are as before except that (1) is replaced by

-Ap=0
in the fluid region D(¢), with
D~ Qlog|z| as|z|— co.

A classification of solutions similar to that given above for finite regions is possible.
Here we remark that Sec. 2B1 suggests the possibility that in the bubble case too the
moving boundary may reach the sink, which in this case is at infinity, in finite time.
Such a bubble would shoot out a long finger of finite area to infinity; unfortunately
no such example is known.

In the injection case (shrinking bubble), we can derive an estimate on the dimen-
sions of the bubble similar to that given above for finite regions. In fact, we have
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THEOREM 5. Let a solution of the bubble problem with Q > 0 and initial domain
B, exist for any ¢ € {0, T]. Then the linear measure of the shrinking bubble at time
t is estimated by the following bound:

diam B(t) < 41/ C*(B,) - Qt/=,

where C(B,) is the capacity of the initial bubble.

Proof. Let F: U™ — D(t) be a Riemann mapping function of U~ onto D(¢)
such that for any ¢ € [0, T] the classical solution of the bubble problem exists. The
function F has an expansion near infinity of the form

F({, 1) = F'(oo, Dl +ay(t) +a () +---,

where F'(co, t) > 0 without loss of generality.
Let us suppose that for any ¢ € [0, T] the bubble B(¢) contains a fixed point z,,
thatis, F({, ) # z,. Then the function

is a univalent function in the unit disk with the required normalization. Using the
Bieberbach estimate |a,| < 2, we obtain the inequality

|2 — ag(D)] < 2IF' (00, )],
which means that for any ¢ the linear measure of the bubble is bounded by
diam B(t) < 4F (o0, ).

Now we estimate F’'(co, t) from above. Let us note that from the boundary condi-
tion (6) it is easy to obtain the integro-differential representation

dFE, 0 _ Q. 1 e 26l ¢
qi _EF(c,z)(—E/w_w(e,m , d@).

el + ¢

Using the assumption that F '(oo, ) > 0 and taking the limit { — oo, we obtain the
equation

d l B Q i -1 1,00 -2
SIF o 0= 2IF 0.0l (57 [ IFe 0 ).
Let us write w(¢) = |F'(co, t)|2 and t = Qt/n; then we obtain the equation
dyldt=v(y)=-yJ(¥),

where

1 i
JWy =5 | IFE

, 1) 2do > 0.

Using the mean value theorem for analytic functions in U™ , we have

1 1, i6 -2
E[’)U_[F (e, 1)] “db

-1

J(w) > =|F'(c0, 0)[ P =y
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Now from the estimate
v(y) < -1

for the vector field  , we have the differential inequality
dy
dt

which means that w(7) < -7+ w(0) and consequently

IF' (00, 0))> < —Qt/n +|F'(c0, 0))’.

S—l,

Finally, we have the estimate

diam B(t) < 4\/C*(B,) - Qt/,

where C(B,) = |F'(c0, 0)] is the capacity of the initial bubble.

6. Conclusion. We have reviewed the classification of finite simply-connected Hele-
Shaw flows driven by a single sink or source. When the driving mechanism is a sink,
there is always a time 7~ at which the classical solution with an analytic boundary
ceases to exist; this stopping time is always bounded by the ratio of the initial area of
fluid to the strength of the sink, i.e., the time to remove all the fluid, but this bound
is only achieved when D(0) is a disc centered on the origin. In all other cases, blow-
up occurs earlier, and we have given examples in which the blow-up occurs through
a cusp in the moving boundary. The moving boundary may or may not reach the
sink at the blow-up time; in the latter case (which we have proved to be generic for
polynomials of degree greater than one), it is possible in special circumstances to have
a classical solution for times greater than the initial blow-up time by continuation
after formation of a (2N + 1)/2-power cusp, although terminal blow-up is assured
later (and still before |[D(0)|/|Q|). In the latter case, which has not been discussed
in previous reviews of this kind, the moving boundary may or may not be analytic
when it reaches the sink; we have given examples of both types.
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