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Introduction. Let G be a compact connected Lie group and H a closed sub-
group of G. Then the coset space G/H is a smooth manifold with G acting
transitively as translations. It is easy to see that the natural action of G on G/H is
effective if and only if H contains no nontrivial normal subgroup of G. For a given
compact homogeneous space M=G/H, one might ask whether there are any other
(differentiably nonequivalent) transitive effective actions on M? And furthermore,
what are all the possible nonequivalent transitive effective actions on M ? In the
special case that M is a sphere, the above classification problem has been com-
pletely solved by the successive efforts of Montgomery and Samelson [10], Borel
[1], and Poncét [11]. The purpose of this paper is to continue, along this direction,
to classify the transitive effective actions on the Stiefel manifolds.

Let Vn.k be the Stiefel manifold of orthonormal (« — fc)-frames in the euclidean
«-space. If we consider Vn.k as a subset of the space of nx(n—k) matrices, then
SO(«) acts on Vn.k by matrix multiplication from the left and SO(«— k) acts on
Vn¡k by matrix multiplication from the right. Suppose G is any compact Lie group
such that SO(«)cG<=SO(«) x SO(«-Zr), then it is easy to see that G acts on Vn.k
transitively (and effectively in many cases). Our main result is that:

"For many values of « and k, every transitive effective action on Vn.k is
differentiably equivalent to one of the above examples."

Parallel results are also proved for the complex and symplectic Stiefel mani-
folds.

Technically, the most difficult part of the proof is to show that any transitive
group G on Vn.k contains a simple normal subgroup Gx that already acts transitively!
In the case of transitive groups on spheres, the above fact is an easy consequence
of the particularly simple structure of the cohomology group of spheres [10],
which is no longer available in our case. For this purpose we introduce the concept
of irreducible transitive action, namely, G is said to be an irreducible transitive group
on M if there is no proper normal subgroup of G that is already transitive on M.
With the help of a cohomological criterion of irreducible transitivity, the unique-
ness of irreducible transitive effective action on a Stiefel manifold is established
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through two complementary steps that we shall state as decomposition theorem and
nondecomposition theorem. Roughly speaking, they are as follows:

(i) Under quite general conditions on the cohomology of the given homo-
geneous space M, if an irreducible transitive group on M is nonsimple, then M
decomposes into the product of two homogeneous spaces.

(ii) For most Stiefel manifolds, such decompositions are impossible.
We would like to point out that if M=G/H, where H<^G is of maximum rank,

the decomposition theorem is a trivial consequence of the maximum torus theorem.
Thus in a technical sense, the Stiefel manifolds pose a quite different problem to
other spaces, say, like complex projective spaces of Grassmanian manifolds. In-
deed, this is the reason our choice is made.

The ultimate question one would like to settle is of course the following : Given
a homogeneous space M=G¡H with G a simple compact connected Lie group,
should the natural action of G, allowing perhaps a few exceptions, be the only
irreducible transitive action on Ml

1. Preliminaries. By a homogeneous space, we shall mean a left coset space
M= G/H, where G is a compact connected Lie group and //c6a closed subgroup.
We shall moreover assume that M is simply connected so that H is also connected.
In terms of transformation group, G acts transitively on M with H as the isotropy
subgroup at a certain point of M. We shall use the triple notation (G, H; M) to
denote M=G\H. The homogeneous spaces that we shall be concerned with in this
paper are: The real Stiefel manifold VnX of («—Zc)-orthonormal frames in real
«-space Rn, the complex Stiefel manifold Wn¡k of (« — Zc)-orthonormal frames in
complex «-space Cn, and the symplectic Stiefel manifold Xn¡k of («—Zc)-ortho-
normal frames in the quaternion «-space Qn. As is well known, we have then the
triples (SO(«), SO(k); Vn¡k), (SU(«), SU(Zc); WUik) and (Sp(«), Sp(Zc); Xn¡k), where
SO( ), SU( ), and Sp( ) denote the special orthogonal, the special unitary, and
the symplectic groups of appropriate dimensions. We shall refer to them as stan-
dard actions. In case k=n—l, these manifolds become spheres of various dimen-
sions. Since the question of classifying transitive actions on spheres has already been
done by various authors (see introduction), we shall assume throughout the rest of
this paper that kSn — 2.

In the study of a homogeneous space (G, H; M), it is useful to find topological
means to determine the rank difference Rk(G) — Rk(H) (where Rk(G) means the
rank of G). For instance, it is well known that Rk(G) = Rk(H) if and only if the
Euler characteristic of M is nonvanishing. In general, we propose to define a rank
for a homogeneous space M, to be denoted by Rk(M), as the alternate sum
-2<" o (-1)' dim(7rf(Af) <g) Q), where ^¡(M) is the Zth homotopy group of M
and Q the field as rationals.

Proposition 1.1. Let (G, H; M) be a homogeneous space, then Rk(Af) is well
defined and is equal to Rk(G) — Rk(//).
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Proof. According to Milnor and Moore [8, p. 263], for a compact connected
Lie group G, — 2™= o (—1)' dim WG) ® Q) is always well defined and is equal to
the rank of G. Our proposition follows immediately from the homotopy exact
sequence of the fibration H -> G -► M.

