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Abstract. We add a possibility to the catalogue of scenarios given by Hohlov and
Howison for the behavior of Hele-Shaw free boundary flows when surface tension is as-
sumed to be absent: suction from an initially connected blob of fluid can result in regions
of fluid being left marooned some distance from the suction point.

1. Introduction. In a recent paper, Hohlov and Howison [1] proposed a classification
for solutions describing the evolution of the free boundary in a Hele-Shaw flow when the
zero-surface-tension boundary condition is employed. We contemplate a fluid region
that is initially bounded, connected, and simply-connected, and suppose the motion to
be driven by either injection or suction at just one point within this region. We add
a further possibility to the classification: suction may result in the connectivity of the
region occupied by the fluid being destroyed, leaving islands of fluid, possibly infinite in
number, isolated from the suction point.

The existence of such solutions follows simply from the time-reversible nature of the
flows. Suppose we begin with a number of disjoint blobs of fluid and then inject at a point
anywhere in the plane; it may be within a pre-existing blob, on the boundary of such a
blob, or in a region initially devoid of fluid. It is easy to envisage such a situation where
the consequent expansion will ultimately reach and absorb the outlying fluid regions. A
reversal of this flow, substituting suction for injection, must then result in the restoration
of the original distribution of fluid.

To follow this evolution analytically, and display explicit solutions showing this be-
haviour, it is convenient to exploit the Cauchy transform; see [3] for more details.

2. The Cauchy transform. Suppose the fluid at a given time to occupy a subset D
of the usual complex z-plane. To avoid complications that are not germane to the present
discussion, we shall suppose D to be bounded, but do not insist that it be connected
so that it is not a domain in the usual technical sense. We may suppose it to be the
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union of disjoint domains and, again merely to avoid unnecessary complications here, we
assume each disjoint component of D to be simply-connected, and to be the interior of
its closure. We also suppose the interior of the complement of D to be connected, but
not necessarily simply-connected; it contains a neighbourhood of infinity.

The Cauchy transform of D is a function, dependent on D, that is defined and con-
tinuous in the entire complex z-plane. On the interior of the complement of D it is an
analytic function he(z), and it is this portion of the Cauchy transform that is impor-
tant; we may contemplate the analytic continuation of he(z) into D where it will possess
singularities, but it is not there equal to the Cauchy transform of D.

If we begin with an empty Hele-Shaw cell and inject an area ttr2 at the point z = a,
the resultant circular disc has an associated function

r2
he(Z) = j—^. (2.1)

Now a crucial property of he(z) is that it is additive for disjoint subsets of the plane. If
we begin with an empty Hele-Shaw cell and inject at several points, the relevant he(z) is
just a sum of terms of the form (2.1); with only small areas injected, this corresponds to
a disjoint union of circular discs, but the same sum continues to describe any situation
reached as the discs grow and coalesce; we suppose the evolution does not result in any
region occupied by fluid becoming multiply-connected, a technical difficulty that will be
discussed in Sec. 5.

3. Examples. We can now give a simple, explicit example of the behaviour we seek
to demonstrate. Consider

R2 r2
he(z) = — + , (3.1)

z z — a

where we may suppose a to be real and positive. With R = 0, this represents a circular
disc of radius r and centre z — a produced, perhaps, by injection at z = a as was (2.1).
Suppose here that r < a, so that this disc does not cover the origin. Then injection of an
area nR2 at z = 0 produces (3.1). As R increases from 0 to a —r it represents two disjoint
circular discs; these coalesce when R = a — r, and further injection increasing R involves
a single, simply-connected blob. Reversal of this flow produces a suction problem with all
the fluid eventually removed from around the suction point, but with an isolated circular
disc of fluid left behind. A particular example is sketched in Fig. 1.

In one sense, the evolution under suction shown in Fig. 1 may be regarded as another
manifestation of cusp formation; we have carefully arranged that two cusps should form
at the same instant, coalescing as they do so and pinching off a region of fluid. However,
as with one of the examples discussed by Hohlov and Howison [1], the development of the
cusps does not here lead to blow-up in the usual sense; a perfectly acceptable solution
persists beyond this time. Moreover, the appearance of cusps here is an artefact of
our desire to produce an explicit analytic solution. We can easily envisage the injection
problem corresponding to Fig. 1 with the circular disc on the right replaced, for example,
by a body with a corner pointing towards the injection point. Reversal of this will produce
a pinching-off of a different character.
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Fig. 1. The solution given by (3.1) with a = 1.2 and r = 0.2. The
moving boundary is drawn for R = 0 to R = 2 at increments of 0.2.
Suction leaves behind a circular disc of fluid, but otherwise empties
the cell.

