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ON THE CLASSIFICATION OF TIGHT CONTACT
STRUCTURES II

KO HONDA

Abstract
We present complete classification results for tight contact structures on
two classes of 3-manifolds: (i) torus bundles which fiber over the circle and
(ii) circle bundles which fiber over closed surfaces.

Introduction

Contact structures in dimension three come in two flavors: tight or
overtwisted. Overtwisted contact structures on closed 3-manifolds have
been classified for about a decade (due to Eliashberg [3]), having been
shown to reflect only homotopy-theoretic information of 2-plane fields on
the ambient manifold. Tight contact structures, on the other hand, seem
to reflect the underlying topology of the 3-manifold. However, until
recently, a complete classification of tight contact structures was known
only for a handful of 3-manifolds. The list more or less consisted of S3,
R3, S1×S2 (due to Eliashberg [4]), the 3-torus T 3 (proved independently
by Giroux and Kanda [14]), and a few lens spaces (due to Etnyre [6]).

Very recently the author [13] and Giroux [10] independently suc-
ceeded in completely classifying tight contact structures on solid tori
S1 × D2, T 2 × [0, 1], and lens spaces L(p, q), p > q > 0. The goal of
this paper is to apply the techniques developed in [13] to give complete
classification results for two basic classes of 3-manifolds: T 2-bundles
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which fiber over S1 and circle bundles which fiber over closed oriented
surfaces. Our classification of tight contact structures on T 2-bundles
over S1 completes the study initiated by Giroux in [9]. It should also
be noted that Giroux has also independently obtained similar results —
see [10] and [11]. However, although Giroux completely classifies tight
contact structures on almost all 3-manifolds of the type considered here,
there are a few tricky cases where he only gives an upper bound. In this
paper we devote considerable space to treat these tricky cases.

An important distinction in contact topology is the distinction be-
tween universally tight contact structures and virtually overtwisted con-
tact structures. (M, ξ) is universally tight if (M̃, ξ̃) is tight, where
M̃ → M is the universal cover and ξ̃ is the lift of ξ to M̃ . On the
other hand, (M, ξ) is virtually overtwisted if ξ is tight on M but be-
comes overtwisted when pulled back to some finite cover of M . It is
currently not known whether every tight contact structure falls into one
of the two categories (in other words, whether a tight contact structure
which becomes overtwisted when lifted to M̃ is overtwisted in a finite
cover) — however all known examples fall into one of the two categories,
and the dichotomy holds when π1(M) is residually finite (which is the
case, for example, when M is Haken or hyperbolic). Universally tight
contact structures with universal cover R3 are rather close in spirit to
taut foliations. In fact, a small perturbation of a taut foliation into
a contact structure is universally tight, due to the work of Eliashberg
and Thurston [5]. Moreover, it is possible to glue together universally
tight contact structures with universal cover R3 along incompressible
tori which are linearly foliated (this is due to Colin [1]). Largely due
to these two developments, understanding universally tight structures
with universal cover R3, in general, is a much more straightforward task
than understanding virtually overtwisted contact structures.

Another twist to understanding universally tight structures is the
realization that, in all known examples, the existence of an incompress-
ible torus implies the existence of a countable infinity of universally
tight structures, distinguished by the amount of ‘twisting’ that happens
transverse to the incompressible torus (the notion of ‘twisting’ will be
made precise below). The first examples are due to Giroux [7] and
Kanda [14] on the 3-torus, which were extended to all torus bundles
over S1 by Giroux [9], and subsequently to any 3-manifold which has
an incompressible torus which ‘persistently’ intersects another torus by
Colin [2].
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Throughout this paper, we assume all the 3-manifolds are oriented
and all the contact structures are oriented and positive, i.e., given by a
global 1-form α satisfying α ∧ dα > 0. We will assume the reader has
already read [13] and is familiar with convex surface theory, bypasses,
and the classification of tight contact structures on solid tori and T 2 ×
I. We will freely use terminology which is defined there. Also, when
we refer to an ‘isotopy’, we mean an isotopy in the C∞-category, as
opposed to a ‘contact isotopy’, which is an isotopy preserving the contact
structure.

Part 1. Tight contact structures on torus bundles
which fiber over the circle

The first part of this paper is devoted to classifying tight contact
structures on torus bundles over the circle. Giroux, in [9], showed that
there exist Z+-many tight structures on all T 2-bundles over S1, all uni-
versally tight. The goal of this paper is to complement his study of the
universally tight contact structures by a careful analysis of those that
are not necessarily universally tight — this is done as an application of
the classification of tight structures on T 2 × I in [13].

A T 2-bundle M over S1 can be viewed as T 2 × I = R2/Z2 × [0, 1]
with coordinates (x, t) = (x, y, t), together with the monodromy map
A : T 2 × {1} → T 2 × {0}, where (x, 1) �→ (Ax, 0). The T 2-bundle
only depends on the conjugacy class [A] in SL(2, Z). We will choose
convenient representatives in Lemma 2.1, which greatly facilitates our
classification.

0.0.1. Definition of twisting. In order to explain our classifica-
tion result, we first need to give some definitions and make the notion
of ‘twisting’ precise. Given a convex torus Σ = R2/Z2 in a tight contact
manifold, its slope is the slope of a closed linear curve on Σ which is
isotopic to a dividing curve. Observe that the slope is well-defined be-
cause the dividing curves are parallel and homotopically essential, if Σ
is inside a tight manifold. Given a slope s of a line in R2 (or R2/Z2), as-
sociate to it its standard angle α(s) ∈ RP1 = R/πZ. For α1, α2 ∈ RP1,
let [α1, α2] be the image of the interval [α1, α2] ⊂ R, where αi ∈ R are
representatives of αi and α1 ≤ α2 < α1 + π. A slope s is said to be
between s1 and s0 if α(s) ∈ [α(s1), α(s0)].

Consider a tight contact structure ξ on T 2× I with boundary slopes
si for T 2 × {i}, i = 0, 1. ξ is minimally twisting if every convex torus
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parallel to the boundary has slope s between s1 and s0. Define the I-
twisting of a tight ξ to be βI = α(s0)−α(s1) =

∑l
k=1(α(s k−1

l
)−α(s k

l
)),

where (i) s k
l

are slopes of T k
l
, k = 0, · · · , l, (ii) T0 = T 2 × {0}, T1 =

T 2 × {1}, and T k
l
, k = 1, · · · , l − 1 are mutually disjoint convex tori

parallel to the boundary, arranged in order from closest to T0 to farthest
from T0, (iii) ξ is minimally twisting between T k−1

l
and T k

l
, and (iv)

α(s k
l
) ≤ α(s k−1

l
) < α(s k

l
) + π. The I-twisting of ξ is well-defined and

independent of the choices of l and the T k
l
. For a proof of this fact

see Section 5.2 of [13]. Note that the I-twisting βI is dependent on the
particular identification of T 2 with R2/Z2. If we want to extract an
invariant which is independent of the identification, we take φI(ξ) =
π�βI

π �, where �·� is the greatest integer function.
Let ξ be tight on M . Then ξ is said to be minimally twisting in the

S1-direction, if every splitting of M along a convex torus Σ isotopic to
a fiber T 2 gives a minimally twisting (T 2× I, ξ). The S1-twisting βS1 of
ξ on M is the supremum, over all convex tori Σ isotopic to a fiber T 2,
of nπ, where n ∈ Z≥0, and nπ ≤ βI < (n + 1)π on the T 2 × I obtained
by cutting M along Σ.

Let us briefly mention the relationship to Giroux’s torsion invariant
[9]. On T 2 × [0, 1] 	 R2/Z2 × [0, 1] with coordinates ((x, y), z), consider
ξn = ker αn, n ∈ Z+, where αn = sin(πnz)dx + cos(πnz)dy. Given a
contact 3-manifold (X, ξ), together with an isotopy class [C] of tori in
X, we define the torsion tor(X, ξ, [C]) to be the supremum, over n ∈ Z+,
for which there exists a contact embedding φ : (T 2× [0, 1], ξn) ↪→ (X, ξ),
where φ(T 2 × {pt}) ∈ [C]. (We set the torsion to be zero if there is no
such embedding.) It follows from the classification of universally tight
contact structures on T 2 × I (see [13]) that

tor(T 2 × I, ξ, [T 2 × {pt}]) = φI(ξ),

provided the torsion is computed for a pre-Lagrangian boundary, and
φI is computed for a convex boundary with the same slope (a slight
perturbation of the pre-Lagrangian boundary).

0.0.2. Statement of theorem. We now state the classification
theorem. Depending on whether | tr(A)| > 2, = 2, or < 2, we have the
hyperbolic, parabolic, or elliptic classes. Each class has its own flavor.

Let S =
(

0 1
−1 0

)
, and T =

(
1 1
0 1

)
.

Theorem 0.1. Let M be a T 2-bundle over S1 with monodromy A.
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Then, up to contact isotopy, the tight contact structures are completely
classified as in the table below.

1. (Universally tight contact structures) For each A, there exist in-
finitely many universally tight contact structures, all homotopic as
plane fields but distinguished by their S1-twisting βS1. Depending
on A the set of possible values for βS1 are {2mπ|m ∈ Z≥0}, or
{(2m − 1)π|m ∈ Z+}.

2. (Elliptic case) The torus bundles are all Seifert fibered spaces which
fiber over S2 with 3 multiple fibers. All the tight contact structures
are of the type described in (1) and there are no virtually over-
twisted contact structures except when A = S (which has 1) and
A = (T−1S)2 (which has 2).

3. (Parabolic case) There is an abundance of universally tight contact
structures which are distinct from the ones generated by twisting
in the S1-direction — they are obtained by twisting in a direction
different from the S1-direction of the base. There are invariants
s ∈ Q (the slope), µ ∈ Z+ (the minimal dividing number), and
l ∈ Z (the holonomy) which distinguish these universally tight
contact structures. (For descriptions of these invariants, refer to
Section 2.) Note that not all the invariants are used in each case,
and that l degenerates when M is a circle bundle over a Klein
bottle.

4. (Hyperbolic case) In this generic situation, there is an abundance
of virtually overtwisted structures. All the tight contact structures
nevertheless survive passage to M̃ = T 2 × R.

5. Every tight contact structure ξ on M , with the exception of one
on A = S, two on A = (T−1S)2, one on A = T 2, and two on
A = Tn, n > 2, lifts to a tight structure ξ̃ on M̃ = T 2 × R.

We also remark that Giroux proved in [9] that there exist infinitely
many universally tight contact structures which are not only non-isotopic
but also non-isomorphic. Also, the hardest cases are some of the virtu-
ally overtwisted contact structures for the elliptic and parabolic cases
— Giroux gave only an upper bound in [10]. To prove the tightness
of these virtually overtwisted contact structures, we invoke a new glu-
ing technique called state traversal. This technique is independent of
Legendrian surgery and symplectic filling.
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Comments on the tables below:

1. In the elliptic cases, the tight contact structures under the ‘Min.
Twisting...’ column which are labeled ‘univ. tight’ (footnotes 1, 2,
3) also belong to the family of universally tight contact structures
in the column to the left labeled ‘Univ. Tight....’

2. In the hyperbolic cases, for each βS1 > 0 there is a unique uni-
versally tight contact structure. In the first row of the hyperbolic
cases (footnote 4), there are two when βS1 = 0 — these are also
included in the ‘Min. Twisting...’ column.

3. In the parabolic cases, for each βS1 > 0 there is a unique tight
contact structure. The universally tight contact structures with
zero twisting in the S1-direction (footnotes 5, 7, 8) all have βS1 = 0
but should be thought of as a different family of universally tight
contact structures. The two tight contact structures of footnote 9
also belong to the ‘Univ. Tight...’ column.

4. See footnote 6. These tight contact structures do not belong to
either column, but are placed here because of lack of space in the
tables.
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1. Tight contact structures on T 2 × I

1.1. Review. We will review some notions from [13]. For a more
thorough discussion, the reader is referred to [13]. Consider an oriented
convex surface Σ which is closed or with Legendrian boundary. Let ΓΣ

be the dividing set and #ΓΣ the number of connected components of ΓΣ.
If Σ has Legendrian boundary, we say a component Σi of Σ\ΓΣ is a ∂-
parallel component, if Σi is a half-disk, ∂Σi = α∪β, α is a connected arc
in ΓΣ, and β ⊂ ∂Σ is a connected arc. The corresponding component α
of ΓΣ is also called a ∂-parallel dividing curve. The sign of the ∂-parallel
component is the sign of the singular set on the interior of Σi. Assume
for simplicity that Σi is positive. There also exists a slightly larger half-
disk D ⊃ Σi, called the bypass half-disk with ∂D = α′ ∪ β′, where α′ is
a connected Legendrian arc, all of whose singular points have the same
sign −, β′ ⊂ ∂Σ is a connected Legendrian arc whose singular points
are −, +, − (in that order), and α′ and β′ meet only at their endpoints.
(The endpoints of α′ (= endpoints of β′) may overlap sometimes, when
we have a singular bypass.)

1.1.1. Classification. Consider T 2 × I with convex boundary
∂(T 2 × I) = T1 − T0 = T × {1} − T × {0}. Assume for simplicity that
the Ti are minimal, i.e., #ΓTi = 2. After choosing a convenient oriented
identification T 2 	 R2/Z2, we may assume that T1 has slope −p

q , where
p ≥ q > 0, and T0 has slope −1. Here the slope is the slope of a linear
curve on T 2 which is isotopic to a dividing curve. Assume without loss
of generality that the dividing curves are linear. Associate to −p

q its
continued fraction representative (r0, · · · , rk), where ri ≤ −2 for all i
(unless p = q = 1), and

−p

q
= r0 − 1

r1 − 1
r2−··· 1

rk

.

For this boundary data, we have the following, which is proven in
[13]:

Theorem 1.1. Consider T 2 × I with minimal convex boundary,
and assume the slopes of the dividing curves on T1 are −p

q , and the
slopes on T0 are −1. Assume we have fixed a characteristic foliation
which is adapted to T0 and T1.

1. T 2 × I has exactly |(r0 + 1)(r1 + 1) · · · (rk−1 + 1)(rk)| tight con-
tact structures with minimal I-twisting. Here, r0, ..., rk are the
coefficients of the continued fraction expansion of −p

q .
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2. For each n ∈ Z+, there exist exactly 2 tight structures on T 2 × I,
with nπ ≤ βI < (n + 1)π. These are universally tight.

The classification is up to isotopy.

The theorem does not depend on the precise characteristic foliation
on T0 and T1 — the count only depends on the dividing curves. For
this reason, we will often only refer to the dividing set Γ when we really
mean a dividing set Γ together with a characteristic foliation F which
is adapted to Γ.

The first part of Theorem 1.1 is proved by factoring a tight contact
manifold (T 2 × [0, 1], ξ) into basic slices T 2 × [ i

l ,
i+1

l ], i = 0, · · · , l − 1,
in a manner dictated by the continued fraction expansion of −p

q (using
bypasses). More precisely, the slopes s i

l
of T i

l
are obtained successively

from s i+1
l

by increasing the last entry of the corresponding continued
fraction representative by 1, so that we start with s1 = −p

q and end
with s0 = −1. Each basic slice is completely classified by the sign (+
or −) of the ∂-parallel components on a horizontal annulus from T i

l
to

T i+1
l

, and we prove that all possible sign combinations are allowed as
long as the slices in the factorization follow the pattern given by the
continued fraction expansion and each slice is tight — this is done by
embedding (T 2 × I, ξ) inside a tight structure for a lens space, obtained
by Legendrian surgery.

1.1.2. Intrinsic interpretation. Let us give a more intrinsic
description of the layering, based on the standard (Farey) tessellation
of the hyperbolic unit disk H2 = {(x, y)|x2 + y2 ≤ 1}. A basic slice
(T 2 × I, ξ) is a tight contact structure with minimal convex boundary,
minimal twisting, and boundary slopes s1 and s0 for which there exists
an edge of the tessellation from s1 to s0. This is equivalent to saying that
there exist corresponding shortest integral vectors v1, v0 which form an
oriented integral basis. There exist two possibilities for ξ up to isotopy
rel boundary.

Consider a minimally twisting tight contact structure (T 2×I, ξ) with
minimal convex boundary and slopes s1 and s0. We have a factorization
into basic slices T 2 × [ i

l ,
i+1

l ], i = 0, · · · , l− 1, where s1 < s l−1
l

< s l−2
l

<

· · · < s0. Here, consider the counterclockwise arc [s1, s0] ⊂ ∂H2, and
write a < b if b is closer to s0 than a on [s1, s0]. The sequence of slopes
s i

l
is the shortest counterclockwise sequence of slopes from s1 to s0,

where each consecutive pair represents an edge of the tessellation.
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Figure 1: The standard tessellation of the hyperbolic unit disk.