The above simple observation is sometimes quite useful in analyzing the Serre
spectral sequence associated with the fibration H -*■ G -*■ M, which we shall spell
out explicitly next. Recall that for a compact connected Lie group G, the rational
cohomology H*(G; Q) is a connected Hopf algebra. Let P(G) be its graded vector
space of primitive elements. Then it is well known that H*(G; Q) = A(P(G)) as a
Hopf algebra, where A(F(G)) is the exterior algebra of P(G) endowed with the
usual diagonal map. Let us call a homogeneous space M a Hopf homogeneous
space if (i) H*(M; Q) is an exterior algebra of the form A(F(M)), where P(M) is a
graded vector space having a homogeneous base of odd degrees, and (ii) dim (P(M))
= Rk(M).

Proposition 1.2. Let (G, H; M) be a Hopf homogeneous space, then the Serre
spectral sequence associated with the fibration

i TT
H->G-> M

(rational coefficient) is trivial. In particular, the sequence

0-> P(M) —► P(G) -—> P(H)-> 0

is exact.

Proof. In the Serre spectral sequence, we have E2 = H*(M; Q) (g) H*(H; Q).
By condition (ii), dim H*(M; Q) = 2Rk(M>. Hence dim E2 = 2Rk(m + R«H) = 2nwa) in
view of Proposition 1.1. On the other hand, dim F00 = dim H*(G; g) = 2Rk(G). It
follows that the spectral sequence is trivial. Now in general, Im it* <=■ H*(G; Q) is
always a Hopf subalgebra [2]. As -n* is a monomorphism in our case, H*(M; Q)
can be viewed as a Hopf algebra so that n* becomes a Hopf algebra homomorphism
(this justifies our terminology), giving the exactness of the sequence stated.

The rational cohomology of all the Stiefel manifolds are exterior algebras. In
the table below we list the degrees and number of generators of these algebras [2].

M P(M) dim P(M) Rk(M)

V2m + X.2l + 1   4Z+3,4Z+7,..., m-l        Rk(SO(2m + l))
4m-1 -Rk(SO(2Z+l))=m-Z

V2m.2l + X       4Z+3,4Z+7,..., m-l        Rk(SO(2m))
4m —5,2m —1 -Rk(SO(2Z+l)) = m-Z

V2m + X.2l       21,41+3,41+1,..., m-l+l    Rk(SO(2m+l))
4m-1 -Rk(SO(2Z)) = m-Z
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F2m,2¡ 21,41+3,41+1,...,        m-l+l   Rk(SO(2«?))
4m-5,2m-l - Rk(SO(2Z)) = m -1

Wn¡k 2k+l,2k + 3,..., n-k        Rk(U(«))-Rk(U(Zc)) = «-Zc
2«-l

Xn¡k 4k + 3,4k + l,..., n-k        Rk(Sp(«))-Rk(Sp(Zc))=«-Zc
4«-l

With the exception of real Stiefel manifold Vn¡k, k even, we see that all other
homogeneous spaces we shall be concerned with, namely Vn¡k with k odd, Wn<k
and Xn¡k are Hopf homogeneous spaces for which Proposition 1.2 is applicable.
We thus need a slightly different version of the above proposition to take care of
Vn.ii- Recall that P(Vn¡2l) has a generator v2l of even degree 2Zand this is a generator
of lowest degree. Write H*(H; Q) = A(xx,..., xr), r = Rk(H), we have

Proposition 1.2'. Let (G, H; Vn¡2¡) be a transitive action, then the following is
true :

(i) The kernel ofn*: H*(Vn¡2l; Q) -> H*(G; Q) is the ideal generated by v2l.
(ii) There is a generator in H*(H; Q), say xr, of degree 21— 1, which corresponds

to v2l under transgression. All other generators of H*(H; Q) have zero transgression.
(iii) There is a generator in H*(G; Q) of degree 41— 1, to be denotedby y'4i _x, such

that the kernel of i*: H*(G; Q) -> H*(H; Q) is the ideal generated by yit-x and
Im 77*.

(iv) The image of i* is the subalgebra generated by xx,..., xr_i, i.e., the set of
generators ofH*(H; Q) with the special element xr deleted.

(v) Define P'(Fn>2¡)=P(Fn>2¡)/<f2¡>(P(Fn>2¡)) modulo the subspace spanned by
(v2l), P'(G)=P(G)/{yu.xs) andP'(H) = (xx,..., xr_j>cP(ii). Then the sequence

0->PXVn,2l)-^P'(G)-^P'(H)-^0

is exact.

For the proof, we shall only mention that we have used the fact that Im n* is
generated by Im tt* n P(G) [2, Proposition 21.1]. This plus the fact that v2l has
lowest degree in P(Vn_2l) implies that 7r*(t;2,) = 0. The rest follow from the known
structure of H*(Vn>2l; Q) and Proposition 1.1.