It is clear that we could elaborate on the solution of Eq. (3.1) and Fig. 1 in a number
of ways. For example, adding further simple poles to (3.1) will produce solutions with
any number, finite or infinite, of circular discs left behind following suction. However,
(3.1) itself may also be exploited in a different direction.

Consider (3.1) with R = 0, and the second term produced by injecting an area nr2
at z = a but now with r > a, so that this initial circular disc covers the origin. We
may now consider suction at the origin; with 7tR2 the area injected at z = 0, this simply
requires us to allow R2 to be negative in (3.1). This problem of injection or suction in
an initial circular disc was presented as an example in [2]. With suction (and a ^ 0), a
cusp develops in the moving boundary and the solution blows up when R2 = Rfi, where
i?o is the unique negative root of a cubic equation in R2, specifically

(2R2 + 2r2 + a2)3 = 27a2(r2 - R2)2. (3.2)

This equation does not appear in [2], but is easily deduced from the formulae given
therein.

Incorporating this solution into our scheme, we can obtain further explicit solutions
showing other features. Consider, for example, the function

ft'2 — r2 " 2
he(z) = (3.3)

z ~ak
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Fig. 2. The solution given by (3.3) with the values appearing in (3.4).
The moving boundary is drawn for R = 0 to R = 24 in increments of
3. Suction first leaves behind a blob with a cusp and then a circular
disc of fluid. The solution then blows up as a cusped body forms
about the suction point at the origin, marked with a dot.

where
n — 4, Rq = 9,

a\ = 2, a,2 = -10 + 6\/3i, a3 = 18.7 + 8i, a4 — 18.3 + 7.82i, > (3.4)
r\ = 175, r\ = 7, rf = -8.4656, r\ = 15.5844.

The motion produced by this for R between 0 and 24 is as in Fig. 2.
For R = 0 and the data in (3.4), the first term in (3.3) and the term with k = 1 in the

sum correspond to the larger cusped body about the suction/injection point at 2 = 0; it
is based on the solution (r/a)2 = 175/4 and (R/a)2 = —81/4 of (3.2). The term with
A; — 2 in the sum corresponds to the circular disc. The terms with k = 3 and k = 4 in
the sum correspond to the smaller cusped body; it is based on the solution (r/a)2 = 81
and {R/a)2 = —44 of (3.2).

Injection at the origin of an area 7ri?2 first affects only the cusped body about the
origin as R increases. At R = Ro = 9, this body becomes circular and simultaneously
hits and absorbs the circular blob, but the smaller cusped body remains unaffected. This
is hit and absorbed in turn at R — 12, and for R > 12 the fluid occupies a single, simply-
connected region. A reversal of this flow by suction then results in a fragmentation of
this region, followed by a blow-up. Note that here three cusps form at the instant the
cusped body is left behind, but only two take part in the pinching-off process.

The figures in (3.4) that produce the above effects, with all the interesting behaviour
occurring at values of R that are integer multiples of 3 and the two bodies precisely
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cusped, are exact except for the number 18.7 in 03—and the related number 18.3 in 04,
though the difference 03—04 = 0.4 + 0.18i is exact. Changing this 18.7 moves the smaller
cusped body, and it was determined visually so that the free boundary just touches this
body when R = 12.

It is evident that somewhat more complicated solutions could be constructed. Indeed,
since any simply-connected body can be approximated to arbitrary accuracy by a body
whose he{z) consists only of simple poles, the present methods have wide applicability.
Moreover, one may deal exactly with more general bodies by exploiting other forms
of he(z) for which we can obtain solutions. We note that the shapes obtained using
quadratic and cubic maps in [1] correspond to he(z) involving double and triple poles,
respectively; the cardioid appearing in [1] is a degenerate form of the cusped curves
appearing here, with the two simple poles in (3.1) allowed to coalesce into a double pole
in a manner familiar from classical inviscid hydrodynamics. Other cases given in [1] are
special instances of those considered here, and the present approach makes the algebra
somewhat more transparent and motivates the form these solutions take. For example,
Fig. 4 in [1] is the special case r = a of (3.1), while Fig. 6 results if we take n = 2,
Ro = 0, and ri = r2 = ai = — a2 (real and positive) in (3.3). One may also deal with
he(z) having logarithmic branch cuts (which may be produced by injecting along slits)
as shown in [3].