Define a continued fraction block to be a maximal union of basic slices
T 2 × [ l1

l , l1+1
l ], · · · , T 2 × [ l2−1

l , l2
l ], so that the corresponding shortest

integer vectors v l1
l

, · · · , v l2
l

satisfy det(v l1
l

, v l1+i
l

) = ±i. In terms of the
tessellation, this means that s l1

l

< · · · < s l2
l

satisfy the following. Given

s l2
l

, s l2−1
l

, there is a unique s′ not on [s l2
l

, s l2−1
l

] which forms an ideal
triangle in the tesselation with s l2

l

and s l2−1
l

. Then s l2−2
l

must be the

unique point on [s l2−1
l

, s′] which forms an ideal triangle with s l2−1
l

and

s′. The subsequent terms are determined similarly.
The following proposition will also be used tacitly but frequently in

this paper:

Proposition 1.2. Let (T 2 × I, ξ) be tight with convex boundary,
and let s0, s1 be the boundary slopes. Given any s between s1 and s0,
there exists a convex torus parallel to T 2 × {pt} with slope s.

1.1.3. Relative Euler class. Consider a tight (M, ξ) with convex
boundary ∂M . Assume ξ|∂M is trivializable, and choose a nowhere
zero section s of ξ on ∂M . Then we may form the relative Euler class
e(ξ, s) ∈ H2(M, ∂M ; Z) = H1(M ; Z). If ∂M is a union of convex tori,
then we take the tori to be in standard form, and let s be given by the
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tangent field of the Legendrian rulings.
For M = T 2 × I, we identify H1(M ; Z) 	 Z2, and the Euler class

e(ξ, s) is an element of Z2. If (T 2 × I, ξ) is a basic slice with slopes s1,
s0, then there are two possibilities for e(ξ, s), namely ±(v1 − v0), where
v1, v0 are the shortest integer vectors forming an oriented Z-basis of Z2.
(Here we need to make a choice of v1; then v0 is determined.) Once a
choice of v1 is made, we say that a basic slice is positive (resp. negative)
if e(ξ, s) = +(v1 − v0) (resp. −(v1 − v0)). In general, for a minimally
twisting (T 2 × I, ξ), e(ξ, s) is the sum of the Euler classes of the basic
slices given by the decomposition in Section 1.1.2.

1.1.4. Gluing toric annuli. The following Gluing Theorem is
found in Section 4.7 of [13]. It allows us to determine whether tightness
is preserved when we glue two T 2 × I together.

Theorem 1.3 (Gluing Theorem, Intrinsic Version). Let ξ be a
contact structure on T 2× [0, n], where each Ni = T 2× [i, i+1] is a basic
slice. Assume all si lie on the counterclockwise arc [sn, s0] ⊂ ∂H2, and
sn < sn−1 < sn−2 < · · · < s0. Here we write a < b if b is closer to s0

than a is on the arc [sn, s0]. Then ξ is tight if and only if one of the
following holds:

1. sn, sn−1, · · · , s0 is the shortest sequence from sn to s0.

2. sn, · · · , s0 is not the shortest sequence and there is a triple
si+1, si, si−1 where si is removable from the sequence, i.e., there
exists an edge from si+1 to si−1 along ∂H2. T 2 × [i − 1, i + 1]
is a basic slice (i.e., the signs of the basic slices T 2 × [i − 1, i]
and T 2 × [i, i + 1] are the same) and we shorten the sequence by
omitting si. By repeating this procedure we get to Case (1).

A useful formulation for determining whether a glued-up contact
structure is tight is the following:

Corollary 1.4 (Gluing Theorem, Non-Intrinsic Version). Let ξ
be a contact structure on M = T 2×[0, 2], with minimal convex boundary.
Assume ξ is tight on each of M1 = T 2 × [0, 1] and M2 = T 2 × [1, 2],
and M1, M2 have minimal convex boundary with boundary slopes s2 =
−p

q , s1 = −p′
q′ , s0 = −1, and minimal twisting. Here si is the slope

of the dividing curves of T 2 × {i}. Let −p
q have continued fraction

representative (r0, · · · , rk−1, rk, · · · , rl) and −p′
q′ have continued fraction

representative (r0, · · · , rk−1, r
′
k), where r′k > rk. Then ξ is tight on M .
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1.2. Overtwisted covers of T 2 × I. As an application of the
Gluing Theorem we indicate an algorithm to determine whether a given
cover of a tight contact manifold (T 2 × I, ξ) is overtwisted.

Given a minimally twisting tight ξ on T 2×I with minimal boundary,
there exists a decomposition into basic slices L1, · · · , Ll, dictated by
the continued fraction pattern, where Li = T 2 × [ i−1

l , i
l ], and s i

l
= pi

qi
,

(pi, qi) = 1. Let us consider an (m × n)-fold cover

T̃ 2 × I = R2/(mZ × nZ) × I,

together with the lift ξ̃. The Li will have covers L̃i with boundary slopes
s̃ i

l
= mpi

nqi
. Also let s′0, · · · , s′l′ be the slopes of boundaries of the basic

slices for T̃ 2 × I, dictated by the continued fraction expansion.

Proposition 1.5. ξ̃ is tight if and only if the following conditions
are met:

1. If there exist s̃ j
l
, · · · , s̃ j+k

l
between s′i and s′i−1, then all the slices

Lj , · · · , Lj+k+1 must have the same sign, in the case s′i = s̃ j+k
l

and
s′i−1 = s̃ j

l
. If s′i = s̃ j+k

l
, then we omit Lj+k+1, and if s′i−1 = s̃ j

l
,

then we omit Lj.

2. If (mpj , nqj) = 1, then Lj and Lj+1 have the same sign.

The proof is a straightforward consequence of the Gluing Theorem.
(1) is required because ξ̃ must respect the continued fraction pattern,
and (2) is a provision in case there is an increase in the dividing number
if mpj and nqj are not relatively prime.

Example. Consider T 2 × I, with minimally twisting tight con-
tact structure ξ which is layered so that the boundary slopes s i

3
are

−7
2 ,−3,−2,−1, with signs −, +, +. (By this we mean the slice from −7

2
to −3 has sign −, the slice from −3 to −2 has sign +, etc.)

(a) (1, 2)-cover. Then the slopes s̃ i
3

become −7
4 ,−3

2 ,−2
2 = −1,−1

2 .
Condition (2) of Proposition 1.5 is met. The boundary slopes s′i of
the slices of the cover are −7

4 ,−5
3 ,−3

2 ,−1,−1
2 , so condition (1) is met.

Therefore, this cover is tight.
(b) (1, 3)-cover. The s̃ i

3
are −7

6 ,−3
3 = −1,−2

3 ,−1
3 . Condition (2) is

not met, so this cover is overtwisted.
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(c) (1, 4)-cover. The s̃ i
3

are −7
8 ,−3

4 ,−2
4 = −1

2 ,−1
4 . Condition (2)

is met at −1
2 . The boundary slopes s′i are −7

8 ,−6
7 ,−5

6 ,−4
5 ,−3

4 ,−2
3 ,

−1
2 ,−1

3 ,−1
4 , so condition (1) is met. This cover is tight.

(d) (1, 5)-cover. The s̃ i
3

are − 7
10 ,−3

5 ,−2
5 ,−1

5 . Condition (2) is now

vacuous. The boundary slopes s′i are − 7
10 ,−2

3 ,−1
2 ,−1

3 ,−1
4 ,−1

5 , and the
layer between −2

3 and −1
2 has a problem. This cover is overtwisted.

Exercise. Consider the lens space M = L(p, q), where p ≥ 3 and
q < p − 1. Then exactly two tight contact structures on M will lift
to the unique tight contact structure on M̃ = S3. (In other words, if
there is a mixing of sign, then the tight contact structure is virtually
overtwisted.)

Question. Although we have provided an algorithm for deter-
mining whether a given cover is overtwisted, it would be much more
satisfactory if we could enumerate exactly which covers are overtwisted.
Is it possible to give such a count?

2. Classification on T 2-bundles over S1

2.1. Conjugacy classes of SL(2, Z). In this section we will
choose suitable representatives of each conjugacy class of SL(2, Z). Let

S =
(

0 1
−1 0

)
, and T =

(
1 1
0 1

)
.

Lemma 2.1. Every conjugacy class of SL(2, Z) can be represented
by one of the following:

1. A = ±S. tr(A) = 0.

2. A = ±T−1S,±(T−1S)2. | tr(A)| = 1.

3. A = ±Tn, n ∈ Z. | tr(A)| = 2.

4. A = ±T r0ST r1 · · ·T rkS, ri ≤ −2, r0 < −2. | tr(A)| > 2.

Proof. We will work in PSL(2, Z), which is a free product Z/2Z ∗
Z/3Z, where Z/2Z is generated by S and Z/3Z is generated by T−1S.
Write A ∼ B if A and B are conjugate. If A = id or S, then
A ∼ T r0ST r1S · · ·T rkS or A ∼ T r0 , where ri ≤ −1.
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Consider the case A ∼ T r0ST r1S · · ·T rkS. If one of the ri = −1,
then we may assume that r0 = −1, after permutation. Then,

T−1ST r1S · · ·T rkS = (T−1ST−1)T r1+1S · · ·T rk+1(T−1S)
∼ T r1+1S · · ·T rk+1S,

unless A = T−1S or (T−1S)2 already. This reduces the length of our
string, and we continue if necessary to obtain ri < −1, or A = S, T−1S,
or (T−1S)2.

If ri = −2 for all i, then

(T−2S)n = T−2ST−2S · · ·T−2S ∼ (T−1ST−1)n

= (STS)n = STnS ∼ Tn,

n > 0. The remaining situation is when not all ri = −2 In this case, we
set r0 < −2. The representation is not unique in the last case. q.e.d.

Let the T 2-bundle M over S1 be represented by (T 2×I)/ ∼ as before,
where the monodromy map A ∈ SL(2, Z) is listed in Lemma 2.1. Cut
M along a convex torus Σ in standard form, isotopic to a fiber T 2, and
with minimal possible number of dividing curves, and call the resulting
manifold T 2×I. T 2×I will have boundary slopes s0, s1. If s0 = s1 or the
I-twisting is non-minimal, then we may assume that Σ is minimal, i.e.,
it has exactly 2 dividing curves. In fact, if Σ has more than 2 dividing
curves, then we can find a ∂-parallel component for Σ to obtain Σ′ which
has fewer dividing curves but the same slopes.

Consider the lifting (M, ξ) to (M̃ = T 2 × R, ξ̃). Define ξ̃t0 = φ∗
t0 ξ̃,

where φt0 : M̃ → M̃ is the translation (x, t) �→ (x, t + t0), and let ξt0

be the pushforward to M . We therefore have a 1-parameter family ξt,
t ∈ R, of contact structures on M , and they are all contact isotopic by
Gray’s theorem. Therefore, if Σ̃′ ⊂ M̃ is a lift of another convex torus
Σ′ ∈ M , where Σ′ is parallel to Σ, then we may replace Σ by Σ′ and
use the slope of Σ̃′ instead. In other words, there is some freedom in
choosing the boundary slopes of T 2 × I, and we exploit this freedom to
standardize the boundary slopes by looking inside M̃ = T 2 × R. Note,
however, that, at this point, we do not know whether ξ̃ is tight.

2.2. Non-minimal twisting. If the tight structure ξ on T 2 × I
has non-minimal I-twisting βI , then it must be universally tight by
the classification (Theorem 1.1). Since ξ has non-minimal I-twisting,
we may assume Σ is minimal. Now glue copies of T 2 × I to obtain
M̃ = T 2 × R, together with ξ̃.



on the classification of tight contact structures ii 99

First consider the situation where ξ̃ remains tight. In this case we
may take s1 = 0. ξ̃ is tight exactly when

(i) n = 2m, m ∈ Z+, where nπ ≤ βI < (n + 1)π, in case the angle
from (1, 0)T to A(1, 0)T is 0 ≤ α < π, and

(ii) n = 2m + 1, m ∈ Z≥0, nπ ≤ βI < (n + 1)π, in case π ≤ α < 2π.

In other words, roughly half of the tight structures on T 2 × I with
non-minimal twisting survive passage to T 2 × R. The reader may eas-
ily verify this claim using the Gluing Theorem. These all appear in
Giroux’s paper [9] — they are called ζm there — and are classified (up
to diffeomorphism) by βS1 = nπ. Although there existed two tight
structures on T 2 × I with nπ ≤ βI < (n + 1)π, up to isotopy, the two
tight structures become isotopic when the boundaries are glued — this
is because, instead of splitting M along Σ to obtain T 2 × I, we could
have split along a minimal Σ′ with s = 0, parallel to and disjoint from
Σ, for which the T 2 × I bounded by Σ and Σ′ has βI = π. This process
is equivalent to taking one of the tight contact structures on T 2×I with
nπ ≤ βI < (n + 1)π and acting on it by − id× id, where − id acts on
the first factor T 2 	 R2/Z2, to get the other tight contact structure on
T 2 × I with nπ ≤ βI < (n + 1)π.

These universally tight contact structures ζm can be written more
explicitly as given by the following 1-form on (T 2 × R)/ ∼:

αm = sin(φ(t))dx + cos(φ(t))dy,

with φ′(t) > 0, nπ ≤ supt∈R(φ(t+1)−φ(t)) < (n+1)π, and αm invariant
under the action (x, t) �→ (Ax, t − 1).

Next we consider the situation where ξ on T 2 × I has non-minimal
twisting and is universally tight as before, and induces a tight structure
(also call it ξ) on M after gluing, yet ξ̃ on M̃ is overtwisted. If βI > π,
then consider a small layer T 2 × [1 − δ, 1], δ > 0 small, with boundary
slopes s1 and s1 + ε, where ε is a small rational number and βI(T 2 ×
[0, 1 − δ]) > π. Map it under A to get a layer T 2 × [−δ, 0] with slopes
As1 = s0 and A(s1 + ε). There also exists a minimally twisting layer
T 2 × [0, 1 − δ′], δ′ > δ, with boundary slopes A(s1 + ε) and s0. The
composite T 2× [−δ, 1−δ′] of the two layers has π-twisting, and will give
an overtwisted disk in ξ on M unless we have (i) or (ii) above because
of the compatibility required in the Gluing Theorem. The exception is
when βI = π and α = 0 (α is the angle discussed in (i), (ii) above),
which is the case when A = Tn. We take s1 = s0 = 0 and βI = π. If
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n < 2, then the glued contact structure ξ on M is overtwisted by the
Gluing Theorem. This is done by cutting T 2 × I into two slices and
moving the front slice to the back via A. If n ≥ 2, then we start with
the two distinct tight contact structures on T 2×I with boundary slopes
s0 = s1 = 0 and glue via A = Tn. We then have the following:

Lemma 2.2. The two contact structures remain tight. They are
distinct if n > 2.

The proof will be given in the next section after we discuss a new,
general method called state traversal which allows us to determine
whether a given contact structure is tight. Summarizing, we have:

Proposition 2.3 (Classification in the non-minimal-twisting case).
For a torus bundle M with monodromy A, there exist infinitely many
tight contact structures with non-minimal twisting. The universally tight
contact structures are distinguished by the S1-twisting βS1 which take
values in [nπ, (n + 1)π) for n = 2m, m ∈ Z+, or n = 2m + 1, m ∈ Z≥0,
depending on the actual value of A. There exist virtually overtwisted
contact structures only when A = Tn, n > 1, and there is one for n = 2
and two for n > 2.

2.3. State traversal.
2.3.1. Description of the method. Consider a decomposition

of a 3-manifold N = N1 ∪ · · · ∪ Nk, where each Ni is irreducible, each
boundary component of Ni is incompressible, and on each Ni it is pos-
sible to determine whether a given contact structure ξ|Ni is tight. Let
W = ∪k

i=1(∂Ni); components W of W are called ‘walls’. We assume W
is convex.

Fix a contact structure ξ on N and define a state to be a collection
{(Ni, ξi)|i = 1, · · · , k}, where ξi is a contact structure on Ni, and the
contact structures glue to form a contact structure isotopic to ξ on N .
The state is called a tight state if each of the ξi are tight. Given a tight
state and an overtwisted disk D ⊂ N , we describe a process to obtain
other states and an overtwisted disk D′ with strictly fewer intersections
with W. To show that ξ is tight we start with a tight state and show that
all states that can be obtained from this state are also tight states (thus
eventually pushing the overtwisted disk into one of the tight (Ni, ξi)’s
and contradicting the existence of D).