Very often in the sequel, we shall find it necessary to pay special attention to
Vn,2i owing to the fact that it has a generator of even degree in H*(Vn2l; Q). As
illustrated by the above proposition, it presents a slight complication but no
fundamental difficulty. We shall therefore adopt the philosophy of stating a
corresponding proposition, if necessary, but with proof omitted.

Definition 1.3. A transitive action (G, H; M) is said to be irreducible if the action
restricted to any proper connected closed normal subgroup of G ceases to be transitive.
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For a subgroup G0 c G, let j0 : G0 ̂  G be the inclusion and 7r0 : G0^- M the
composition

G0-> G-> M.

Proposition 1.4. Fei (G, H; M) be a Hopf homogeneous space. Then the action
is irreducible if and only if for every proper connected closed normal subgroup G0 c G,
tt* : P(M) -> P(G0) is not a monomorphism.

Proof. The "if" part is contained in Proposition 1.2. For the "only if" part,
suppose that G0 c G is a proper connected closed normal subgroup such that tt* is a
monomorphism. We shall prove that G0 acts transitively on M, i.e., the orbit
G0/G0 n H<=Mis all of M. Let p: G -> G/G0 be the projection and /„: H'-> G/G0
the composition

i            p
H->G->G/G0.

We have the following commutative diagram

0

I
F(G/G0)

¡P*  \[t
0-► P(M) -^U P(G) -ÍÍ-> P(H)-> 0

P(Go)

I
0

with exact row and column (because G/G0 is necessarily Hopf homogeneous). If tt*
is a monomorphism, so is /* as an easy diagram chasing would show. Since
H*(G/G0; Q) and H*(H; Q) are both connected Hopf algebras, it follows from
[8] that ;'o*: H*(G/G0; Q)-*H*(H; Q) is also a monomorphism. But this could
happen only if i0(H) = G/G0 for dimension reason. Thus the groups G/G0 and
H/H n G0 are isomorphic. This gives the relation

dim Gol H n G0 = dim G0-dim H n G0
= dim G — dim H
= dim M,

or G0/HnGQ = M.
For a triple (G, //; Fn>2¡), we shall call a normal subgroup G0<=G admissible if

j*(yn -1) #0 (see Proposition 1.2'). In such a case, define P'(G0)=P(G0)l<(j*(yil_ j)>.

Proposition 1.4'. A transitive action (G, H; Vn¡2l) is irreducible if and only if
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for every proper connected closed admissible normal subgroup G0CG, tt*: P'(Vn.2l)
-*■ P'(GQ) is not a monomorphism.

2. A decomposition theorem for irreducible actions. Recall that given a compact
connected Lie group G, one can always write G = TrxGxx-x GJN, where Tr
is a r-dimensional torus, Git i—I, 2,..., s, are simply connected simple Lie groups,
and N<=Tr x Gx x ■ ■ ■ x Gs is a finite normal subgroup. Let G=Tr xGxx ■ ■ ■ xGs,
p:G-^G the canonical projection. If (G, H; M) is a transitive action, G acts
transitively on M in a natural way with isotropy subgroup ff=p~1(H) so we have
the triple (G, H; M), which we may call the lifted action. In what follows, we shall
simply use the notation (G, H; M)~(G, H; M) without further explanation.
Simple Lie groups are exhausted up to local isomorphism by four series An, Bn,
Cn, Dn and five exceptional Lie groups : G2, F4, F6, F7 and F8. Simple Lie groups
belonging to the series An, Bn, Cn, and Dn are called classical. Their (unique) simply
connected representatives are SU(« + 1) (An), the spinor group Spin(2«+l)(Fn),
Sp(«)(Cn), and Spin(2«)(Fn). For reference, we list below the degree and number of
primitive generators of the rational cohomology of simple Lie groups

An:3, 5, 7, ...,2« + l
Fn:3, 7, 11,...,4«-1
Cn:3, 7, 11,...,4«-1
Dn:3,l, ll,...,4«-5, 2«-l
G2:3, 11
F4:3, 11, 15,23
F6:3, 9, 11, 15, 17,23
F7:3, 11, 15, 19,23,27,35
F8: 3, 15, 23, 27, 35, 39, 47, 59.

Let M be a Hopf homogeneous space. Let l(M) and u(M) be the lowest and
highest nonvanishing degrees of F(M). The purpose of this section is to prove the
following :

Theorem 2.1. Let (G, H; M) be an irreducible action on a Hopf homogeneous
space M and (G, H; M)~(G, H; M) the lifted action. Suppose that Z(M)> 59 and
2l(M) > u(M) + 11. Suppose moreover that M is 2-connected. Then G = Gxx ■ ■ ■ xGs
and H= Hx x ■ ■ ■ x Hs with Ht <= Gh where G¡ and Hu /= 1, 2,..., s, are all simply
connected simple classical groups. In particular, M decomposes into a product
Gx/Hx x ••• x GJHS of homogeneous spaces.