4. The conformal maps. The previous section concentrated solely on the function
he(z) because of the crucial role it plays, but we must still show how the geometric
configurations, as displayed in Figs. 1 and 2, for example, can be determined from he(z).
However, since an effective routine for doing this was given in [2], we here merely recall
the essentials as they pertain to the present situation.

Suppose we have an he{z) of the form (3.3) that we know corresponds to a connected,
simply-connected blob. For example, in Fig. 2 we have n = 1 for 0 < i? < 9, n = 2
for 9 < R < 12, and n = 4 for R > 12 if we are simply following the behaviour of
that connected region occupied by fluid that contains the injection/suction point at the
origin.

Let 2: = /(C) map the unit disc |C| < 1 conformally onto this region; it is convenient
here to require that /(0) = 0, as we may. Then the properties of the Cauchy transform
imply that

M/(0) - /(I/O is analytic for |C| < 1, (4.1)

where /(C) denotes the analytic function conjugate to /(C); that is, /(C) = /(C)- Equa-
tion (-3.3) then implies that /(1/C) must have the form

for some constants a, [3k, and 7^ with | < 1, whence

/<o = «c+ti^- <«>
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Ensuring the cancellation of the apparent simple poles in |£| < 1 of the two terms in
(4.1), we obtain the equations

af'(0) = R2 - Rq, fhk) = ak, Pkf'{lk)=r2k for k = 1,2,..., n. (4.3)

These are 2n+1 complex equations to determine the 2n+1 complex parameters in (4.2),
and the problem has been reduced to the solution of a system of algebraic equations.

Some thought implies that everything cannot be quite as straightforward as its seems,
for we know that we should also be able to specify arg{/'(0)}. In fact, the equations in
(4.3) are not independent; if we have any solution for the 2n+1 parameters a, /?&, and 7
then multiplying them all by the same constant of unit modulus produces another. The
imaginary part of the first equation is a consequence of the others and can be discarded.
The standard normalization with /'(0) > 0 can then be imposed, and is equivalent to
taking a to be real and of the same sign asi?2 — Rq. (If R2 — R^ = 0 then a = 0, but
this special case is much simpler with an exact solution in the context of Fig. 2.)

At first sight, the change in the form of the mapping in Fig. 2 as R passes through
the values R — 9 and R = 12 may seem curious, for the Caratheodory kernel theorem
implies that the mapping function f(() must be a continuous function of R for £ confined
to a compact subset of |£| < 1 if we maintain /'(0) > 0 throughout. In fact, considering
the injection problem, as R increases through a value where n in (4.2) increases, the
new poles are born on the unit circle |£| = 1 with zero residue, while the coefficients
involved in the already-existing poles vary in a continuous manner; so the conclusions of
this theorem are respected.

If he(z) should have poles of order greater than one, or possess logarithmic branch
points as in [3], a similar solution procedure to the above is available. The form of
the mapping can be written with unknown coefficients, and these coefficients are then
determined by solving a system of equations similar to (4.3).

5. Concluding remarks. At the end of Sec. 3 we indicated how the present approach
can be exploited to furnish more general solutions. However, it should be pointed out
that the shapes of the blobs left behind as the main blob retreats under suction cannot
be completely arbitrary, there being restrictions imposed by the curious role played by
multiple-connectivity in such problems. Suppose, for example, that we contemplate
injection as envisaged in Fig. 2, but turn the small cusped body through 180°. (This
may be effected by interchanging the values for rf and r2 in (3.4).) The advancing
boundary will then trap air in a region near the cusp. There is just one orientation of
this body for which the moving boundary hits it simultaneously at two points, but for a
range of orientations either side of this, the evolution will also lead to the formation of
an air pocket whose properties must then be considered. If we make the assumption that
this air is incompressible (so that the air hole must stay a constant area) there appears
to be no solution consistent with our model beyond the instant when the hole is formed.
On the other hand, if we suppose the air within the hole to be maintained at the same
pressure as that at other points devoid of fluid, then a solution does exist with the air
hole decreasing in area and eventually vanishing. But now we run into difficulties when
we try to reverse this process in an attempt to obtain a suction problem that leaves
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the cusped body with this orientation behind. As the suction proceeds through the
configuration where the hole disappeared during injection, the blob must be provoked to
instigate the growth of the hole at the correct place. Even if this can be arranged, we
are then faced with a greater difficulty, for such problems involving the growth of a hole
from a point appear to be ill-posed: uniqueness fails. A more detailed discussion of such
subtleties, arising in a particular situation involving a doubly-connected region of fluid,
can be found in [4],
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