Start with an initial state where ξ|Ni is tight for each i. If there is a
candidate overtwisted disk D ⊂ N which does not intersect any of the
walls, then we have a contradiction because each ξ|Ni must be tight.
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Therefore, D ∩W is a nonempty union of arcs with endpoints on ∂D,
as well as closed curves. If we view D ∩W on D, then there must exist
an ‘innermost’ closed curve or an ‘outermost’ arc. An innermost closed
curve γ is a closed curve of D ∩ W which bounds a disk D1 ⊂ D so
that D1 has no other intersections with W. An outermost arc α cuts
off a half-disk D1 ⊂ D with ∂D1 = α ∪ β and β ⊂ ∂D, subject to the
condition that D1 has no other intersections with W.

First consider an innermost closed curve γ. Since W is incompress-
ible, γ bounds a disk D2 in a component W of W. Then D1 ∪ D2 is a
sphere which necessarily bounds a 3-ball B because of the irreducibility
of Ni. Consider W × I, where W × {0} = W and W × I is a slightly
thickened W ∪ B so that W × I has convex boundary. Next, if α is
an outermost arc, then let W × I be a slightly thickened W ∪ D1. In
either case it is possible to make W × {1} convex without affecting the
isotopy type of D ∩ W , with the exception of D ∩ (W × {1}) having
strictly fewer intersections. This is because a C∞-small perturbation of
W ×{1} is convex, and if D is transverse to W ×{1}, the isotopy type of
D∩ (W ×{1}) will not change under a C∞-small perturbation of either
surface. We now remove W × I from the component Ni and attach it to
another component Nj so that W × {1} is now part of the new wall. If
ξ on (W ×I)∪Nj is overtwisted, then we are done. If ξ on (W ×I)∪Nj

is tight, then we keep proceeding until D has no more intersection with
W. Therefore, by ‘traversing all possible states’ which can be gotten
from the initial state, we can determine whether a contact structure is
tight.

Remark. This procedure is usually not finite.

2.3.2. Application. The following is the first application of the
state traversal method. There will be another (much more involved)
application in Part 2.

Proof of Lemma 2.2. Observe that if M is the torus bundle with
monodromy A = Tn, n ≥ 2, the fiber torus W = T 2 × {pt} is incom-
pressible and M is irreducible. The initial state is given by taking the
cutting surface T 2 × {1} to be convex, minimal, and with boundary
slope s1 = 0 (hence s0 = 0), and the tight contact structure to be one
of the two possible (universally) tight contact structures on T 2 × I with
βI = π and e(ξ, s) = ±(2, 0).

In this case the state transitions consist of factoring T 2 × [0, 1] into
(T 2× [0, 1

2 ])∪(T 2× [12 , 1]) and moving T 2× [12 , 1] ‘to the back’ via A and
evaluating whether the contact structure on (T 2× [−1

2 , 0])∪(T 2× [0, 1
2 ])
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is tight. (If the contact structure is tight, we will reset the coordinates
so that T 2 × [−1

2 , 1
2 ] becomes T 2 × [0, 1].)

We will examine the first state transition in some detail. There are
two possibilities: either s 1

2
= s1 and #Γ changes, or s 1

2
= s1. In the

latter case, we may assume −∞ < s 1
2

= −p
q ≤ −1, p, q ∈ Z+ (after

conjugating via T k for some k ∈ Z). Moving T × [12 , 1] to T × [−1
2 , 0],

we get s− 1
2

= p
−q+np with 0 < p

−q+np ≤ 1. If we layer T × [−1
2 , 1

2 ] using
the Farey tessellation, we find that 0 will always be a boundary slope
of a continued fraction block, except when n = 2 and −p

q = −1. This
can be seen as follows: For three successive slopes a1, a2, a3 ∈ Q in a
Farey tessellation sequence to be slopes of a continued fraction block,
we need the corresponding shortest integer vectors v1, v2, v3 to satisfy
det(v1, v2) = det(v2, v3) = ±1 and det(v1, v3) = ±2. In the case we
have slopes −a

b , 0, a′
b′ , with a, b, a′, b′ ∈ Z+, this forces a = 1, a′ = 1, and

b + b′ = 2 (and hence b = b′ = 1).
When n = 2 and −p

q = −1, then the contact structure on T ×[−1
2 , 1

2 ]
is tight, and we can shuffle the two layers (−1 to 0 and 0 to 1) and
interchange signs. Therefore, when n = 2, there is at most one tight
structure up to isotopy, in contrast to n > 2, where the shuffling cannot
take place.

Assume now that n > 2. Since 0 is a boundary slope of a continued
fraction block, it is possible to glue together the tight structures on
T 2× [0, 1

2 ] and T 2× [−1
2 , 0] into a contact structure which is tight, using

(an invariant version of) the Gluing Theorem. Notice that the signs
between −p

q and 0 are the same and the signs between 0 and p′
q′ are the

same, and the two groups have opposite sign.
Consider the case where s 1

2
= s1 and #Γ changes. There is a unique

factorization of T 2 × [0, 1
2 ] = (T 2 × [0, 1

4 ]) ∪ (T 2 × [14 , 1
2 ]) where the first

layer is rotative with #ΓT 2×{ 1
4
} = 2, and the second is a non-rotative

layer which increases the dividing number (see Section 5.3 of [13]). This
peeling and reattachment clearly preserves tightness.

Reset the coordinates on R so that the toric annulus is called T×[0, 1]
again, and repeat, using the following inductive assumption:

1. The contact structure on T 2 × [0, 1] is tight.

2. T 2 × {0, 1} are convex, s0 = p
−q+np , and s1 = −p

q , where −∞ <

−p
q ≤ −1.

3. The tight contact structure on T 2 × [0, 1] is minimally twisting,
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and can be factored into T 2 × [0, 1
2 ] and T 2 × [12 , 1], where s 1

2
= 0,

each layer is universally tight, and the layers have opposite signs
(i.e., e(ξ, s) = (−q + np, p) − (1, 0) and (q,−p) − (1, 0), or both
signs reversed).

4. T0 and T1 may not be minimal.

The argument is identical to that for the initial state. The only differ-
ence is when s 1

2
= s1 and #Γ is reduced. The resulting T 2 × I remains

tight, because of the unique factorization into rotative and non-rotative
layers, mentioned above, which essentially ‘remembers’ how the dividing
numbers were increased, and forces dividing curve decreases to ‘undo’
the dividing number increases. This proves tightness.

When n > 2, the two tight contact structures can be distinguished
by the Euler class unless n = 4. We instead give an argument in the
spirit of the state transition method, which works for all n > 2. Let
Σ = T 2×{0} ⊂ M be the convex torus in standard form in the splitting
of M given above, for which #ΓΣ = 2 and s(Σ) = 0. Let Σ′ be another
convex torus isotopic (but not contact isotopic) to Σ with #ΓΣ′ = 2 and
s(Σ′) = 0. We try to get from Σ to Σ′ through a sequence of convex
surfaces which arises from reducing the number of components of Σ∩Σ′.
We may assume Σ � Σ′ and Σ ∩ Σ′ consists of parallel essential curves
as well as homotopically trivial curves. The peeling and reattaching of
T 2× I layers works in the same way as before. Suppose we have arrived
at a state where s1 = −p

q , p, q ∈ Z+, and s0 = p
−q+np . Let s 1

2
= 0 and

#ΓT 2×{ 1
2
} = 2. Once again, the key observation is that no layers can be

interchanged between T 2 × [0, 1
2 ] and T 2 × [12 , 1]. Now let M ′ = M\Σ

and M ′′ = M\Σ′. If we let s (resp. s′) be a nonzero section of ξ|Σ (resp.
ξ|Σ′) given by the Legendrian rulings, then the relative Euler classes are
e(ξ, M ′, s) = e(ξ, M ′′, s′) = [±(2, 0)] ∈ H1(T 2×I; Z) = Z2. (See Section
4 in [13] for a discussion of the relative Euler class.) This proves that
the two possible choices for ξ are not contact isotopic. q.e.d.

2.4. The elliptic cases. We now do a case-by-case analysis of
the minimally twisting tight structures.

Case 1. A = −S. M is a Seifert fibered space over S2 with Seifert
invariants (1

2 ,−1
4 ,−1

4). Since A is rotation by π
2 , s0 = − 1

s1
. Inside T 2×I

there exist convex tori parallel to the boundary with slopes ranging from
s1 to s0, and, passing to the cover M̃ , we can obtain Σ with any desired
slope because the twisting in the R-direction is infinite. Pick Σ with
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s0 = ∞, s1 = 0. There exist exactly two tight structures on T 2 × I
with boundary slopes ∞, 0, both universally tight. Gluing copies of
T 2 × I with this tight structure, we obtain ξ̃i, i = 1, 2, tight on M̃ .
Therefore, they are both universally tight, and are isotopic, using the
same argument as the non-minimally twisting case. Therefore there is
exactly one tight structure on M with minimal twisting.

Case 2. A = S. M is a Seifert fibered space over S2 with Seifert
invariants (−1

2 , 1
4 , 1

4). We have two tight structures on T 2 × I with
boundary slopes 0, ∞ as before.

Lemma 2.4. The tight contact structures remain tight after gluing.
They are contact isotopic.

Proof. The proof is almost identical to that of Lemma 2.2. If we peel
off T 2 × [12 , 1] with s 1

2
= −p

q , p, q ∈ Z+, from T 2 × I with slopes s1 = 0

and s0 = ∞, and glue onto T 2 × [−1
2 , 0], then s− 1

2
= q

p . As before, 0
is a boundary slope for a continued fraction block, unless s 1

2
= −1, so

the contact structure on T 2 × [−1
2 , 1

2 ] is tight by the Gluing Theorem.
By repeated application of the peeling, we can engulf any candidate
overtwisted disk inside a tight T 2 × I, a contradiction. Notice that, no
matter what the new s 1

2
is, we can always transform using S to put

−∞ ≤ s 1
2

< 0. This is because conjugation by S does not change the
representative A = S.

If we chose s 1
2

= −1, s− 1
2

= 1, then we could swap the layers and
their signs. q.e.d.

Case 3. A = −T−1S =
( −1 −1

1 0

)
or −(T−1S)2 =

(
0 −1
1 1

)
.

Let A = −T−1S, which is essentially a 2π
3 rotation. The case A =

−(T−1S)2 (essentially a π
3 rotation), works in the same fashion. Choose

Σ so that s0 = 0, and s1 = −1. Again, there are two tight structures on
T 2 × I, which remain tight when copies of T 2 × I are glued to obtain
T 2×R. These two tight structures become isotopic when the boundaries
are identified. Therefore, there is exactly one minimally twisting tight
structure on M up to isotopy. It is universally tight.

Case 4. A = T−1S or (T−1S)2. A is essentially a −π
3 or −2π

3
rotation. We will show that there exist no minimally twisting tight
structures if A = T−1S. Cut along a Σ to obtain T 2 × [0, 1] with
boundary slopes s0 = −1 and s1 = 0. There are two possible tight
structures on this T 2×[0, 1]. Split T 2×[0, 1] = (T 2×[0, 1

2 ])∪(T 2×[12 , 1]),
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where T 2 × {1
2} has s 1

2
= ∞. If we now consider T 2 × [−1

2 , 1
2 ], then

s− 1
2

= 0, s 1
2

= ∞, yet T 2 × [−1
2 , 0] and T 2 × [0, 1

2 ] do not glue to
give a tight structure because of sign incompatibilities as in the Gluing
Theorem.

On the other hand, if A = (T−1S)2, then we may take s1 = 0,
s0 = ∞. Using the same argument as in Lemma 2.2, we find that
the contact structures remain tight after gluing, and that two tight
structures on T 2 × I remain distinct after gluing.

2.5. The parabolic cases. Here we will treat the tight contact
structures which are minimally twisting. When A is parabolic, M not
only fibers over S1, but is also fibered by S1 (the fiber S1’s project to
points on the base S1). This introduces new twisting directions, and
hence gives rise to other universally tight contact structures which twist
along the fiber S1’s. When A = ± id, there is even more symmetry, and
hence more universally tight contact structures up to contact isotopy.

Case 5. A = Tn, n > 0. If s1 = b
a , with b > 0, then s0 = b

a+bn ,
and there will always be a convex torus parallel to the boundary with
slope s = 0 between s1 and s0. Therefore assume s1 = s0 = 0. If there
is twisting, then the contact structure cannot be minimally twisting.
This was already treated in Section 2.2. If there is no twisting, then ξ is
determined up to isotopy by two invariants, the the minimum division
number, together with the holonomy. The minimum division number
µ ∈ Z+ is the minimum, over convex tori Σ in standard form isotopic to
the fiber T 2, and with slope s = 0, of 1

2(#ΓΣ). To define the holonomy,
we cut the manifold M along Σ to obtain T 2 × I, make the Legendrian
rulings on the boundary vertical, and consider a vertical annulus Σ0

from T0 = T 2 × {0} to T1 = T 2 × {1} with Legendrian boundary. By
the minimality of µ, Σ0 cannot have any ∂-parallel arcs, and we may
assume that all the dividing curves of Σ0 cross from T0 to T1 and are
parallel. Therefore, we may take Σ0 to be in standard form. Assume
the Ti, i = 1, 2, have dividing curves S1 × { k

2µ}, k = 0, ..., 2µ − 1, so
that, for each k, S1 × { k

2µ} × {0} is identified with S1 × { k
2µ} × {1}.

Then the holonomy is l, if there exists a dividing curve on Σ0 with one
endpoint on the interval 0 < y < 1

2µ on T1 and the other endpoint on
the interval 2l

2µ < y < 2l+1
2µ on T0.

Lemma 2.5. Given any µ ∈ Z+ and l ∈ Z, there exists a tight con-
tact structure ξµ,l on M with minimum division number µ and holonomy
l. Moreover, (µ, l) completely determines the isotopy class of ξ with no
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twisting in the S1-direction.

Proof. It is easy to write down a tight structure which does not twist
in the S1-direction, and has invariants µ, l. Take ξµ,l given by

αµ,l = sin
(

2πµ

(
y +

l

µ
t

))
dx − cos

(
2πµ

(
y +

l

µ
t

))
dt

on T 2 × I with coordinates (x, y, t). After modifying the Legendrian
rulings on T0 and T1, the boundary components can be identified via A.

We first show that µ is indeed the minimum dividing number. If
there exist µ′ < µ and Σ′ with slope s′ = 0 and dividing number µ′,
then we have a Legendrian curve γ isotopic to {0} × S1 × {0} with
twisting number −µ′ relative to the framing induced from the fiber
T 2. However, this is impossible, using an argument which appears in
Kanda’s paper [14]: The ξµ,l are universally tight, and we can pass to
the cover R × S1 × R → M . For sufficiently large C ∈ Z+, there exists
a lift γ̃ of γ contained in N = [−C, C] × S1 × [−C, C]. After rounding
the corners of N (and still calling it N), N becomes a solid torus with
boundary slope − 1

µ and minimal boundary. The tight contact structure
on the solid torus with this boundary slope and minimal boundary is
unique, and, moreover, cannot contain a Legendrian isotopic to the core
S1 with twisting number > −µ. This proves that the minimum dividing
number is indeed µ.

Next we prove that the holonomy is indeed l. First consider the case
where Σ is the same for Σ0 and Σ′

0 (another vertical annulus from T0 to
T1). If the holonomy l′ of Σ′

0 is not l, then pass to N = [−C, C]×S1×I ⊂
R × S1 × R → M , where C ∈ Z+ and C >> 0. If C is sufficiently
large, N will contain a lift of Σ′

0, satisfying Σ′
0 ∩ ({±C} × S1 × I) = ∅.

{±C} × S1 × I both have holonomy l, so one of the components of N
cut by Σ′

0 will be a solid torus with boundary a
µ , a ≥ 0, after rounding

the corners. This implies the existence of a (vertical) Legendrian curve
isotopic to {pt} × S1 × {pt}, with twisting number 0 relative to the
framing induced from a fiber T 2, which contradicts the minimality of µ.
Therefore, Σ is fixed; any other vertical annulus in standard form must
have holonomy equal to l.

Now suppose there exists a Σ′ isotopic to Σ with slope 0 and dividing
number µ, and M , cut along Σ′, has an annulus Σ′

0 with holonomy
l′ = l. Then pass to N = [−C, C] × S1 × [−C, C], for C ∈ Z+, C >> 0,
so that N contains two parallel lifts (Σ̃′)1, (Σ̃′)2 of Σ′ which are t = 1
units apart. Take a lift of Σ′

0, and complete it to a vertical annulus from
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[−C, C]×S1×{−C} to [−C, C]×S1×{C}. (Assume all the Legendrian
rulings of tori parallel to T 2 have already been made vertical.) Then
this annulus will have holonomy (2C − 1)l + l′, whereas the holonomy
for {±C}×S1 × [−C, C] is 2Cl, and we obtain a contradiction from the
previous case.

Finally we prove the latter claim. Prescribing (µ, l) is equivalent to
prescribing the torus T0 = T1 with slope s = 0 and #Γ = 2µ, as well
as the vertical annulus Σ0 between T0 and T1. Cut M along T0 and Σ0

and round the edges. This will give a solid torus with boundary slope
− 1

µ which has a unique tight contact structure up to isotopy. q.e.d.