We first assert that G is semisimple. That is, write G = TrxGxx-xGs. We
wish to show that r=0. It is clear that (G, H; M) is still irreducible. Now suppose
that r > 0. Referring back to the diagram of Proposition 1.4, take G0 = Gxx ■■ ■ xGs.
We see that anything in ker tt* must have degree 1 because everything in P(Tr) has
degree 1. As l(M) > 1, there is nothing in P(M) of degree 1. Hence tt* is a mono-
morphism, contradiction. Similar argument also shows that none of the factor
G(, i=l,2,.. .,s, could be exceptional in view of the condition l(M) > 59 and the
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fact that none of the exceptional group has a primitive generator of degree > 59.
Thus G=GX x ••• x Gs is a product of simply connected simple classical groups. In
particular, G is simply connected. Since M is assumed to be 2-connected, H is
simply connected. Hence we can write H=HX x • • ■ x Hs; where Hu i= 1, 2,..., s',
are simply connected simple Lie groups. Observe that dim P3(G) = dim P7(G) = s
(Pj(G) = subspace of P(G) of elements of homogeneous degree i). For P3(G), this is
clear after a glance at the reference table. For P7(G), this is because the irreducibility
implies that every G¡ has a nonvanishing element in P(G{) of degree > l(M). Now
we have dim P3(G) = dim P3(H) and dim P-j(G) = dim P7(/?), again because
l(M) > 59. The first equality gives us s' =s. The second equality shows that H con-
tains no exceptional group because of the happy fact that none of the exceptional
group has a primitive generator of degree 7. Thus far, we have shown that
G = GX x ■ ■ ■ x Gs and H=Hxx ■ ■ ■ xHs both decompose into product of simply
connected classical groups with same number of factors. The issue remains to be
settled is the way of imbedding. Namely, how do we show that i/¡cG, (after
suitable change of indices of course). This is the question of representations of
classical groups into classical groups, so we shall recall some basic facts there.
There are the standard imbeddings SO(Zi)cSO(«)(Spin(fc)cSpin(«)), SU(Zc)
cSU(n) and Sp(Zc) c Sp(«) induced from Rk^Rn, Ck^Cn, and ö"cß" respec-
tively. There are also the imbeddings SO(«) <= SU(«) <= SO(2«) (and the homo-
morphism Spin(«) -> SU(«) -* Spin(2«) induced) and SU(«)<=Sp(«)cSU(2«). We
shall indiscriminately call a homomorphism <j> between classical groups "standard"
if <¡> is conjugate to one of the homomorphisms described above or their composi-
tions. Given an irreducible complex representation </>: G—>SU(«), lm<p<^SO(n)
<= SO(«) (Im <f> c Sp(«/2) <= SU(n)) if and only if <f> keeps a nondegenerate symmetric
(nondegenerate skew symmetric) bilinear form on C invariant. Or equivalently, </>
is real (symplectic) if and only if <p*=cp—ci* is the complex conjugate of cf>—and
the symmetric tensor product S2(/> (the second exterior power A2</>) contains a
trivial representation [6]. In case c4 is irreducible and <p*^<p (nonequivalent),
then <p+(f>* is real as well as symplectic. With the help of Weyl character formula
[5], the complex irreducible representations of low dimension of classical groups
are easily identified. Together with the facts cited above, one can see by patient
checking that the following is true.

(2.2) The only nontrivial homomorphism of G = Spin(Zc), SU(Zc) or Sp(/c/2) into
SU(«) in the range k = 10, k S «, and 2k > n is the standard homomorphism G -> SU(Zc)
c SU(«) plus its complex conjugate ifG = SU(Zc).

(2.3) The only nontrivial homomorphism of G = Spin(Zc), SU(Zc/2), or Sp(Zc/4) into
Spin(«) in the range k=l6, kSn and 2k>n is the standard homomorphism G -*■
Spin(Zc)cSpin(«).

(2.4) The only nontrivial homomorphism of G = Spin(/c), SU(Zc), or Sp(Zc) into
Sp(«) in the range k = 10, kSn and 2k>n is the standard homomorphism G ->
Sp(Zc)c:Sp(«).
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(2.5) In each of the cases covered by (2.2) through (2.4), the centralizer of the image
of G in SU(n), Spin(«) or Sp(«) is locally isomorphic to G' x H, where Rk(Fi) <. 1 and
G' = SU(n — k), Spin(« — k) or Sp(n — k) respectively.

We proceed to establish two lemmas relating representation and cohomology.
For a compact connected Lie group G, we shall use «(G) to denote the top non-
vanishing degree of P(G).

Lemma 2.6. Let K and G be simply connected classical groups with «(F) S: 32. If
(f>: K^-G is a nontrivial homomorphism, then «(F) ¿«(G). Moreover n(K) = n(G)
only when

(i) <f> is an isomorphism,
(ii) F=Spin(2Â:-l), G = Spin(2Â:), fc^lO, and </>: Spin (2k-I) -> Spin(2Â;) is

standard,
(iii) F=Sp(Â;), G = SV(2k) k = &, and <f>: Sp(k)^SU(2k) is standard.
Proof. We just check every possible case. Take for example F=Spin(2& — 1)

and G = Spin(2m). We must have 2k - 1 <. 2m -1 in order that 0 can be nontrivial.
So n(K) = 4k — 5 ¿4m — 5 = «(G). To have n(K) = «(G), we must have k = m or
F=Spin(2/c-l) and G = Spin(2jfc). Since «(F) = 4k-5ä32, 2k-I ^ 19. So we are
in the right range stated in (2.4) and therefore <f> must be standard.

Lemma 2.7. Let Kx, K2, and G be simply connected classical groups with n(Kx),
n(K2) and «(G) ̂ 32. Let <f>: KxxK2^- G be a homomorphism and <p¡, i =1,2 its
restriction on F¡, i =1,2. If n(Kx) + n(K2)>n(G) + 3, then either </>x orcp2 is trivial.

Proof. Again we do it by case checking. Suppose that both <px and (f>2 are non-
trivial and n(Kx) ä w(F2). It is then easily seen that <px : Kx -* G is among one of the
cases listed in (2.2) through (2.4). Say Kx = SU(n(Kx) +1 \2), G=SU(«(G) + l/2) and
</>x is standard. Now <j>2(K2) must be in the centralizer of (/>X(KX) in G. We thus
obtain a nontrivial homomorphism <^2 : F2-^ SU(m), where m = (n(G)—n(Kx))¡2.
As «(SU(m)) = 2m — 1 = «(G) — n(Kx) — 1 < n(K2) - 4 < n(K2), this contradicts Lemma
2.6.

With this much disposed of, we shall now continue the proof of Theorem 2.1.
So far, we have only shown that G = GX x ■ ■ ■ xGs and H=HX x ■ ■ ■ x Hs both
decompose into s factors of simply connected simple classical groups. Let
p¡: G -> G¡ be the fth projection and i¡: Ht -> ñ the ith inclusion. Also denote the
compositions

~     i       ~    Pi                             ij              i       ~    Pi
H-> G -^-U G¡ and H} —^ H-> G -^ G¡

by </>i and <pi} respectively. For each i, define m( to be the largest integer such that
</>f : F(G¡) -> P(H) is nontrivial in degree m( (such integer exists because <f>* is
nontrivial, say, in degree 3). Call G¡ of type 1 if m¡ = n(Gt), of type 2 if mi<n(Gt).
Let us remind the readers once more that the sequence

0-> P(M) ^—> P(G) -!—* P(H)-► 0
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is exact, that the irreducibility of the action implies that <f>*: P(Gi) -^P(H) is never
a monomorphism for each /, and so in particular that n(Gt) = l(M) for each i. Let m
be the largest integer such that m<l(M) and m= — 1 mod 4. We have dim Pm(G¡)
3:1 for each i. This follows from the observation that the primitive generators of a
classical group G always contains an unbroken string 3, 7,..., up to «(G) or
«(G) -2 (dim Pm(Gt) > 1 may occur if G¡ belongs to D series). Since /* : P(G)-+P(H)
is an isomorphism in degree m, we must have «(//¡) 3:«? for each /for otherwise we
would have dim Pm(H)<sSdimPJfi). In other words, we have n(Hl)^l(M)—4
> u(M) + 3/2 by the definition of m and our condition that 2Z(Af) > u(M) 4-11.

For each Gi( associate a factor //; with it as follows. Since </>* : P(Gt)-> P(H)
is nontrivial in degree «?¡, there is some j such that </>*, : P(Gi) -*■ P(Hj) is nontrivial
in degree m¡. There is only one such H}. In fact, suppose j' ^=j is such that

is nontrivial in degree m¡. If G¡ is of type 1, we must have n(Hj) = n(Hr) = n(Gl) by
Lemma 2.6. In particular, n(Hj) + n(Hr)=2n(Gi)>n(Gi) + 3. But this would
contradict Lemma 2.7 since both </Si; and (f>ir are certainly nontrivial. If on the other
hand G¡ is of type 2, then we have ¡(M) S «(G¡) S u(M). By what we have said above,
n(Hj) + n(Hr)>u(M) + 3'=n(Gi) + 3, again contradicts Lemma 2.7. The above
association thus defines a map a: [1, s] -> [1, s] ([1, s] is the set of integers from 1
to s). We claim that c/>w : H¡ -*■ G¡ is nontrivial if and only if j=a(i). We know that
<f>iM{) is nontrivial by construction. If j^a(i), we wish to show that cä,5 is trivial.
If Gj is of type 1, this follows from the relation n(Haii)) + n(Hj)=n(Gi)+n(Hj)
>n(Gj) + 3. If Gj is of type 2 so that n(Gt)Su(M), this follows again because
«(//a(i))4-«(//y)>«(M)4-3 3:«(G,)4-3. To finish the proof of Theorem 2.1, we
only need to observe that a is onto. For given H„ there is at least some G¿ such that
(f>tj: Hj-+ G¡ is nontrivial otherwise /': /?-> G will not be an imbedding. The above
characterization of a then gives_/=a(/'). It follows that a: [1, s] -> [1, s] is a one-to-
one correspondence. Rearranging indices, we may assume that a(i) = i and what
we have shown is that the "matrix" (<pif) is diagonal. This completes the proof of
Theorem 2.1.