Case 6. A = −Tn, n > 0. In this case, there is still a well-
defined minimum dividing number µ, but no well-defined holonomy. As
before, we may take Σ in standard form with the minimum dividing
number µ and ΓΣ = ∪k=0,··· ,2µ−1(S1 × { k

2µ}). Then, via A, S1 × { k
2µ}

on T0 is identified with S1 × {− k
2µ} on T1, k = 0, · · · , 2µ − 1. It is

possible to define the holonomy l on the cut-open manifold T 2 × I as in
Case 5. Namely, say the holonomy is l if there exists a vertical annulus
Σ0 = {0} × S1 × I as before with dividing curves which connect from
(0, a

4µ , 1) to (0, 4l+a+2
4µ , 0), a odd. However, there are no well-defined

Z-valued levels or reference points to define a holonomy on M . This
is because if we shift T1 ‘up’ (i.e., in the direction of {pt} × S1) by b

µ ,
b ∈ Z, we must also shift T0 ‘down’ by b

µ at the same time. Consider the
Klein bottle Σ′

0 = Σ0/ ∼, where (0, y, 1) ∼ (0, y, 0), and the glued-up
dividing set Γ′. Γ′ will have exactly two closed curves which intersect
Σ once (the others intersect Σ twice). If µ is odd, then the two curves
will intersect components of Σ\ΓΣ of opposite sign. (One will pass
through a component of R+ and another will pass though a component
of R−, where R+ (resp. R−) consists of components of Σ\ΓΣ where
the orientation on Σ coincides with (resp. is opposite to) the normal
orientation of ξ.) If µ is even, the two curves will intersect components
of the same sign. Therefore, if µ is odd, there is a unique tight contact
structure up to isotopy, but if µ is even, there are two tight structures
which are distinguished by sign.

Case 7. A = id. This is the 3-torus T 3. If there is no twisting,
then s = s0 = s1.

Lemma 2.6. (s, µ, l) completely determines the isotopy class of ξ
without twisting in the S1-direction.
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Proof. All the tight structures without S1-twisting can be obtained
from ξµ,l in Case 5 by using an element of SL(2, Z) to put the slopes in
desired form. If there exists a Σ′ isotopic to Σ with slope not equal to s,
then, by passing to M̃ = T 2 × R, we see that there must be twisting in
the S1-direction. Hence s is well-defined. The rest follows from Case 5.
q.e.d.

Case 8. A = − id. Using the previous results, we readily see that
the isotopy classes of ξ without S1-twisting are completely determined
by the pair (s, µ) if µ ∈ Z+ is odd, and by (s, µ,±) (choice of + or −)
if µ is even.

Case 9. A = Tn, n < 0. There are two possibilities: Either (1)
s1 = s0 = 0, and there is no twisting in the S1-direction, in which case
the tight structure is uniquely determined by (µ, l), or (2) s1 = −1,
s0 = 1

n−1 , and there is minimal twisting. For the latter, there exist
|n − 1| possible minimally twisting tight structures on T 2 × [0, 1] with
s1 = −1 and s0 = 1

n−1 . They are are distinguished by the Euler class,
which can take values e(ξ, s) = (n + 2k, 0), k = 0, 1, · · · , |n|. Let ξk be
the tight structure on T 2 × [0, 1] with e(ξ, s) = (n + 2k, 0). Although
ξk is universally tight only when k = 0 or |n|, the tight structures on
T 2 × [0, 1] do not become overtwisted when T1 and T0 are glued to form
M . In fact, ξ remains tight even when lifted to ξ̃ on M̃ = T 2 × R,
since we are gluing T 2 × I with boundary slopes s1 = −1, s0 = 1

n−1 ,
s−1 = 1

2n−1 , and so on, and we can use the Gluing Theorem.

Lemma 2.7. The ξk are not contact isotopic.

Proof. Let Σ = T1 ⊂ M be the convex torus in standard form in the
splitting of M above, for which #ΓΣ = 2 and s(Σ) = −1. As before, if
we let s be a nonzero section of ξk|Σ given by the Legendrian rulings,
then the relative Euler class e(ξk, T

2 × I, s) on T 2 × I is [(n + 2k, 0)] ∈
H1(T 2 × I; Z) = Z2. Now, let Σ′ ⊂ M be another convex torus isotopic
(but not necessarily contact isotopic) to Σ for which #ΓΣ′ = 2 and
s(Σ′) = −1. We prove that the relative Euler class for the cut-open
manifold M ′′ = M\Σ′ 	 T 2 × I is the same as that of the cut-open
manifold M ′ = M\Σ. We pass to (M̃ = T 2 × R, ξ̃k) and use a limiting
argument. Let Σt, Σ′

t, t ∈ Z, be lifts of Σ and Σ′, translated by t in the
R-direction from chosen lifts Σ0 and Σ′

0. Let Nt (resp. N ′
t), t ∈ Z+, be

the compact region in M̃ bounded by Σ−t and Σt (resp. Σ′−t and Σ′
t).
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Then define

e = lim
t→∞

e(ξ̃k, Nt, s̃)
2t

,

e′ = lim
t→∞

e(ξ̃k, N
′
t , s̃

′)
2t

.

If we pass to M̃ , for large t, the portion of Nt and N ′
t which do not

overlap is small. Therefore, e = e′ = [(n+2k, 0)] ∈ H1(T 2 ×R; Z). This
proves that ξk are not contact isotopic. q.e.d.

Note that, of the |n − 1| tight contact structures, exactly 2 are uni-
versally tight.

Case 10. A = −Tn, n < 0. Again, there are two possibilities:
Either (1) s1 = s0 = 0 and there is no twisting, in which case the tight
structure is uniquely determined by µ if µ is odd, and by (µ,±) if µ is
even, or (2) s1 = −1, s0 = 1

n−1 , and there is minimal twisting. For the
latter, there exist |n|+1 possible minimally twisting tight structures on
T 2 × I with s1 = −1 and s0 = 1

n−1 . However, in this case, we have the
following:

Lemma 2.8. The |n| + 1 tight structures on T 2 × I all represent
the same tight structure on M .

Proof. This follows from examining e(ξ, s) on T 2 × [−1, 1]. If
e(ξ, T 2× [0, 1], s) = (n+2k, 0), for some k = 0, 1, · · · , |n|, then e(ξ, T 2×
[−1, 0], s) = (−n−2k, 0), due to the sign change arising from the gluing
given by A = −Tn. (In other words, on T 2×[0, 1], k of the basic slices in
the decomposition are positive, and, on T 2× [−1, 0], k of the basic slices
are negative.) Recall that in [13] we proved the sliding maneuver which
allows us to interchange basic slices belonging to the same continued
fraction block. Hence we can trade a positive basic slice for a negative
one by switching basic slices between T 2× [0, 1] and T 2× [−1, 0]. Hence,
in the end, all the basic slices on T 2 × [0, 1] can be made positive.

q.e.d.

2.6. The hyperbolic cases. The hyperbolic case | tr(A)| >
2 is the generic situation. Since the non-minimally twisting contact
structures are already treated in Section 2.2, we will assume our tight
contact structures have minimal twisting.

Case 11. A = T r0ST r1S · · ·T rkS, where r0 < −2, ri ≤ −2. We
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will use the representative A′ = T r0+1ST r1 · · ·T rkST−1 for convenience.

A′ =
(

(−r0 − 1) 1
−1 0

) ( −r1 1
−1 0

)
· · ·

( −rk 1
−1 0

) (
1 −1
0 1

)
.

We claim that, for minimal twisting, there must exist Σ with boundary
slope s1 = ∞. A′ has an oriented basis {v1, v2} of eigenvectors with
A′vi = λivi, λ1 > 1, 0 < λ2 < 1. Suppose we initially cut along
Σ with s1 corresponding to v = av1 + bv2, b > 0 (note b can never
equal 0 because the eigenvectors are not rational). A′ : av1 + bv2 �→
λ1av1 + λ2bv2. If a > 0, then the counterclockwise rotation from v to
A′v crosses both eigenspaces (i.e., the rotation is ‘large’). If a < 0,
then the rotation from v to A′v does not cross either eigenspace (‘small’
rotation). In either case, we can find a Σ in M such that, cutting along
Σ, we obtain T 2 × I with s1 = ∞, by moving in the positive or negative
R-direction in M̃ = T 2×R. Here s1 = ∞ is just a convenient slope which
is located in the counterclockwise sector from slope corresponding to v2

to slope corresponding to v1. Any slope in this sector can be realized
by moving ‘forwards’ or ‘backwards’ using Ai.

Notice that, v = (0, 1)T �→ A′v, whose slope corresponds to the
continued fraction

1
(r0 + 1) − 1

r1··· 1
rk+1

.

Denote this by < r0 + 1, r1, · · · , rk + 1 >. Upon iteration by A′, we
successively get

< r0 + 1, r1, · · · , rk, r0, r1, · · · , rk + 1 >,

< r0 + 1, r1, · · · , rk, r0, r1, · · · , rk, r0, · · · , rk + 1 >,

and so on. Therefore, by using the Gluing Theorem, any tight structure
on T 2 × [0, 1] with boundary slopes s1 = ∞ and s0 corresponding to
< r0 + 1, r1, · · · , rk + 1 > will remain tight when passing to the cover
M̃ = T 2 × R — it survives covering in the S1-direction!

The number of tight contact structures with minimal twisting on
such a T 2 × I is |(r0 + 1)(r1 + 1) · · · (rk + 1)|.

Lemma 2.9. The |(r0 + 1)(r1 + 1) · · · (rk + 1)| tight structures are
all distinct.

Proof. We will use an argument which is part contact-topological
and part homotopy-theoretic, along the lines of Lemma 2.7. Suppose
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there exists another convex torus Σ′ ⊂ M isotopic to the fiber T 2, with
#ΓΣ′ = 2 and slope = ∞. Cut M along Σ′ to obtain M ′′ 	 T 2 × [0, 1].
We use the fact that the tight contact structure on M lifts to a tight
contact structure ξ̃ on M̃ = T 2×R, and (M̃, ξ̃) is factored uniquely into
continued fraction blocks. (This is seen easily by taking exhaustions of
M̃ by T 2 × [−C, C] as C → ∞.) If M ′ = T 2 × [0, 1] is M cut along
Σ, then M ′ is a union of continued fraction blocks. Since the slopes of
the boundary of M ′ and M ′′ are the same, by the unique factorization,
M ′ and M ′′ must be isotopic inside M̃ . This proves that all the tight
structures which are distinct on T 2 × [0, 1] are distinct on M . q.e.d.

Remark. It is also true that the tight structures remain distinct
under diffeomorphisms. Use the fact that the only incompressible tori
on M are isotopic to a fiber T 2. We then see that the fibers must be
preserved, and we can use the argument in the previous claim.

Case 12. A = −T r0ST r1S · · ·T rkS. This is essentially the same
as Case 11, since all the computations in Case 11 are based on slope,
which cannot distinguish the action by A and the action by −A. The
only difference is that, whereas in Case 11, two of the contact structures
are universally tight, here none of the contact structures are universally
tight.

Part 2. Tight contact structures on circle bundles which
fiber over closed oriented surfaces

In the second part of the paper we give a complete classification of
tight contact structures on circle bundles over closed Riemann surfaces.
Consider an oriented circle bundle π : M → Σ over a closed oriented
surface Σ with genus g(Σ) = g. The most basic invariant of tight
contact structures on circle bundles is the twisting number t(S1), which
is the maximum twisting number ≤ 0 among all the closed Legendrian
curves γ isotopic to the S1-fiber, relative to the framing induced from
the fibration. Note that if there exists a Legendrian curve γ isotopic
to S1 with t(γ) > 0 we simply define t(S1) to be zero. Recall that an
‘isotopy’ means an isotopy in the C∞-category, as opposed to a ‘contact
isotopy’, which is an isotopy preserving contact structures.

Let us first recall the classification of tight contact structures on
circle bundles over Σ = S2. If g(Σ) = 0 we have a lens space, treated in
[13, 10].
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Theorem 2.10. Let M → S2 be a circle bundle with Euler number
e.

1. If e > 1, then M = L(e, e − 1), and there is one tight contact
structure.

2. If e = 1,−1, then M = S3, and there is one tight contact structure.

3. If e = 0, then M = S1 × S2, and there is one tight contact struc-
ture.

4. If e < −1, then M = L(|e|, 1), and there are |e| − 1 tight contact
structures.

5. All the tight contact structures are holomorphically fillable.

If Σ = T 2, then circle bundles over T 2 are torus bundles over S1.
These were already treated in Part 1 — see the table there (Parabolic
type, first three rows).

From now on we will assume g > 1. Let us briefly summarize the
classification result (some of the terminology will be defined later):

Theorem 2.11. Let M → Σ be a circle bundle with Euler number
e over a closed Riemann surface Σ of genus g > 1. Then, the tight
contact structures on M are as follows (classified up to contact isotopy):

1. If 2g − 2 ≥ e > 0, e|2g − 2, then for each n ∈ Z+ satisfying en =
2g − 2, there exist Z2g distinct tight structures with t(S1) = −n,
distinguished by the holonomy k : {γ1, · · · , γ2g} → Z. These are
all horizontal, i.e., can be made transverse to the S1-fibers.

2. If 2g−2 > e, there are (2g−1)−e tight structures with t(S1) = −1,
only two of which are universally tight and horizontal.

3. The universally tight structures with t(S1) = 0 are, up to iso-
topy, in 1-1 correspondence with the set D of all possible dividing
sets Γ on Σ, all of whose connected components are homotopically
nontrivial.

4. All tight contact structures on M with t(S1) = 0 are universally
tight, with the exception of 1 tight contact structure for e = 2g,
and 2 tight contact structures for e > 2g.
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The universally tight classification was previously obtained by
Giroux. He also recently obtained an almost complete classification,
independently from the author (see [11]). Our classification is complete
— our most difficult case is Part 4 of Theorem 2.11. In order to prove
that the tightness of these virtually overtwisted contact structures, we
use the state traversal technique, introduced in Part 1. We conjecture
that these virtually overtwisted contact structures are not symplecti-
cally semi-fillable.

3. Classification for t(S1) < 0

In Part 2, Legendrian curves are assumed to be closed curves. Leg-
endrian curves with boundary will be Legendrian arcs. Also, a vertical
Legendrian curve γ, without reference to its twisting number, will be
understood to have t(γ) = 0 relative to the fibration.

The following is an edge-rounding lemma which will be used fre-
quently in this paper.

Lemma 3.1 (Edge-Rounding). Let Σ1 and Σ2 be compact convex
surfaces with collared Legendrian boundary in a contact manifold (M, ξ).
(This means there exist convex annuli Ai = γi × I, i = 1, 2 which are
in standard form and so that γi × {1} is a boundary component of Σi.)
Assume A1 and A2 intersect transversely along γ1×{1} = γ2×{1}. The
neighborhood of the common boundary Legendrian is locally isomorphic
to the neighborhood {x2 + y2 ≤ ε} of M = R2 × (R/Z) with coordinates
(x, y, z) and contact 1-form α = sin(2πnz)dx + cos(2πnz)dy, for some
n ∈ Z+. After possible perturbation (rel boundary), we may take A1 =
{x = 0, 0 ≤ y ≤ ε} and A2 = {y = 0, 0 ≤ x ≤ ε}. If we join Σ1 and Σ2

along x = y = 0 and round the common edge, the resulting surface is
convex, and the dividing curve z = k

2n on Σ1 will connect to the dividing
curve z = k

2n − 1
4n on Σ2, where k = 0, · · · , 2n − 1.

Let γ be a Legendrian curve isotopic to S1, with t(γ) = t(S1) =
−n < 0. After isotopy, we may take γ = π−1(p), p ∈ Σ, and π−1(q)
for all q near p to be Legendrian with twisting −n — to see this, look
at the standard convex neighborhood N(γ) of γ, which admits an S1-
fibration by Legendrian curves with twisting number −n parallel to γ.
Consider closed curves γ1, · · · , γ2g in Σ which (1) begin and end at p,
(2) are mutually nonintersecting away from p, (3) generate π1(Σ), and
(4) are smooth everywhere except for a corner at p. Let Ti = π−1(γi). If
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we perform edge-rounding (using the Edge-Rounding Lemma) on Ti by
rounding γi, and call the modified tori Ti as well, we obtain a standard
annular region Ai = Ti ∩N(γ) with 2n horizontal dividing curves. Here
N(γ) is a tubular neighborhood of γ. We now perturb Ti while fixing
Ai to make Ti convex. If there exist bypasses, this would contradict
the maximality of t(S1); hence we may assume there are no bypasses,
and Ti is a standard convex torus with vertical Legendrian rulings and
non-vertical dividing curves.