Making necessary modifications with due care, one can proceed to establish a
corresponding decomposition theorem for the specific case of Fn2l. We shall
therefore simply summarize all the cases by stating

Theorem 2.8. The decomposition Theorem 2.1 applies to the following cases:
(0 Fn>fc, with k> 29 and 2k > n + 3,
(ii) Wn§k, with k> 29 and 2k > « 4- 4,

(iii) Xn%k, with k>l4 and2k>n + l.

3. Some nondecomposition theorems for the Stiefel manifolds. We now move on
to show that for the spaces Vn¡k, Wn¡k, and Xn<k, the kind of decomposition as
stated in Theorem 2.1 cannot exist. This would of course yield the conclusion that
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any group G acting transitively and irreducibly on these spaces must be simple.
We propose to approach this problem by means of the Steenrod square operations.
Unfortunately, the strength of this method is quite limited. As a consequence, our
results in this section are rather incomplete. Only in the special case when k = n — 2,
are we able to provide a more satisfactory answer using other topological means.
Information of the mod 2 cohomology of the Stiefel manifolds and their square
operations are given as follows [3].

(3.1) If 2k^n, H*(Vnik;Z2) is an exterior algebra with generators vf, j=k,
k +1,..., n— 1, deg v,=j, and

Sq'v, = (J)vj+i,       iíjj+iín-l

= 0, otherwise.

(3.2) H*(Wnik;Z2) is always an exterior algebra with generators w2j + x, j=k,
k + l,..., n—l, deg w2j + x=2j+l, and

Sq2V2y+1 = í   \w2ij+fí + x,       i új,j+i ¿ w-1,

= 0, otherwise.

(3.3) H*(Xnk;Z2) is always an exterior algebra with generators xij + 3, j=k,
k+l,.. .,/i—1, degxij + 3 = 4j+3, and

Sq4i*4j + 3 = I .jx40 + 1)+3,       i £j,j+i <. «-1,

= 0, otherwise.

In the above,

0
as usual denotes the mod 2 combinatorial coefficient. The square operations in
Wn¡k and Xn¡k are not given explicitly in [3]. We only remark that formula (3.1) is
derived in [3] by passing to the Stiefel-Whitney classes. Using the same computa-
tion with the Stiefel-Whitney classes replaced by the Chern classes and the symplec-
tic characteristic classes, one can see that the formulas given in (3.2) and (3.3) are
correct.

To illustrate our method, let us first state

Proposition 3.4. Suppose that 2k ^ «, and suppose that both « and k are odd. Then
Vn.k cannot be decomposed into a product of two manifolds with positive dimensions.

Proof. Suppose Vn,k = MxN, then H*(Vn,k;Z2) = H*(M;Z2) <g> H*(N; Z2).
We identify H*(M; Z2) and H*(N; Z2) with the subalgebras H*(M; Z2) <g> 1 and
1 (g) H*(N; Z2) of H*(Vn.k; Z2) respectively. Clearly, these subalgebras are closed
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under square operations. Using the condition 2k = n, one concludes easily that
each Vj, kSjSn-l, is either in H*(M; Z2) or in H*(N; Z2). Suppose

vk e H*(M; Z2).

Let Zbe the largest integer such that t>; g H*(M; Z2) for all kSjSl- We must have
l<n — l because A is of positive dimension. We must also have that Z is even
because otherwise

and we will have vl + x = Sq1vle H*(M;Z2), contradicts the definition of Z. Since
both k and « are odd, we have Zc4-l^Z^« —3. The situation is thus: we have
vt^x,vleH*(M;Z2) and vl + x, vl + 2 e H*(N; Z2) (since v¡ + 2 = Sq1!», + x). Now it is
easy to obtain a contradiction as follows. If Z=2 mod 4,

and we would have Sq2v¡ = vl + 2e H*(M;Z2). If Z=0mod4,

(V) - ■
and we would have Sq2v,_x = Vi + x e H*(M; Z2). This completes the proof.

For other cases, say k is odd and « is even. The above argument may break down
when l=n — 2 because we can no longer consider Sq2i>, and we may have

(V)-(VH
This could be prevented if we assume « = 2 mod 4. Similarly if k is even, we have
to guard against the possibility that l=k. Taking into account all these considera-
tions, we can state the following:

Theorem 3.5. Suppose that 2/cS:«, «^0 mod 4, k^O mod 4, and n — k>2. Then
none of these spaces Vn¡k, Wn¡k, and Xn_k can be decomposed into a product of two
manifolds with positive dimensions.

It is obvious that the nondecomposition theorem stated above leaves much to
be desired. Within the framework of square operations, one can improve it by
imposing conditions on the dyadic expansions of n and k. As the gain will not be
substantial, we shall be content with the above version and direct our attention to
the case k = n — 2. Here not only can a much better result be obtained, but it also
gives some insight to the problem in general.

Theorem 3.6. None of the Stiefel manifolds Vn¡n_2, lVn¡n_2, and A"n>n_2 can be
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decomposed into a product of two homogeneous spaces with positive dimensions unless
n = 4,%inthe real case, n = 2, 4 in the complex case, andn=l,2in the symplectic case.

Proof. Take the real case. We may of course assume that « is even > 4 (n = 2 is of
no interest and Sq1 suffices to handle the case when « is odd). Recall that

Hn -2(^,71-2; Z) = Hn_x(Vn¡n_2;Z) = H2n-3(Vn,n-2;Z) = Z

(Z is the group of integers), zero in other positive dimensions, and that Vn,n-2 is
(« — 3)-connected. If Vn¡n_2 = MxN is a product of two homogeneous spaces, one
can easily deduce that M is an integral homology (« — 2)-sphere and N is an integral
homology (« — l)-sphere. Being homogeneous spaces and simply connected, they must
be actual spheres [4]. Moreover, it is also true thatp* : if*(Fnn_2; Z) -*■ H^(M; Z)
induced by the projectionp: Vn.n_2 -> Mis an isomorphism in dimension zero and
«-2. According to Dold [7], this means the fibration Sn~2 -> Vnn_2 -^ Sn~1 is
fiber-homotopically trivial. But then a theorem of Milnor and Spanier [9] says that
this could be so only if n = 2, 4 or 8. For the complex and the symplectic cases,
one proceeds in the same manner. The only observations needed are the facts that
(i) the sphere bundle S2n~3 -*■ Wn¡n-2 -*■ S2"-1 joined with a trivial zero sphere
bundle becomes the bundle S2n~2 -> V2n¡2n_2 -> S2"-1 and (ii) the sphere bundle
£4n-5 _^ xn¡n-2 -*• Sin'1 joined with a trivial 1-sphere bundle becomes the bundle
£4ti-3 _^ w2n,2n-2 -» S4"-1 (translate into vector bundle and Whitney sum, if
one likes).

For the general case, it seems now quite natural that one should try to decide
whether the fibration F„_1>fc -»■ Vn¡k -*■ S"'1 is fiber-homotopically trivial or not.
If one recalls that the theorem of Milnor and Spanier quoted above is based on
Adams' work on Hopf invariant, one can perhaps have some idea about what might
be involved. At the present time, the authors have no answer to this question, but
we hope to come back to it later.

4. Main theorems. We are now ready to present the main theorems of this
paper. It is apparent by now that we can treat only some of the Stiefel manifolds,
so let us first summarize all conditions to make all the theorems of the previous
sections applicable. We shall ask that the pair («, k) satisfies the condition below.

Condition 4.1. (i) k^n-2 and 2k>n+4, (ii) k>29 and (iii) in case k<n-2,
then k^O mod 4 and «^0 mod 4.

Theorem 4.2. In the range when («, k) satisfies Condition 4.1, the standard actions
(SO(«), SO(k); Vn,k), (SU(«), SU(*); Wn.k) and (Sp(«), Sp(*); Xn.k) are the only
effective and irreducible transitive actions on Vn¡k, Wn.k and Xn.k respectively.

Proof. For definiteness, let us consider the case Vn.k with both « and k odd, say
«=2m + l and k=2l+l. Let (G, H; Vn¡h) be an arbitrary effective and irreducible
transitive action on  Vn¡k. We have to show that G = SO(«), H=SO(k), and
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SO(Zc) c S0(«) is (conjugate to) the standard imbedding. Let (G, H; Vn¡k)
~(G, H; VUtk) be the lifted action and Ac G the finite normal subgroup such that
G/A=G. In view of Condition 4.1 and earlier results, we are guaranteed that both
G and H are simple, simply connected classical groups. Referring back to the proof
of Theorem 2.1, we can see easily that P(G) = (3, 7.4m-1) and P(H) = (3,1,
..., 41— 1). So the possible candidates for G are Spin(2«2 4-1) and Sp(«z), and the
possible candidates for H are Spin(2Z4-l) and Sp(Z). Two of the cases, namely
Sp(Z)cSpin(2«i + l) and Spin(2Z4-l)cSp(«z), are eliminated by (2.3) and (2.4)
because the range 2(2/4-1) > (2/w 4-1)4-4 is not right for nontrivial imbedding.
The possibility Sp(Z) <= Sp(«t) is also out. Because in this case, the imbedding must
be standard by (2.4), giving V2m+i,a¡+i = XmJ. But this is clearly impossible because,
for example, H*(Xml; Z) has no torsion (remember that m — Z3:2). Thus we have
G"=Spin(2m4-l), H=Spin(2l+l) and 7/=Spin(2Z+l)<=Spin(2m4-l) = G is stan-
dard. Let Z2<=■ Spin(2«74-1) be the center. We have Z2C/? and therefore Z2<=N.
If Z2 t¿ A, the action of G\Z2 will not be effective. On the other hand, we have just
seen that (?/Z2 = SO(2«j4-1) acts on F3b+1>21+1 in the standard way which is
effective. Hence Z2 = N and the proof is complete. The argument for other cases
are all similar.