For each T 2 which is identified as a circle bundle S1 × δ, where δ is
an oriented smooth curve in the base, and where the dividing curves are
not vertical, we can define the holonomy k(δ) which is the holonomy of
a dividing curve, measured in terms of one-half the number of upward
jumps taken by a lift of δ to a dividing curve, as seen on R × δ. Notice
that the notion of holonomy is far from canonical — the holonomy
depends crucially on the identification of the T 2 as a circle bundle.

We now cut Σ along the γi to obtain a polygonal representation P ,
and pull the bundle back to P to obtain the solid torus S1 × P .

Lemma 3.2. The holonomy around S1 × P , after rounding the
edges, is −(2g − 1) + en.

Proof. This is essentially the Gauß-Bonnet Theorem. Identify

N(γ) 	 (R/Z) × U

with coordinates (z, x, y), where U ⊂ Σ is a small disk around p.
We may assume that the contact structure ξ is given by the 1-form
α = sin(2πnz)dx + cos(2πnz)dy. Let δ1 and δ2 be oriented arcs on Σ
that meet at p at an angle 0 ≤ β < π from δ1 to δ2 and the orientations
point inward towards p. When we round the edge of S1 × (δ2 − δ1), the
Legendrian divides will ‘drop’ by π−β

2πn . Notice that π − β is the outer
angle. Now, when computing the holonomy around P , the holonomy
contribution of γi will be canceled by that of −γi; hence the only con-
tributions that remain are the sums of the outer angles and the bundle
contribution. The outer angles add up to give −(2g − 1), and en is the
bundle contribution. q.e.d.

We will refer to the slope of a nontrivial closed curve on ∂(S1 × P )
by making an oriented identification with R2/Z2 as follows. First orient
the S1-fibers. We then let the longitude be given by the oriented S1-
direction. The meridian will correspond to (1, 0)T and the longitude to
(0, 1)T . We will follow this convention throughout, and let the S1-fibers
correspond to (0, 1)T in similar identifications with R2/Z2.
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By Lemma 3.2, the slope on the solid torus is −(2g−1)+en
n . If this

term is positive, t(S1) could not have been < 0, and if it is zero, ξ is
overtwisted. Therefore, −(2g − 1) + en < 0, implying e < 2g − 1.

We have two possibilities: −(2g− 1) + en = −1 or −(2g− 1) + en <
−1. In the former case, en = 2g−2, and e|2g−2. In the latter case, set
a = −(2g − 1) + en < −1. Assume n > 1. There are two cases. (1) If a
and n are not relatively prime, then the solid torus S1×P with boundary
slope a

n has more than two dividing curves, and on the interior, there
is a solid torus with convex boundary and the same boundary slope
but #Γ∂(S1×D2) = 2. (2) If (a, n) = 1, then on the interior of S1 × P

there is a solid torus with #Γ∂(S1×D2) = 2 and boundary slope − 1
m

with 0 < m < n. In either case, we see that there exists a Legendrian
curve isotopic to S1 with larger twisting number. Hence we may assume
n = 1.

3.1. Case 1: e|2g − 2, 2g − 2≥e>0. Let γ1, · · · , γ2g be smooth
oriented curves generating π1(Σ) such that the Ti = π−1(γi) are con-
vex tori in standard form with vertical Legendrian rulings of twisting
number −n.

Lemma 3.3. There exist tight contact structures with twisting
number −n, where en = 2g − 2.

Proof. The contact structure ξ is easily constructed: first define it
on the neighborhood of the tori Ti and extend it to the solid torus S1×P
in the unique way which makes the contact structure tight on S1 × P .
Here P is the polygonal representation of Σ. To prove the (universal)
tightness of ξ, we will use an idea which first appeared in Kanda’s paper
[14], and ‘pass to some finite cover of the base’. Namely, we tile together
enough copies of P to form P ′ so that S1 × P ′ contains a copy of the
candidate overtwisted disk D. Each S1 × P is, after edge-rounding, a
standard neighborhood of a Legendrian curve with twisting −n, and
the union of two copies of S1 × P , after rounding, is still isomorphic to
a standard neighborhood of a Legendrian curve with twisting number
−n. Hence, S1 × P ′, after rounding, is the standard neighborhood of a
Legendrian curve with twisting number −n — such a contact manifold
is clearly tight. This contradicts the existence of D and proves the
universal tightness.

We now claim that ξ satisfies t(S1) = −n. Assume there exists
a γ with t(γ) > −n. Again pass to P ′ so that S1 × P ′ contains γ.
Since S1 ×P ′ is the standard neighborhood of a Legendrian curve with
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Figure 2: Passing to a finite cover

twisting number −n, there cannot exist a Legendrian curve isotopic to
S1 with twisting number > −n. q.e.d.

Next, given a tight contact structure ξ, we can define its holonomy
function kξ : {γ1, · · · , γ2g} → Z as follows: Cut M along T1 and identify
M\T1 	 S1× (Σ\γ1). Fixing this trivialization of the S1-bundle we can
talk about the holonomy along γi, i = 2, · · · , 2g. Let the holonomy
along γ1 be the holonomy of γ+

1 , where ∂(Σ\γ1) = γ+
1 − γ−

1 . Note that
Lemma 3.3 constructs tight contact structures with t(S1) = −n and any
holonomy.

Lemma 3.4. kξ is well-defined.

Proof. Omit subscripts for T and γ, so T = Ti and γ = γi are fixed
(for the same i). Let T ′ be another convex torus in standard form,
isotopic to T , with vertical Legendrian rulings of twisting number −n.
Assume T ′ has holonomy which is different from T . We exploit the
fact that ξ is universally tight, and will ‘pass to some cover’ again. See
Figure 2 for an illustration. Let K = Σ\γ, so that ∂K = γ+ − γ−,
where γ± are copies of γ. Take m copies K1, · · · , Km of K, as well as
copies γk,±, k = 1, · · · , m, of γ±, (not to be confused with the γi), and
glue γ1,− with γ2,+, γ2,− with γ3,+, ..., γm−1,− with γm,+, to obtain
K ′, which is an m-fold cover of Σ cut along a copy of γ. Pull the
S1-bundle back to K ′ to obtain S1 × K ′. Assume we have chosen m
large enough so that there exists an embedded copy i(T ′) of T ′ inside
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S1 × K ′ and S1 × K ′ = M1 ∪ M2, split by i(T ′). Let i(T ) denote the
embedded copy of T inside S1 × K ′, isotopic to i(K ′). If the holonomy
of i(T ′) is not the same as that of i(T ), then if we cut open Mi to obtain
S1 ×Pi, i = 1, 2, for polygons Pi, one of the S1 ×Pi will have holonomy
around the boundary ≥ 0. This contradicts the fact that t(S1) = −n is
preserved under taking covers (argued as in Lemma 3.3). q.e.d.

Lemma 3.4 essentially says that the holonomy only depends on the
isotopy class of the oriented curve in the base. Also note that kξ uniquely
determines the tight contact structure up to isotopy, since fixing convex
surfaces Ti forces the cut-open manifold S1×P to have convex boundary,
boundary slope − 1

n , and #Γ∂(S1×P ) = 2, which implies that S1×P must
necessarily be the standard neighborhood of a Legendrian curve with
twisting number −n.

3.2. Case 2: n = 1, 2g − 2 > e. If n = 1 and 2g − 2 > e,
then the slope on the solid torus S1 × P is s = −(2g − 1) + e < −1.
By the classification of tight contact structures on solid tori, there exist
exactly |s| tight contact structures on the solid torus S1 ×P . These are
all holomorphically fillable, by comparing with a construction of Gompf
[12] (Corollary 5.7). Consider the Legendrian knot diagram consisting
of g copies of Figure 3 summed together. This Legendrian knot K has
tb(K) = 2g − 1 and r(K) = 0, and we may perform (2g − 2)-surgery.
By adding zigzags we can take tb(K ′) = (2g − 1) − (|s| − 1), and there
are |s| choices for the rotation number |r(K ′)| ≤ 2g − 2 − e = |s| − 1.

First we observe the following:

Lemma 3.5. The tight contact structures on M for this case all
remain tight when pulled back to S1 × Σ̃, where Σ̃ = R2 is the universal
cover of Σ.

Proof. If there is an overtwisted disk in S1 × Σ̃, then it sits in a
part of the cover obtained by gluing only finitely many copies of S1 ×P
together. We prove that, given tight contact structures on two solid tori
S1 × P1 and S1 × P2 with minimal convex boundary in standard form,
negative integer boundary slopes s1 and s2, and vertical Legendrian
rulings, if we glue the contact structures along a vertical ruling curve
(or more precisely a thickened annular neighborhood A in standard form
of a vertical ruling curve), then the contact structure on their union is
tight, the boundary is minimal, convex, and in standard form, and the
boundary slope is s1 + s2 + 1. Start with horizontal ruling curves on
S1 × P2, and take a meridional disk D with Legendrian boundary. If
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Figure 3: Legendrian link diagram

there are no bypasses along D, then s2 = −1 and the gluing is no
problem. If there is a bypass, then we may assume that the endpoints
of the bypass are attached to the dividing curves of ∂(S1 × P2). We
may ‘slide the bypass’ so that the slope of the bypass is >> 0 as seen
on ∂(S1 × P2), and the endpoints of the bypass lie on dividing curves
of A. (See the Appendix for a discussion of bypass sliding.) Modify the
characteristic foliation on A slightly so that the endpoints of the bypass
lie on a Legendrian arc on A. The key observation here is that the
characteristic foliation can be modified without affecting the bypass.
This is possible because the endpoints of the bypass lie on dividing
curves, and the characteristic foliation modifications can be performed
away from the dividing set. We now remove the bypass from S1 × P2

and attach it to S1 × P1, thickening S1 × P1 to have slope s1 − 1 and
thinning S1 × P2 to have slope s2 + 1. The attachment of the bypass
preserves tightness (since it is easy to find explicit models), and the
tightness of the contact structure on the union follows from repeated
application of the peeling and reattaching process. q.e.d.

Lemma 3.5 gives an alternate proof of the tightness of ξ. In addition,
it implies the following:

Lemma 3.6. t(S1) = −1 in this case.

Proof. The proof is similar to Lemma 3.3. If there exists a Legen-
drian curve γ isotopic to S1 with t(γ) = 0, then we pass to some cover
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of the base, by tiling finitely many copies of the polygon P to obtain P ′,
so that γ ⊂ S1 × P ′. This solid torus has large negative slope. Inside
a solid torus with negative slope there cannot exist a solid torus with
slope ∞ (= a standard neighborhood γ) by the classification of tight
contact structures on S1 × D2. q.e.d.

Lemma 3.7. There exists a unique tight contact structure on M
for each tight contact structure on S1 × P .

Proof. Unlike Case 1, the holonomy is not an isotopy invariant. This
is because we can attach a bypass to any Ti and modify its holonomy
by ±1, the sign depending on which side the bypass is attached. (If you
switch the side the bypass is attached to, then you reverse signs.) The
bypass comes from a bypass along the meridional disk, translated along
a dividing curve (c.f. Appendix), so that the bypass becomes almost
vertical as in Lemma 3.5. q.e.d.

The |s| tight contact structures on M in this case are distinct up
to contact isotopy. This follows from observing that they correspond to
distinct homotopy classes of 2-plane fields. The Poincaré dual to c1(ξ) is
computed to be r(K)S1, where r(K) is the rotation number in Gompf’s
surgery construction and S1 is the S1-fiber.

3.3. Classification of horizontal contact structures on cir-
cle bundles. In this section we classify contact structures on circle
bundles which are horizontal, i.e., can be made transverse to the S1-
fibers after diffeomorphism. These are necessarily universally tight and
weakly symplectically fillable by Lemma 3.9 below. One may think of
the following classification theorem as a contact-quantized version of
the classical Milnor-Wood inequality for foliations ([15], [17]). The con-
tact version of the Milnor-Wood inequality first appeared in [16] and an
earlier version of [11].

Theorem 3.8. Let M → Σ be a circle bundle over a closed Rie-
mann surface Σ with Euler number e. Then, the horizontal contact
structures are as follows (classified up to contact isotopy):

1. If g = 1, e = 0, then there are Z+ × Z2 horizontal contact struc-
tures. They are distinguished by t(S1) ∈ Z+, together with the
holonomy k : {γ1, γ2} → Z.

2. If g > 1, 2g − 2 ≥ e > 0, e|2g − 2, then for each n ∈ Z+

satisfying en = 2g − 2, there exist Z2g distinct horizontal con-
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tact structures with t(S1) = −n, distinguished by the holonomy
k : {γ1, · · · , γ2g} → Z.

3. If g ≥ 1, 2g − 2 > e, there exist two horizontal contact structures
with t(S1) = −1.

Proof. We will prove that the horizontal contact structures satisfy
t(S1) < 0. Assume otherwise, i.e., there exists γ with t(γ) = 0. Then
we ‘pass to some cover of the base’ as follows: Consider γ1, · · · , γ2g as
before, and cut Σ along the γi to obtain the standard polygonal repre-
sentation P of Σ. Paste together enough copies of P so that this union
contains γ. As before, consider S1 × P , which we assume has convex
boundary. (We assume Ti have already been made convex after isotopy).
However, note that the holonomy around each S1 ×∂P is negative, and
holonomy is additive, so the solid torus containing γ must have negative
holonomy. This contradicts the existence of a zero twisting Legendrian
by the classification of solid tori.

Now we apply the classification of tight structures with t(S1) < 0.
For (3), there are only two tight structures in the correct homotopy
class if g > 1, 2g − 2 > e, and t(S1) = −1. We are left with proving
that all the tight structures in (2) and (3) can be made transverse to the
S1-fibers. For this we need to change the convex tori that we cut along
from standard form to nonsingular Morse-Smale form. If there is only
one torus Σ1 in standard form, we may use the Legendrian realization
principle and make it Morse-Smale. If there are two convex tori Σ1 and
Σ2 in standard form which meet along a common Legendrian ruling
curve, we need to perturb with care so that both Σ1 and Σ2 become
Morse-Smale and their intersection is a transverse curve. We sketch how
to make the modification and leave the verification to the reader. Take
the 3-torus T 3 = R3/Z3 with coordinates (x, y, z) and tight contact
structure ξn, n ∈ Z+, given by αn = sin(2πnz)dx + cos(2πnz)dy for
some n ∈ Z+. We take a contact embedding Σ1 ∪ Σ2 ↪→ T 3 so that
Σ1 = {y = 0} and Σ2 = {x = 0}. They intersect along L = {x =
y = 0}. Modify Σ1 to Σ′

1 = {y = h(z) = ε sin(2πnz)}, where ε a small
positive number. Similarly, let Σ′

2 = {x = g(z) = −ε cos(2πnz)}. The
characteristic foliations will be Morse-Smale, and the two surfaces will
intersect transversely. We also leave to the reader that the interior of
S1 ×P can be extended to a horizontal contact structure by examining
the holonomy on the boundary. q.e.d.
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Lemma 3.9. Let ξ be a contact structure which is everywhere trans-
verse to the fibers of a circle bundle M over a closed oriented surface Σ
with g(Σ) ≥ 1. Then ξ is (weakly) symplectically fillable and universally
tight.

Proof. Let X4 be the corresponding disk bundle over Σ with fiber
D2 and projection π onto Σ. Then there exists a symplectic form Ω
obtained by taking π∗(A), where A is an area form on Σ, and adding
a 2-form ω which would be π∗

1(B) if X4 = D2 × Σ, π∗
1 was the first

projection (onto D2), and B was an area form on D2. (If not a product,
it needs to be glued appropriately, using a symplectic connection.) It
is easy to see that Ω|ξ = π∗(A)|ξ > 0 and ξ is weakly symplectically
fillable. Take an arbitrarily large finite cover M̃ → M , expanded both
in the fiber direction and in the Σ direction. M̃ is a circle bundle over a
closed oriented surface, and the lift ξ̃ of ξ would still be transverse to the
circle fibers. By the same argument ξ̃ is tight, and hence ξ is universally
tight (since any overtwisted disk in the universal cover must still be an
overtwisted disk when pushed down to some large finite cover). q.e.d.

4. Classification for t(S1) = 0

Let γ be the Legendrian curve with t(γ) = 0, which we assume has
already been isotoped into a fiber. We will decompose Σ into a union
of pairs-of-pants Σi, i = 1, · · · , k (three-holed spheres), and correspond-
ingly decompose M into a union of S1 × Σi. The decomposition will
be performed so that the slopes of the dividing curves on the boundary
are all vertical. In the next section, we will classify tight contact struc-
tures with vertical boundary slopes over pairs-of-pants. Subsequently,
we glue together the boundaries of the pairs-of-pants and determine
whether the tight contact structures remain tight. It turns out that in
every instance for e < 2g and every instance except for one for e = 2g
and two for e > 2g, the tight contact structure on Σ is universally tight,
and is S1-invariant.

If α and β are isotopy classes of (not necessarily connected) curves on
a compact surface F , then denote their minimal geometric intersection
number by |α ∩ β|. If a ∈ α and b ∈ β, then define |a ∩ b| = |α ∩ β|.

4.1. Pair-of-pants. In this section we classify tight contact
structures on S1×Σ0, where Σ0 is a pair-of-pants, and all the boundary
components are convex with vertical dividing curves. Let ∂(S1 ×Σ0) =
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T1 + T2 + T3. Assume Ti are in standard form, with horizontal Legen-
drian rulings. Then consider a surface isotopic to Σ0, with Legendrian
boundary components which are Legendrian ruling curves on each of T1,
T2, T3. Perturb this surface so that it is convex and call it Σ0. Assume
also that Σ0 is #Γ-minimizing, i.e., #ΓΣ0 is minimal among surfaces
of the same isotopy type and Legendrian boundary. (This definition is
not to be confused with that of a minimal convex torus, which means
#Γ = 2.) Write ∂Σ0 = γ1 + γ2 + γ3, where γi = Ti ∩ Σ0.

By the configuration of dividing curves on a convex F , we mean the
isotopy type of ΓF .

Lemma 4.1. For tight contact structures on S1 ×Σ0, all of whose
boundary components Ti, i = 1, 2, 3, are convex with slope ∞, ΓΣ0 de-
termines the tight contact structure on S1 × Σ0, provided Σ0 is #Γ-
minimizing. Moreover, the tight contact structures are S1-invariant.

Proof. In this lemma we do not assume that #ΓTi = 2. If #ΓTi > 2
and there exists a ∂-parallel component of Σ0 along γi, then take the
corresponding bypass and peel off a T 2 × I layer using using the bypass
half-disk. According to the dividing number reduction procedure in
[13], the T 2 × I layer that is peeled off is S1-invariant and is completely
determined by the configuration of dividing curves on a #Γ-minimizing
horizontal annulus with Legendrian boundary. We repeat this procedure
to each Ti until either (1) there are no more ∂-parallel components along
γi, and the new Ti is still convex with vertical dividing curves, or (2) Ti

is minimal, has vertical dividing curves, and has a ∂-parallel component
along γi (hence a degenerate bypass).

Assume first that (1) holds for each Ti. Then each arc δ of ΓΣ0 is one
of two types — δ is nonseparating and connects γi to another γj , or δ is
separating and connects between the same γi, but is not ∂-parallel. In
the separating case, there is a unique non-∂-parallel isotopy class of arcs
with endpoints on γi. See Figure 4 for two possible configurations of ΓΣ0 .
All the arcs except for a vertical arc in Figure 4(B) are nonseparating.
Figure 4(B) also indicates that there may be spiraling around some γi.
We can now cut S1 ×Σ0 along Σ0 to obtain a genus 2 handlebody. Use
the Edge-Rounding Lemma to round the edges so that the boundary of
the handlebody is smooth and convex.

We claim the tight contact structure on this genus 2 handlebody
H = Σ0 × I is unique. In order to decompose H into B3 by cutting
along meridional disks, we first use the Legendrian realization principle
to modify the characteristic foliation on ∂H so that the meridional disks
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Figure 4: Possible configurations of dividing curves. Dotted lines rep-
resent dividing curves

have Legendrian boundary. If δ is a nonseparating arc on Σ0, then
take the corresponding meridional disk δ × I ⊂ Σ0 × I. |∂(δ × I) ∩
Γ∂H | = 2, and we have a meridional disk whose boundary intersects Γ∂H

in only two points. There are at least two nonparallel nonseparating
arcs on Σ0, and hence two corresponding meridional disks — enough
to decompose into a 3-ball. There is only one possible dividing curve
configuration for a convex disk with Legendrian boundary whose tb =
−1. Therefore, there is only one possible tight structure on S1 × Σ0

with the given configuration of dividing curves on Σ0 — this follows
from the uniqueness of the tight contact structure on the 3-ball with
fixed boundary characteristic foliation. On the other hand, there is
indeed an S1-invariant tight structure (see Lemma 4.2 below) with the
given configuration of Σ0 (one without homotopically trivial dividing
curves). The tight contact structure is therefore determined by Σ0 and
is S1-invariant in this case.

Assume at least one Ti, say T1, satisfies (2). Cut S1 × Σ0 along Σ0

to obtain a genus 2 handlebody H. Write ∂H = Σ+
0 ∪ Σ−

0 ∪ (I × ∂Σ0),
where Σ±

0 are the two copies of Σ0. If there were k closed dividing
curves δ1, · · · , δk parallel to γ1 on Σ0 (δi is closer to γ1 than δi+1), then
on ∂H, after rounding, there are 2k + 1 closed dividing curves parallel
to γ+

1 ⊂ Σ+
0 ⊂ ∂H. 2k of them are δ±i , i = 1, · · · , k, and the last

one δ is derived from the ∂-parallel component on Σ0 along γ1. Take
a convex meridional disk D (after Legendrian realization) for H which
nontrivially intersects the 2k + 1 parallel dividing curves (but without
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any superfluous intersections). Recall a bypass along a convex surface
has its corresponding Legendrian arc of attachment, which intersects
exactly three dividing curves. The fact that Σ0 is #Γ-minimizing implies
that, for any bypass on D, the three dividing curves intersecting the arc
of attachment cannot all intersect Σ+

0 and cannot all intersect Σ−
0 . This

implies that a dividing curve on D with one endpoint between δ+
i and

δ+
i+1 must have the other endpoint between δ−i and δ−i+1. (Also the curve

with one endpoint between δ and δ+
1 has other endpoint between δ and

δ−1 .) This proves that there is only possible configuration for D, and
proves the uniqueness of the tight contact structure with #Γ-minimizing
Σ0. q.e.d.

4.2. S1-invariant tight contact structures on S1 times a
surface. In this section we completely classify S1-invariant tight
contact structures on S1 × F , where F is an oriented compact surface
and ∂(S1 × F ) is convex.

Lemma 4.2 (Giroux). An S1-invariant contact structure on
S1 × F , where F is a closed convex surface = S2 or a compact convex
surface with Legendrian boundary, is universally tight if and only if F
has no dividing curves which bound a disk.

Sketch of proof. This follows from Colin’s theorem [1] on gluing
universally tight contact structures along pre-Lagrangian surfaces which
may be T 2 or annuli with Legendrian boundary. A more thorough proof
can be found in [1]. Colin’s proof relies in an essential way on the cutting
surfaces being pre-Lagrangian, which provides the necessary invariance
under dilation. Let D be a potential overtwisted disk. The invariance
allows us to push D across the pre-Lagrangian surface (contact isotop
it to one side of the pre-Lagrangian) to obtain a contradiction. Since
it is a bit difficult to perform directly on T 2 or S1 × I, we pass to the
universal cover π : R× F̃ → S1×F , where F̃ → F is the universal cover
of F . The dividing curves on F̃ correspond to pre-Lagrangian surfaces
in R × F̃ with vertical characteristic foliations. D can be pushed into
R × F̃s, where F̃s is a connected component of F̃\Γ

F̃
. If F̃s is a half-

disk, R× I, or I × I, then the contact structure can be embedded inside
(R3, ξ0), where ξ0 is the standard tight structure. If not, F̃s deformation
retracts onto a tree, represented by the network N of singular points
(all of the same sign), together with their connecting trajectories. Since
R × N is a union of (covers of) pre-Lagrangian surfaces, we can push
D into one of the connected components of R × (F̃s\N), which can be
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Figure 5: Pants decomposition

embedded in (R3, ξ0), and obtain a contradiction. q.e.d.

We also need to prove the uniqueness of the #Γ-minimizing config-
uration on F up to isotopy. But first we prove a preliminary lemma,
whose proof is courtesy of Will Kazez.

Lemma 4.3. Let F be a closed oriented surface of genus > 1, and
Γ, Γ′ ↪→ F be multicurves (= finite disjoint union of embedded closed
curves) without homotopically trivial components. If |γ ∩ Γ| ≤ |γ ∩ Γ′|
for every simple closed curve γ ⊂ F , then Γ ↪→ Γ′; in other words, Γ
can be isotoped into a subset of Γ′.

Proof of Lemma. (Due to W. Kazez) Define Γred = Γ/ ∼, where all
parallel curves of Γ are squashed into one copy of the curve. Similarly
define Γ′

red. Assume all the curves in this paragraph are represented
by geodesics. If α ∈ Γ′

red, then |α ∩ Γred| = 0, and either α ∈ Γred

or α is disjoint from Γred. If we take F\Γ′
red, then each component

F0 is a punctured Riemann surface with negative Euler characteristic.
If there exists a non-boundary parallel curve α in F0, then there is a
closed curve β with |α ∩ β| = 0. In fact, we can further decompose
F\Γ′

red into pairs-of-pants with copies α+, α− of α which are boundary
components of a single pair-of-pants or two pairs-of-pants. If we take
the single pair-of-pants or the two pairs-of-pants and glue α+ to α−, we
have the two possibilities depicted in Figure 5. In either situation there
is a β with |α ∩ β| = 0. This proves Γred ↪→ Γ′

red.
Next we need to take care of the multiplicities of the curves. How-

ever, the multiplicities are also controlled, since for every α ∈ Γ′
red there

exists a ‘dual’ curve β as above. Hence Γ ↪→ Γ′. q.e.d.

Proposition 4.4. Consider the S1-invariant tight structure on
S1 × F , where a convex F is closed or is compact with Legendrian
boundary, and all the boundary tori have vertical dividing curves and
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horizontal Legendrian rulings. Then F is uniquely #Γ-minimizing in
the following sense: Given another convex F ′ isotopic to F , we have
ΓF ⊂ ΓF ′. (For F with Legendrian boundary, we assume F ′ is isotopic
to F rel boundary).

Proof. If there exist F and F ′ with distinct configuations (we may
assume they are identical on ∂F ), then pass to R × F → S1 × F and
find copies of F and F ′ (still called F and F ′) so that they are disjoint
and moreover F ′ sits ‘above’ F , i.e., if t is the coordinate for R, then
we get from F to F ′ by flowing in the ∂

∂t -direction. This is possible
since the S1-invariant tight structure is universally tight. Also assume
that F and F ′ are oriented by ∂

∂t . Let γ be a curve on F which is
either closed or has endpoints on ∂F , and γ′ a parallel copy on F ′. We
may represent γ as a Legendrian curve on F with possible endpoints
at the singular points of ∂F which has minimal geometric intersection
|γ ∩ ΓF |. Also represent γ′ as a Legendrian on F ′ with intersection
|γ′ ∩ΓF ′ |. If |γ ∩ΓF | > |γ′ ∩ΓF ′ |, then take the annulus between γ and
γ′ if γ is closed. If γ, γ′ are (properly embedded) Legendrian arcs with
endpoints p1, p2 which are singular points of ∂F , then we need to make
the following slight modification (and still call these arcs γ, γ′ after
this rounding operation): each pi, i = 1, 2, is contained in a connected
component of ∂F\ΓF with endpoints qi and ri. Assume [pi, qi] ⊂ ∂F is
the subarc for which the flow from qi to pi agrees with the orientation
on ∂F induced from F . Then we take γ ∪ [p1, q1] ∪ [p2, q2] instead. (γ′

modified similarly.)

By the Imbalance Principle (c.f. [13]) there exists a bypass half-disk
D on F . Let δ ⊂ γ ⊂ F be the Legendrian arc of attachment for D with
δ ∩ ΓF consisting of a1, a2, a3 in order along δ, and ∂δ = a1 − a3. Let
Σ1 be the component of F\ΓF containing the arc [a1, a2] ⊂ δ and Σ2 be
the component containing [a2, a3]. The possible boundary components
of Σi, i = 1, 2, are closed dividing curves or closed curves which consist
of arcs of ΓF and arcs of ∂F . The one situation we want to rule out
first is when there exists a half-disk region D0 ⊂ Σi (say i = 1) where
∂D0 = [a1, a2] ∪ β and β is a subarc of ΓF . Assume first a3 ∈ β. Then
attachment of the bypass gives a homotopically trivial closed dividing
curve if D0 is to one side of δ; assume therefore that D0 is on the other
side of δ. If a1 is not an endpoint of γ, then γ does not have minimal
geometric intersection with ΓF . On the other hand, a1 cannot be an
endpoint of γ, since the rounding operation above should force γ away
from a1, not toward it. Next assume a3 ∈ β. Since γ enters D0 along
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a3, it must exit D0 in another point a4, contradicting the minimality of
|γ ∩ ΓF |. Thus, there cannot exist half-disk regions D0 as above.

We may now use the argument in Lemma 4.2. Pass to the universal
cover F̃ of F . Let D̃ be some lift of D with D̃ ∩ F̃ = δ̃, and let Σ̃i,
i = 1, 2, be the universal cover of (a lift of) Σi in F̃ . Having ruled
out half-disk components, we now know that each side of Σ̃i cut by
δ̃ is either semi-infinite or has boundary components which consist of
alternating ∂F arcs and Γ

F̃
arcs. Using Colin’s argument, we may D̃

in a small neighborhood of R × (Σ̃1 ∪ Σ̃2). Now let Ni be the network
of singular points of Σ̃i, say, which is a tree. Let γj , j = 1, 2, 3, be
dividing curves on F̃ which pass through the lift of aj on δ̃. Then let
Σ̃′

i ⊂ Σ̃i be the union of connected components of Σ̃i\Ni (recall we
take the metric closure of the complements) which border γi and γi+1.
As before, we may retract D̃ inside R × (Σ̃′

1 ∪ Σ̃′
2). Therefore, we find

that D̃ can be placed inside (a small neighborhood of) the tight contact
manifold (R× [−1, 1]× [0, 1], ξ), given by coordinates (t, x, y) and 1-form
α = sin(2πy)dt + cos(2πy)dx. Here, δ̃ will be mapped to {x = t = 0}.
Now, a bypass increases the twisting number of a Legendrian curve, but
we know that {x = t = 0} has maximal twisting number in its isotopy
class rel boundary. (This follows from an argument along the lines of
Kanda [14].) This contradiction proves that |γ ∩ΓF | ≤ |γ ∩ΓF ′ | for any
Legendrian arc (as above) or Legendrian closed curve γ.

Lemma 4.3 then finishes the proof when F is closed. (The cases
when F = S2 or T 2 are straightforward, and left to the reader.) When
F has Legendrian boundary, choose the curves γ to be Legendrian arcs
which intersect ΓF ′ only at the endpoints of γ. If we apply |γ ∩ ΓF | ≤
|γ∩ΓF ′ | to the set of all such γ’s, then the arcs of ΓF become completely
determined. The closed curves are treated in the same way as the case
when F is closed by finding dual curves. q.e.d.

4.3. Decomposing and reconstructing. Let ξ be a tight
contact structure on the circle bundle M over the base Σ with a vertical
Legendrian curve. Then there exist tori isotopic to S1 × γ, where γ
is a closed curve on Σ, with vertical dividing curves. Let T be #Γ-
minimizing amongst convex tori in its isotopy class with slope ∞, and
consider M ′ = M\T = S1 × Σ′, where Σ′ = Σ\γ. We now decompose
M ′ into circle bundles over pairs-of-pants, subject to the requirement
that each convex torus Ti that M ′ is cut along must contain a vertical
Legendrian and hence have slope ∞. If there are no nearby vertical
Legendrians, we must isotop Ti so that it is close to a vertical Legendrian
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L and picks up a (vertical Legendrian) copy of L. Lemma 4.1 and
Proposition 4.4 guarantee that for each pair-of-pants Σi, S1 × Σi will
have a unique S1-invariant tight structure encoded by the configuration
of dividing curves on Σi. We glue back and obtain an S1-invariant
tight structure on M ′, determined by the #Γ-minimizing set of dividing
curves on Σ′.

We now know that for ξ|M ′ to be tight, Σ′ must not have any di-
viding curves bounding disks. Let ∂M ′ = T+ − T−. Gluing M ′ along
T± to recover M requires some effort and we will show that there is
one stubborn configuration. If there are no ∂-parallel components of Σ′

attached along T±, then we can glue copies of M ′ to obtain a Z-cover
M̃ of M which is universally tight, since no disks bounded by dividing
curves appear. If there are ∂-parallel components of Σ′ along T±, then
#ΓT± = 2, since T is #Γ-minimizing. Indeed, if #ΓT > 2, a bypass
attachment would reduce #ΓT by 2. If there is a ∂-parallel component
only on one of the T±, then we can pass to M̃ . If there are ∂-parallel
components on both sides, and the signs are opposite, the gluing pre-
serves tightness as well. When gluing two copies M ′

1 and M ′
2 of M ′

along T+
1 and T−

2 , we must arrange the sections s1, s2 : Σ′ → S1 × Σ′

to differ by the Euler number of the circle bundle, if we want a section
of M ′

1 ∪ M ′
2. To ‘shift’ the sections, we repeatedly apply the following

Section Change Lemma. The proof is left to the reader.