Turning now to the general case where the action is not necessarily irreducible.
Recall the example mentioned in the introduction, that is, the action of SO(«)
xSO(« — k) on Vn¡k via left and right matrix multiplication. More generally, we

can restrict it to a subgroup G with SO(«)cÇcSO(«) x SO(«-k) and this is still
transitive on Vn¡k. This action may fail to be effective but is always "almost
effective", that is, the normal subgroup acting as identity homeomorphism is a
finite group. In our case, it is at most a group Z2, diagonally imbedded in SO(«)
xSO(n-k) as (-1, -1). We shall denote it by #„,,,<= SO(«)xSO(«-Zc). Let us

look at the action of SO(«) x SO(« — k) on Fn-k more closely. If we go up to Spin(«)
x Spin(« — k), we see that the isotropy subgroup consists of those elements of the
form (gxg2, g2), gx e Spin(/c), g2 e Spin(« — k) (as a group, it is therefore isomorphic
to Spin(Zc) x Spin(« - k)). This enables us to identify the action of Spin(«) x Spin(«—k)
on Fn>fc. There are of course complex and symplectic analogues. Namely
SU(«)xSU(«-Zc) acting on Wn_k and Sp(«)xSp(« — k) on Xn_k. In each case, the
noneffective part is still at most a finite group to be denoted indiscriminately
by Kn,k.

Theorem 4.3. Let G be a compact connected Lie group acting transitively and
effectively on Vn¡k. If (n,k) satisfies 4.1, then SO(n)^G<=SO(n)xSO(n-k)lKntk
and the action is the restriction on G of the standard action of SO(«) x SO(n — k)lKnJi
on Vn¡k. Corresponding statements are also true in the complex and the symplectic
cases, with Vn¡k replaced by Wn_k, Xn_k, and SO(n)xSO(n — k)IKnk replaced by
SU(«) x SU(n — k)¡Kntk, Sp(«) x Sp(n — k)/Kn¡k respectively.

Proof. We shall again only consider the real case with « and k both odd (so that
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Kn¡k = l). Let (G, H, Vn.k) be an effective action and (G, H; Vn,k)~(G, H; Vn¡k)
the lifted action with G=G/N. It is easy to see that G=GxxG2 where Gx acts
transitively and irreducibly on Vn¡k. From the proof of the previous theorem, we
can see that G1 = Spin(«) and it acts on Vn.k via standard action. Let i: /?->G,
ix: Gx -*■ G, i2: G2 ->- G be inclusions and px: G->- Gx, p2: G->- G2 projections.
Define Hx = ix l(H), H2 = i21(H) and Fx = Im px ° i, F2 = Im p2 ° i. The following
is easily verified : (i) HX<=FX<^GX, H2<=F2<^ G2, Hx is normal in Fx, H2 is normal in
r2. (ii) Hx x H2<^H<^FX x F2 and (iii) the inclusions F{ ->- Fx x F2, /'= 1, 2, induce
homeomorphisms FJH -»■ Fx x F2/H, i= 1, 2 (see [10]). In particular this yields a
group isomorphism </>:F2/H2-*Fx/Hx given as follows. Take r2H2eF2/H2,
choose TjeTj so that (rx,T2)eH, then <¡>(t2H2) = txHx. Now we claim that
r2 = G2. To see this we use the diagram of Proposition 1.4 by taking G0 = GX.
As Gj acts transitively on Vn.k, P(Vn.k)-^P(Gx) is a monomorphism. Hence
i* op*\ P(G2) ~^-P(H) is also a monomorphism. As we have seen before, this
implies thatp2 ° i: H -> G2 is an epimorphism, which is precisely what we asserted.
It follows that H2 is normal in G2 and therefore normal in G. Since the action of G
is almost effective, we must have H2 c N is a finite group. We might as well assume
(and we will do so) that H2 is trivial for otherwise we can simply factor it out from
G. Next we have Hx = Spin(fc)c^cSpin(n) = G. As Hx is normal in Fx and Fx is
connected (H is connected), Fx is contained in the identity component of the
normalizer of Spin(Zc) in Spin(«), which is Spin(fc) x Spin(«—k). Therefore the
isomorphism (/>: G2 = F2-+Fx/Hx = Spin(n—k) imbeds G2 as a subgroup of
Spin(«—k). So far, we have shown that G is a subgroup of Spin(«) x Spin(«—k).
We will now look at H. Take (gx,g2)eH. Since gx e Fx, gx=hk, « e Spin(fc),
k e Spin(«—k). Now H goes into Spin(«) x Spin(« -k) via 1 x <f>. Since (gx, g2) e H
and gxHx=k, we have </>(g2) = k. That is, H goes precisely to the subgroup of
Spin(A:) x Spin(« — k) of elements of the form (hk, k), h e Spin(Af), k e Spin(«—k).
Just as in Theorem 4.2, we can then finish the proof by showing that N also goes
precisely to the right place.

Finally, we remark that throughout the whole paper, the only place where
topological properties of the Stiefel manifolds beyond their homotopy and homol-
ogy are used is Theorem 3.6. Therefore if we modify Condition 4.1 by adding (iv)
in case k=n—2, then « is odd, and call this Condition (4.1)', we can state

Theorem 4.4. Let M be a homogeneous space with the same homotopy type of
Vn.k, Wn.k, or Xn.k. If the pair («, k) satisfies Condition (4.1)', then M is actually
diffeomorphic to Vn¡k, Wn.k, or Xn¡k respectively.
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