Lemma 4.5 (Section Change). Let Σ0 be a pair-of-pants, and
let (S1 × Σ0, ξ) be an S1-invariant tight contact manifold with convex
boundary, all of whose boundary slopes are ∞. By Proposition 4.4, ξ
is uniquely determined by the #Γ-minimizing convex surface Σ0. Given
a, b, c ∈ Z with a + b + c = 0, there exists a section σ : Σ0 → S1 × Σ0

which is convex, #Γ-minimizing, has slopes a, b, c on T1, T2, T3, and
whose dividing set, when projected down to Σ0 via π : S1 × Σ0 → Σ0,
is isotopic to Γ{pt}×Σ0

. Hence we may view the tight structure as an
S1-invariant tight structure on S1 × σ(Σ0).

The difficult case is when the signs of the ∂-parallel components
are the same (in other words, the contact structure has an overtwisted
cover). If Σ′ has any dividing curves besides the two ∂-parallel compo-
nents, then there exist vertical Legendrian curves on S1×Σ′ besides the
Legendrian curves corresponding to S1 × {p}, where p is any point on
∂-parallel components. By ‘borrowing’ this Legendrian curve, we obtain
disjoint T 2 × I layers N1, N2 ⊂ S1 × Σ′, where N1 ∩ ∂(S1 × Σ′) = T+

and N2 ∩ ∂(S1 × Σ′) = T−. Both N1 and N2 have convex boundary,
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boundary slope ∞, and π twisting. If we glue N1 and N2 along T±

and identify the torus fiber with R2/Z2 so that the (oriented) vertical
fibers correspond to (0, 1), then e(ξ, N1, s) = e(ξ, N2, s) = (0, 2) (or
both (2, 0)), which gives an overtwisted contact structure. Hence we
may assume that the two ∂-parallel components are the only dividing
curves on Σ′.

Next we rule out e < 2g. We first peel off disjoint T 2 × I layers
N1, N2 ⊂ S1 ×Σ′ with N1 ∩∂(S1 ×Σ′) = T+ and N2 ∩∂(S1 ×Σ′) = T−

using the bypasses corresponding to the ∂-parallel components on Σ′.
This means that N1, N2 both have one boundary component which is
minimal convex with slope 0, and π

2 twisting. Write M ′′ = M ′\(N1 ∪
N2). The boundary slopes of M ′′ are zero, and M ′′ has no vertical
Legendrian. Now, successively cut M ′′ along S1 × γ, where γ is an arc
in the base, to obtain S1 × P as in Section 3. The slope of S1 × P ,
after rounding is 1 − 2g. This implies the existence of a bypass along
a meridional disk. We perform bypass sliding as in Section 3 to make
these almost vertical, and peel off a T 2×I layer N ′

1 ⊂ M ′′, which shares
a common boundary component with M ′′ and has boundary slopes 0
and 2−2g. As long as e ≤ 2g−1, N1∪N2∪N ′

1 is overtwisted. Therefore,
what we have left is a universally tight contact structure on S1 × Σ′,
which is glued to give a contact structure on M with e ≥ 2g, such that
ΓΣ′ projected down to Σ consists of one homotopically trivial curve. The
study of such virtually overtwisted structures with t(S1) = 0 requires
more care, and will be deferred to the next section.

To finish our classification for t(S1) = 0, note that the configura-
tion Γ

Σ̃
, where Σ̃ is the Z-cover of Σ corresponding to gluing copies

of Σ′, can be pushed down to a configuration ΓΣ on Σ without homo-
topically trivial curves. Proposition 4.4 proves the uniqueness of the
#Γ-minimizing configuration on Σ′, but the projection onto Σ still de-
pends on the cutting torus T which gave rise to M ′ = M\T = S1 × Σ′.
In order to simplify things a bit, we require that the cutting torus T
be #Γ-minimizing amongst isotopic convex tori with vertical slope. We
now prove the following, which finishes the proof.

Proposition 4.6 (Unique Projection). Given a universally tight
contact structure on M with t(S1) = 0, we can uniquely associate a
dividing set Γ on Σ. Two tight contact structures which are assigned
distinct Γ’s are distinct.

Proof. We show that the projection π(ΓΣ′) does not depend on
the cutting torus. Consider two cutting tori T , T ′ with vertical slopes
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which are convex and #Γ-minimizing amongst isotopic convex tori with
vertical slopes.

First consider the case where T , T ′ are disjoint. If T , T ′ are isotopic,
hence cobound a T 2 × I, then the independence follows from Proposi-
tion 4.4, together with the S1-invariance of the tight contact structures
on T 2 × I and M\(T 2 × I). Otherwise, we reduce to the case where T ,
T ′ are two boundary components of some S1 × Σ0 (here Σ0 is a pair-
of-pants), and all three boundary components of S1 × Σ0 have vertical
slopes. Then we may pass between the #Γ-minimizing convex sections
for M\T and M\T ′ without changing the projection down to Σ, by
using the Section Change Lemma and Proposition 4.4.

Next assume T = T0, T ′ are isotopic but not necessarily disjoint. We
may assume T0 � T ′. Then T0 ∩ T ′ on T ′ will consist of homotopically
trivial curves as well as parallel essential curves. Take an ‘innermost’
homotopically trivial curve δ on T ′. If δ bounds disks D′ ⊂ T ′ and
D ⊂ T0, then surger to obtain T1 = (T0\D) ∪ D′. If there are no
homotopically trivial curves, then take a pair of consecutive parallel
curves δ1, δ2 on T ′. If A′ ⊂ T ′ and A ⊂ T0 with ∂A = ∂A′ = δ1 − δ2,
then surger T1 = (T0\A) ∪ A′. After perturbation, T1 is convex, has
vertical dividing curves (since all the convex surfaces isotopic to T0

must have vertical slope), T1 ∩ T0 = ∅, and #(T1 ∩ T ′) < #(T0 ∩ T ′).
We can apply the Section Change Lemma from the previous paragraph
to T0, T1, and now work with T1, T ′. By induction we are done with
this case.

The general situation follows from the previous two cases. q.e.d.

5. Virtually overtwisted structures with t(S1) = 0

Let us now give a slightly different description of the (candidate) vir-
tually overtwisted contact structures, which follows without too much
difficulty from the previous definition. There exist two contact struc-
tures for each e > 2g (depending on the sign of the bypasses) and one
for e = 2g, and they are obtained as follows: Start with any hori-
zontal contact structure on the S1-bundle over Σ with Euler number
2g − 2. Remove a neighborhood N(γ) of a Legendrian curve γ with
t(γ) = −1, so that from the point of view of −∂(M\N(γ)), the divid-
ing curves on the boundary have slope −(2g − 1). Here we are view-
ing −∂(M\N(γ)) = R2/Z2 with coordinates (x, y) and the y-direction
given by the S1-fiber and the x-direction given by a section of the S1-
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bundle on M\N(γ). Now glue in a solid torus S1 × D2 with boundary
slope e − (2g − 1), via the map φ : −∂(M\N(γ)) → ∂(S1 × D2) given

by
(

1 0
e 1

)
which maps (1,−(2g − 1))T �→ (1, e − (2g − 1))T and

(−1, e)T �→ (−1, 0)T . Notice that there exist two tight contact struc-
tures on S1×D2 with boundary slope e−(2g−1) up to contact isotopy,
if e > 2g, and one if e = 2g. Part of our difficulty is due to the fact
that these contact structures are overtwisted when passing to any dou-
ble cover of the base Σ, which makes it impossible to use the tiling
approach used in Section 3.

5.1. Pair-of-pants, part II. In this section we extend the results
of Section 4.1 and classify tight contact structures on S1 × Σ0, where
Σ0 is a pair-of-pants, and we impose more general boundary conditions.
Let us use the same notation as Section 4.1.

Lemma 5.1. Let Σ0 be a pair-of-pants, and ∂(S1 × Σ0) = T1 +
T2 + T3. The tight contact structures on S1 × Σ0 with minimal convex
boundary, and boundary slopes a, b, c ∈ Z, respectively for T1, T2, T3,
are classified as follows:

1. A tight contact structure with a vertical Legendrian curve admits
a factorization S1 × Σ0 = L1 ∪ L2 ∪ L3 ∪ (S1 × Σ′

0), where Li are
disjoint toric annuli with minimal twisting and minimal boundary,
∂Li = Ti−T ′

i , and all the components of ∂(S1×Σ′
0) = T ′

1+T ′
2+T ′

3

have slope ∞.

2. A universally tight contact structure with a vertical Legendrian
curve admits a unique extension to S1 × Σ′′

0, obtained by adding
toric annuli L′′

i with minimal twisting and minimal boundary, so
that all the components of ∂(S1 × Σ′′

0) = T ′′
1 + T ′′

2 + T ′′
3 have

slope ∞. There is a 1-1 correspondence between universally tight
contact structures on S1 × Σ0 with vertical Legendrians and #Γ-
minimizing configurations of dividing curves on Σ′′

0.

3. a + b + c ≥ 2.

(a) There always exists a vertical Legendrian curve.

(b) Universally tight contact structures — satisfy (2) above.

(c) Virtually overtwisted contact structures — ∃ 1 if a+b+c = 3,
2 if a + b + c > 3, and none if a + b + c = 2.
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T1

T2 T3

-c-b

a

Figure 6: Representing S1 × Σ0

4. a + b + c < 2.

(a) Tight structures with a vertical Legendrian curve — neces-
sarily universally tight, and satisfy (2) above.

(b) Tight structures with no vertical Legendrian curve — ∃ 2 −
(a + b + c) tight structures.

We pictorially represent the tight structure on S1 × Σ0 by drawing
Σ0 and labeling the slopes of the Ti as in Figure 6. Note that the outer
circle corresponds to T1 and the two inner circles are T2 and T3, and we
are labeling them with slopes of −T2 and −T3.

Proof. Let a + b + c ≥ 2. We first prove that there always exists a
vertical Legendrian curve. To see this, make the Legendrian rulings on
T2 and T3 vertical and take a vertical annulus A between T2 and T3 with
Legendrian boundary. If there exists a (degenerate) bypass on A, then
we immediately have a vertical Legendrian curve. Therefore assume the
dividing curves on A are parallel and there are no bypasses. Let N be
a small neighborhood of T2 ∪ T3 ∪ A. If ∂N = T2 + T3 + T , then T
has slope −b − c + 1, after edge-rounding. Since a + b + c ≥ 2, we have
a > −b−c+1. On the toric annulus (S1×Σ0)\N with boundary slopes
a,−b − c + 1 (as seen from T1) there must exist a vertical Legendrian
by Proposition 1.2. When we say “T 2 × [0, 1] has slopes p, q”, we mean
p is the slope for T 2 × {1} and q is the slope for T 2 × {0}.

Once we have one vertical Legendrian, we may find T ′
i parallel to Ti

which have slope ∞, by incorporating copies of the vertical Legendrian
into T ′

i . By rechoosing T ′
i if necessary, we may assume (i) T ′

i has minimal
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Figure 7: Factoring

boundary, and (ii) the layer Li with ∂Li = Ti − T ′
i is a basic slice. (i)

follows from the fact that if a (T 2 × [0, 3], ξ) has nonzero βI , then there
exists a factorization T 2 × [0, 3] = ∪2

i=0(T
2 × [i, i + 1]), where T 2 × [0, 1]

and T 2 × [2, 3] are nonrotative (βI = 0) and T 2 × [1, 2] has minimal
boundary. (See [13] for details.) Therefore, we have basic slices L1, L2,
L3 with slopes a,∞; b,∞; c,∞, and an inner core (S1 ×Σ0)\(L1 ∪L2 ∪
L3) = S1 × Σ′

0. See Figure 7.
There are two possibilities for each basic slice Li. Recall the dis-

cussion of relative Euler class in Section 1.1.3. Since the S1 fibers are
already oriented, we let v0 in that discussion be (0, 1). Once this iden-
tification is made, each Li may be positive or negative. The signs in
Figure 7 are possible signs of the Li. The tight contact structures on
S1 ×Σ′

0 are S1-invariant and are classified, according to Lemma 4.1, by
ΓΣ′

0
for a #Γ-minimizing convex Σ′

0 with Legendrian boundary.
Consider first the situation where there are no bypasses on Σ′

0, i.e.,
the dividing curves are as in Figure 8 and each dividing arc connects
T ′

i to a different T ′
j . Assume the signs of Li are mixed, i.e., without

attention to order we have +, +,− or +,−,−. We prove the contact
structure on S1 ×Σ0 is universally tight by showing that there exists a
unique extension of S1×Σ0 to S1×Σ′′

0 = L′′
1∪L′′

2∪L′′
3∪(S1×Σ0), where

basic slices L′′
i with slopes ∞, a (or ∞, b, or ∞, c) are attached along Ti.

For each basic slice L′′
i there are two choices of sign; however, the signs

of Li and L′′
i must be the same for the contact structure with βI = π on

Li ∪L′′
i to be tight. The tight contact structure on Li ∪L′′

i has βI = π,
and has boundary slopes ∞,∞ — by the classification (Theorem 1.1),
it must also be universally tight and S1-invariant, once the boundary is
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8 8

8
Figure 8: Minimal configuration. The dividing curves are dotted lines.

given horizontal Legendrian rulings. The S1-invariant contact structure
on S1 × Σ′′

0 will have no homotopically trivial dividing curves on Σ′′
0,

hence S1 × Σ′′
0 is universally tight.

Assume the signs are not mixed, i.e., +, +, + or −,−,−. By taking
a suitable diffeomorphism of S1 × Σ0, we normalize b = c = 1. This
amounts to a section change. We first show that the contact structure
is tight, provided a + b + c > 2. The following is a tight model for
this contact structure: start with a solid torus with boundary slope
a > 0, and remove two standard neighborhoods of Legendrian curves
parallel to the S1-fiber with twisting number −1. There are two possible
Legendrian curves with twisting number −1 up to Legendrian isotopy,
given by the two possible zigzags that can be added to the twisting
number 0 curve in the solid torus — we choose the type which gives
a virtually overtwisted contact structure on T 2 × I when it is removed
from S1×D2. We leave it to the reader to verify that this model indeed
represents +, +, + or −,−,−.

If a+b+c = 2, then we claim the contact structures are overtwisted
(the same argument works for a + b + c ≤ 2 so we assume this instead).
Since b = c = 1, a ≤ 0, and we factor a T 2 × I layer ⊂ L3 with slopes
a, 1. Then S1 × Σ0 is of the type discussed above. Note that in the
tight model above, we may let the vertical annulus A from T2 to T3

have parallel horizontal dividing curves. Take N = N(T2 ∪T3 ∪A) with
∂N = T2 + T3 + T , so that T has boundary slope −1 (as seen from T1).
This means that the layer L = (S1 × Σ0)\N has slopes a,−1. By the
tight model, we know that this admits a factorization into two basic
slices with slopes a,∞ and ∞,−1 with opposite signs. If a ≤ 0, this
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gluing is not tight by the Gluing Theorem (Theorem 1.3).
If a+b+c = 3 then +, +, + is equivalent to −,−,− as follows. Define

the layer L as in the previous paragraph. L has slopes 1, −1 as seen from
T1, and admits a factorization into two basic slices with slopes 1,∞ and
∞,−1, and opposite signs. The two layers can be interchanged, since
they form a continued fraction block. This has the effect of exchanging
between +, +, + and −,−,−. If a+ b+ c > 3 then this exchange cannot
be performed, and the relative Euler class evaluated on Σ0 distinguishes
the two. The unmixed situation is virtually overtwisted.

Next consider the situation where there are bypasses on Σ′
0. Then

we may peel off at least one T 2 × I layer with slopes ∞,∞ and βI = π.
Let L′

i be a T 2 × I layer with slopes ∞,∞, minimal boundary, and
maximal βI . Then (S1 × Σ′

0)\(L′
1 ∪ L′

2 ∪ L′
3) will be S1-invariant with

#Γ-minimizing dividing set of the base as in Figure 8. However, we
cannot be in the unmixed case, because we may put back T 2 × I layers
onto (S1 × Σ′

0)\(L′
1 ∪ L′

2 ∪ L′
3) with twisting less than π but enough to

make the new boundary slopes satisfy a + b + c ≤ 2. Hence, if Σ′
0 has a

bypass, the tight contact structure on S1×Σ0 must be universally tight,
and, by adding a minimally twisting layer L′′

i compatible with Li and L′
i

(so L′′
i ∪Li ∪L′

i is tight), we obtain a unique extension to a universally
tight structure on S1 ×Σ′′

0 with slopes ∞ on each boundary component
T ′′

i .

Let a + b + c < 2. Assume first that the tight contact structure
contains vertical Legendrians. This case can be treated in the same
way as a + b + c ≥ 2, with the exception that the tight structure must
be universally tight (since +, +, + and −,−,− were ruled out in the
no-bypass case above).

If the tight structure does not have a vertical Legendrian, then there
must exist a vertical annulus A from T2 to T3 with dividing curves which
are horizontal. Let N = N(T2 ∪ T3 ∪A) with ∂N = T2 + T2 + T . Then,
(S1×Σ0)\N is a toric annulus with slopes a and −b−c+1 (as seen from
T1). There is still one degree of freedom that needs to be factored away
— that is the holonomy of the dividing curves on A. On (S1 × Σ0)\N ,
take the annulus B = γ × I, where γ is a closed curve with slope a.
This produces bypasses along T which may be made almost vertical by
bypass sliding. Hence, the bypass can be attached along A, and we may
normalize the dividing curves to be horizontal in a manner similar to
Lemma 3.7. There exist [(−b−c+1)−a]+1 > 0 tight contact structures
on the toric annulus with slopes a,−b−c+1. To actually exhibit a tight
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model, again assume without loss of generality that b = c = 1, a ≤ −1,
and drill out neighborhoods of twisting number −1 Legendrians from
a solid torus with boundary slope a. They are distinguished by the
relative Euler class evaluated on Σ0. q.e.d.

Lemma 5.2. The tight contact structures on S1 ×Σ0 with convex
boundary, and boundary slopes ∞ for T1 (boundary not necessarily min-
imal), and b, c ∈ Z for T2, T3 (minimal boundary) are given as follows:

1. All tight contact structures are universally tight.

2. There is a unique extension to S1 × Σ′′
0, obtained by adding toric

annuli L′′
i , i = 2, 3 with minimal twisting and minimal boundary,

so that all the boundary components have slope ∞. There is a
1-1 correspondence between universally tight contact structures on
S1 × Σ0 and #Γ-minimizing configurations of dividing curves on
Σ′′

0.

Proof. As in the proof of Lemma 5.1, there exist minimally twisting
layers L2, L3 with slopes b,∞; c,∞; together with the complement
S1×Σ′

0. Assume Σ′
0 is a #Γ-minimizing convex surface with Legendrian

boundary. Note that if ∂Li = Ti−T ′
i , then we could have chosen T ′

i , i =
2, 3 to be minimal with slope ∞. If Σ′

0 has bypasses along T ′
i , i = 2, 3,

then there exists a T 2 × I layer L′
i with ∂L′

i = T ′
i − T ′′′

i , T ′′′
i minimal

convex with slope ∞, and βI maximal amongst such layers. Now, Li∪L′
i

is universally tight since βI > π. Let S1 × Σ′′′
0 = (S1 × Σ′

0)\(L′
2 ∪ L′

3).
Since L′

i, i = 2, 3, are maximal, a #Γ-minimizing Σ′′′
0 has no ∂-parallel

components along T ′
i , i = 2, 3. Then either both dividing curves of

Σ′′′
0 beginning at T ′

2 end at T ′
3, or at least one dividing curve of Σ′′′

0

beginning at T ′
2 ends at T1 (and the same for T ′

3). In the latter case,
when we glue Li ∪ L′

i ∪ L′′
i back on, no homotopically trivial dividing

curves on Σ′′
0 are created, and the contact structure remains universally

tight. In the former case, we may peel off a layer L1 with slopes ∞, a
(any a ∈ Z), and the proof of Lemma 5.1 forces universal tightness of
S1 × Σ0. Once we know it is universally tight, the unique extension is
immediate. q.e.d.

Lemma 5.3. The tight contact structures on S1 ×Σ0 with convex
boundary, and boundary slopes a ∈ Z for T1 (minimal boundary), and
∞,∞ for T2, T3 (boundary not necessarily minimal) are given as follows:

1. All tight contact structures are universally tight.
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2. There is a unique extension to S1 × Σ′′
0, obtained by adding a

toric annulus L′′
1 with minimal twisting, so that all the boundary

components have slope ∞. There is a 1-1 correspondence between
universally tight contact structures on S1×Σ0 and #Γ-minimizing
configurations of dividing curves on Σ′′

0.

Proof. The proof is similar to the previous lemmas, but easier.
q.e.d.

5.2. State traversal. In this section we prove the tightness of
the alleged virtually overtwisted contact structures using the method of
state traversal, presented in Part 1.

We first describe our initial state. (The reader may verify that this
indeed is the same contact structure described previously.) Decompose
Σ = Σ1 ∪ · · · ∪ Σk, k = 2g − 2, into pairs-of-pants Σi, and M = (S1 ×
Σ1)∪· · ·∪(S1×Σk). Let Ni = S1×Σi, and ∂Ni = T i

1 +T i
2 +T i

3. Denote
the slopes of T i

α, α = 1, 2, 3, by si
α. We will often denote a common

torus boundary (wall) of adjacent Ni and Nj by Tij — there may be
more than one component, but which one we refer to should be clear
from context.

Let Ni have boundary slopes si
α = a, b, c ∈ Z. We stipulate that N1

is of type 3(c) in Lemma 5.1 and Ni, i = 2, · · · , 2g − 2, are of type 4(b)
in Lemma 5.1 and hence horizontal. Let us also take a minimal convex
torus T ⊂ N1 with vertical slope, and write M\T = S1 ×Σ′′, where Σ′′

is a #Γ-minimizing convex surface and the tight contact structure on
S1 × Σ′′ is S1-invariant and universally tight.

Assume inductively that we have reached a state where:

1. Each Ni is tight.

2. T is a convex torus with vertical dividing curves (T is not neces-
sarily minimal).

3. M\T = S1 × Σ′′ is universally tight (i.e., the contact structure is
S1-invariant and a #Γ-minimizing convex Σ′′ has no homotopi-
cally trivial dividing curves).

4. T ⊂ Nl for exactly one i = l (if T is a boundary component, then
we push T into the interior), and T is parallel to one of the T l

α.

5. The dividing curves on Σ′′, when projected down to Σ, glue to
give one closed homotopically trivial curve.
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Note that our initial state satisfies these properties. The inductive hy-
pothesis also implies that all but possibly one Nl (the one containing
T ) are universally tight. If at least one boundary component of Nl has
vertical dividing curves, then Nl is also universally tight. (This follows
from Lemma 5.3 or 5.2.) We prove that these properties still hold after
each state change. Assume the state change takes place along Tij , i.e.,
a layer is peeled off from Ti and attached to Tj . When modifying Ni,
Nj , and Tij during traversal, we also modify T and Σ′′ so that T always
has vertical dividing curves.

Now examine the possible layers that can be peeled off of Ni.

Case 1. Assume Nl containing T has no boundary in common
with Ni. Then T and Σ′′ remain the same. The new Nj are clearly still
universally tight since Nj ⊂ M\T .

Case 2A. Assume that T ⊂ Nl, and the state change occurs along
T l

α. Assume the boundary slopes sl
α are a, b, c ∈ Z. We claim a+b+c >

e − (2g − 2). Assume a + b + c ≤ e − (2g − 2). If there exists a
vertical Legendrian curve in M\Nl, this would contradict the inductive
assumption on ΓΣ′′ . For there not to exist a vertical Legendrian curve

on Nk, k = l, we need
3∑

α=1

sk
α ≤ 1 by Lemma 5.1. This implies that if

M is cut open along any boundary torus of Nk and trivialized, then the

difference in the boundary slopes is
2g−2∑
k=1

3∑
α=1

sk
α ≤ [e−(2g−2)]+[2g−3] =

e − 1, short of the bundle contribution e, and we have a contradiction.
Thus, a + b + c > e − (2g − 2) ≥ 2.

Assume first that l = j, i.e., a layer is attached onto Nl. The
T 2 × I that is peeled off from Ni has slopes a′ = ∞, a with a′ + b + c >
e − (2g − 2), a′ ≤ a, and no vertical Legendrian, since M\Nl has no
vertical Legendrian. We do not need to change T , Σ′′. Since M\T is
universally tight, the attachment of T 2 × I to Nl preserves tightness.

Next assume l = i. If the T 2 × I layer attached onto Nj has slopes
−a′,−a, with +∞ > a′ ≥ a, and no vertical Legendrian, then we do not
change T , Σ′′, and the inductive assumption is easily satisfied. There-
fore, assume T 2 × I is minimally twisting with slopes −a′,−a, where
a′ = ∞ or −a′ ≥ b + c − 1 (note −a ≤ b + c − 3). We may push T over
into the neighboring Nj and modify Σ′′ as well, by the Section Change
Lemma. The configuration of dividing curves will not change when pro-
jected down to Σ. We claim that Nj ∪ (T 2 × I) is tight. If a′ = ∞,
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then we could have modified T using the Section Change Lemma, even
before removing the T 2 × I, so that T was the boundary component of
T 2 × I with slope ∞. The claim follows in this case since M cut open
along the new T is universally tight. If a′ = ∞, then, by Lemma 5.1,

3∑
α=1

sk
α ≤ 1 for k = i, and

3∑
α=1

si
α +

3∑
α=1

sj
α ≥ e− (2g−4). Combining this

with the fact that the sum of slopes of Ni\(T 2 × I) is ≤ 1, we see that
the sum of slopes of Nj ∪ (T 2 × I) is ≥ e− (2g − 3) ≥ 3. Since the sum
of slopes is consistent, and the layers are consistent, Lemma 5.1 proves
the claim for a′ = ∞.

When a, b, c ∈ Q, the same proof holds with few changes. Since
there is no vertical Legendrian in M\Nl, there is a thickening of Nl to
N ′

l , by adding T 2 × I’s, where N ′
l has slopes a

n , b
n , c

n ∈ Q, with n ∈ Z+

and (a, n) = (b, n) = (c, n) = 1, and where M\N ′
l has no Legendrian

γ isotopic to the fiber with twisting number t(γ) > −n. Here a ≥ a
n ,

b ≥ b
n , and c ≥ c

n . Using a holonomy calculation similar to that of
Lemma 3.2, we compute

e − 2g − 3
n

≤ a

n
+

b

n
+

c

n
.

Denote the greatest integer less then x by �x�.
Claim . 1. � a

n� + � b
n� + � c

n� ≥ 3, provided either g = 2 and e ≥ 5
or g ≥ 3.

2. � a
n� + � b

n� + � c
n� ≥ 2, if g ≥ 2 and e ≥ 2g.

Proof of Claim. We will prove (1). It is easy to compute that the
largest a + b + c can be with � a

n� + � b
n� + � c

n� < 3 is 5n − 3. For either
of the conditions, we have a+ b+ c ≥ en− (2g− 3) > 5n− 3. Note that
since e ≥ 2g, we have 2g(n − 1) + 3 ≤ a + b + c. q.e.d.

When (1) holds, we are able to prove the tightness of the contact
structure on N ′

l by embedding inside a model of type 3(c) in Lemma 5.1
with the help of the universal tightness of M\T . When g = 2 and
e = 4, we can still write down models as in Lemma 5.1 obtained by
removing Legendrian curves parallel to the S1-fiber from a solid torus
D2 × S1. What we have shown is that Nl remains tight after peeling
and reattaching, provided T remains inside Nl during this process.
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Case 2B. Same assumptions as Case 2A, except a, b ∈ Q, and
c = ∞. Let us first consider l = j. Since T and Σ′′ do not change, we
only check the tightness of Nl ∪ (T 2 × I). If the layer is attached along
Til with rational slopes, then the universal tightness of M\T , together
with Lemmas 5.2, 5.3, implies that N ∪ (T 2 × I) remains tight. If the
layer is attached along Til with slope c = ∞, there are two cases: the
layer has twisting or the layer does not have twisting. If the layer has
no twisting, then attachment of the layer leaves Nl ∪ (T 2 × I) tight by
examining the dividing curves of a section and using Proposition 4.6
(Unique Projection) — there cannot exist homotopically trivial divid-
ing curves, because one of the torus boundary components has vertical
slope, hence we have at least one arc in the dividing set apart from
the homotopically trivial dividing curve, which contradicts (5). If the
layer has twisting, then the layer must have boundary slopes ∞, c′ with
�a� + �b� + �c′� ≥ 3 for g > 2 (or when at least one of a, b, c′ is an
integer) and �a� + �b� + �c′� ≥ 2 for g = 2, and there cannot be other
vertical Legendrians away from Nl ∪ (T 2 × I).

Next we examine the case where l = i. If the layer has slopes
a, a′ ∈ Q, or a, a′ with a′ = ∞ but the boundary minimal, then we
do not need to change T and Σ′′. If a′ = ∞ but the boundary is not
minimal, we will modify T , Σ′′ if necessary so that they are parallel to
the Tlj with slope c — to modify, use the Section Change Lemma. It is
not possible for a, a′ ∈ Q, with a vertical Legendrian in this layer.

If the layer to be removed has slopes c = ∞ and c′ ∈ Q, then we
move T into the Nj and modify Σ′′ using the Section Change Lemma.
We need to prove the tightness of Nj ∪ (T 2 × I). There is no problem
if at least two boundary components of Nj have slope ∞. If not, then
none of the boundary components of Nj ∪ (T 2 × I) have vertical slope.
We can now invoke Lemma 5.1, noting the restriction on the slopes that
condition (5) forces.

Case 2C. Same assumptions as Case 2A, except a ∈ Q, and b, c =
∞. First consider l = j. Universal tightness of Nj by Lemma 5.2 and
universal tightness of M\T imply that Nj ∪ (T 2×I) is universally tight.
T and Σ′′ remain the same.

Next assume l = i. If a layer is peeled off from the Tlj with slope a,
then we modify T , Σ′′ if necessary so they are parallel to Tlj with slope
c. If the layer is peeled off from Tlj with slope b = ∞ (say), then we
have two possibilities, as in Case 2B: either there is twisting or there
is none. If there is none, Nj ∪ (T 2 × I) is clearly tight, since we could
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modify T so it stays in Nl. If there is twisting, we need to push T into
Nj × (T 2 × I), and this is tight since at least one boundary component
of Nj × (T 2 × I) has ∞ slope.

Case 2D. Same as Case 2A, except a, b, c = ∞. Attaching layers
onto Nl is easy. Removing layers is similar to Case 2C.

This completes the proof of the tightness.
There exist 2 distinct such tight structures when e > 2g and 1 such

tight structure when e = 2g. The 2 tight structures are homotopically
distinct when e > 2g, but can be identified when e = 2g — this is due
to 3(c) in Lemma 5.1. This completes the proof of the classification.

q.e.d.

Conjecture 5.4. The virtually overtwisted contact structures with
t(S1) = 0 are not symplectically semi-fillable.

Appendix: Bypass sliding

Let F be a closed convex surface, or a compact convex surface with
Legendrian boundary, and ΓF be its dividing set. Also let D be a bypass
half-disk, and δ be a boundary component of D which we usually call
the bypass; we may assume the endpoints p, q of δ lie on ΓF . Let
γp, γq be the dividing curves containing p, q, respectively. Assume D is
positioned as in Figure 9. When we construct new bypasses out of given
ones, it is usually convenient to think of the new bypasses as translates
of the given ones, and that the translation happens along the dividing
curves. We can talk about moving the endpoints ‘up’ or ‘down’ — ‘up’
is the upward direction in Figure 9, and ‘down’ is the opposite direction.

Lemma 5.5 (Bypass sliding).

1. If γp = γq, then it is possible to slide the endpoints p, q up and
down along γp, γq, respectively, as much as desired.

2. If γp = γq, then it is possible to slide q up (or p down) as much
as desired, along γp = γq; however, we are only allowed to slide
q down (or p up) as long as the endpoints of the bypass do not
cross.

Proof. Let F0 be the component of F\ΓF to the left of γq. F0

deformation retracts onto its skeleton, i.e., the network of singular points
(all of the same sign) and trajectories connecting them. In particular,
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δ

γ γp q

Dividing
curve

p q

Figure 9: Bypass slides

there is a subset σ of the skeleton which is a curve parallel to γq. Modify
the characteristic foliation in a C0-small neighborhood of σ so that the
characteristic foliation on the strip from σ to γq is in standard form. In
particular, all the points of σ are tangencies.

If we want to move q up along γq, then round the edge of D — q can
then be connected to σ by a Legendrian arc. We now follow σ upwards
until the desired height, and round in the other direction, to move the
endpoint of the Legendrian onto γq. This procedure does not change the
twisting of the Legendrian relative to the reference half-disk. Moving q
down is similar.

If γp = γq and q is moved down, then it is still possible to move q
down past p, but the bypass half-disk will have self-intersections. In the
other situations, there is no problem. q.e.d.
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