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For functions that take values in the Clifford algebra, we study the Clifford–Fourier

transform on R
m defined with a kernel function K(x, y) := e

iπ
2

Γy e−i〈x,y〉, replacing the ker-

nel ei〈x,y〉 of the ordinary Fourier transform, where Γy := −
∑

j<k ejek(yj∂yk
− yk∂yj

). An

explicit formula of K(x, y) is derived, which can be further simplified to a finite sum

of Bessel functions when m is even. The closed formula of the kernel allows us to study

the Clifford–Fourier transform and prove the inversion formula, for which a generalized

translation operator and a convolution are defined and used.

1 Introduction

In harmonic analysis, say, in R
m, a profound role is played by the Lie algebra sl2 gener-

ated by the Laplace operator ∆ and the norm squared of a vector |x|2 (see, e.g. [18]). As

an example, the classical Fourier transform given by

F( f)(y) = (2π)−
m
2

∫
Rm

e−i〈x,y〉 f(x) dx, 〈x, y〉 =
m∑

i=1

xi yi (1.1)
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2 H. De Bie and Y. Xu

can be equivalently represented by the operator exponential that contains the generators

of sl2,

F = e
iπm

4 e
iπ
4

(∆−|x|2), (1.2)

where the equivalence means that the two operators have the same eigenfunctions and

eigenvalues.

Similar results exist in the theory of Dunkl operators. These operators (see [12,

14]) are a set of differential–difference operators of first order that generate a commu-

tative algebra. The Dunkl Laplacian ∆k, playing the role similar to that of the ordinary

Laplacian, is a second order operator in the center of the algebra, invariant under a finite

reflection group G < O(m), instead of the entire rotation group O(m). It can be proved

that ∆k together with |x|2 again generates sl2 (see [16]). The Dunkl transform was intro-

duced in [13] and further studied in [9]. Although for general reflection groups, the kernel

of this integral transform is not explicitly known, it can equivalently be expressed by a

similar operator exponential expression as follows (see [1, formula (3.19)]):

Fk = e
iπµ

4 e
iπ
4

(∆k−|x|2)

with µ being a constant related to the reflection group under consideration.

More recently, further generalizations of the classical Fourier transform and the

Dunkl transform have been introduced. This was first done in the context of minimal

representations (see, e.g. [19–21]) and subsequently generalized to the so-called radial

deformations (see, e.g. [2, 8]). Again these Fourier transforms are given by similar opera-

tor exponentials containing generators of sl2. It should be remarked that it is, in general,

a difficult question to obtain an explicit integral kernel for such operator exponentials.

In [21], the kernel is determined very explicitly for the case of a Fourier transform on an

isotropic cone (associated with an indefinite quadratic form of signature (p, q)), but in

[2, 8] explicit expressions are only obtained for a few values of the deformation param-

eters and one is restricted to using series expansions for general parameter values.

Clifford analysis (see, e.g. [3, 10]) is a refinement of harmonic analysis in R
m, in

the sense that the sl2 algebra generated by the basic operators in harmonic analysis is

refined to the Lie superalgebra osp(1|2) (containing sl2 as its even subalgebra). This is

obtained by introducing the Dirac operator

∂x :=
m∑

i=1

ei∂xi
(1.3)
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On the Clifford–Fourier Transform 3

and the vector variable

x :=
m∑

i=1

eixi, (1.4)

where e1, . . . , em generate the Clifford algebra Cl0,m with the relations eiej + eiej = −2δi j.

These operators satisfy ∂2
x = −∆ and x2 = −|x|2. The other important relations will be

given in Theorem 2.1.

Several attempts have been made to introduce a generalization of the Fourier

transform to the setting of Clifford analysis (see [6] for a review). From our point of view,

only the so-called Clifford–Fourier transform introduced in [4] is promising, because it

is given by a similar operator exponential as the classical Fourier transform in (1.2), but

now containing generators of osp(1|2). More precisely, it is defined by

F± = e
iπm

4 e∓ iπ
2

Γ e
iπ
4

(∆−|x|2) = e
iπm

4 e
iπ
4

(∆−|x|2∓2Γ ) (1.5)

with 2Γ = (∂xx − x∂x) + m. Note that we use a slightly different normalization as in [4].

The main problem concerning this transform is to write it as an integral transform

F±( f)(y) = (2π)−
m
2

∫
Rm

K±(x, y) f(x) dx,

where the kernel function K±(x, y) is given by

K±(x, y) = e∓i π
2
Γy e−i〈x,y〉

and to find an explicit expression for K±(x, y). So far the kernel is found explicitly only

in the case m = 2 (see [5]). For higher even dimensions, a complicated iterative procedure

for constructing the kernel is given in [7], which can be used to explicitly compute the

kernel only for low dimensions (say m = 4, 6). At the moment, no results are known in

the case of odd m.

Our main result in this paper is the following. We will give a completely explicit

description of the kernel in terms of a finite sum of Bessel functions when m is even (see

Theorem 4.3). In the case of odd m, we are able to show that it is enough to identify the

kernel in dimension 3, from which kernels in higher odd dimensions can be deduced by

taking suitable derivatives (see Theorem 4.4), and we are able to express the kernel in

dimension 3 as a single integral of a combination of Bessel functions.
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4 H. De Bie and Y. Xu

The compact formula of the kernel shows that K(x, y) is unbounded for even

dimensions m > 2, in sharp contrast to the classical Fourier transform, and it yields a

sharp bound for the kernel. This allows us to establish the inversion formula for the

Clifford–Fourier transform. In the process, we define a generalized translation operator

in terms of the Clifford–Fourier transform and a generalized convolution in terms of the

translation operator. It turns out, rather surprisingly, that the generalized translation

coincides with the ordinary translation when the function being translated is radial.

These results indicate a possible theory of harmonic analysis for the Clifford algebra

akin to the classical harmonic analysis.

The paper is organized as follows. In Section 2, we recall basic facts on Clif-

ford algebras and Dirac operators necessary for the sequel. In Section 3, we derive a

series representation for the kernel of the Clifford–Fourier transform that is valid for

all dimensions. In Section 4.1, we obtain the explicit expression for the kernel in even

dimensions. In Section 4.2, we discuss the kernel in odd dimensions. In Section 5, we

obtain some properties of the kernels and obtain the necessary bounds. In Section 6,

we show that the Clifford–Fourier transform is a continuous operator on Schwartz class

functions and show that it coincides with the exponential operator introduced in [4].

Next, in Section 7, we define a translation operator related to the Clifford–Fourier trans-

form and obtain the important result that this translation operator coincides with the

classical translation for radial functions. Finally, in Section 8, we introduce a convolu-

tion structure based on the translation operator, which allows us to prove the inversion

theorem for a broader class of functions.

2 Preliminaries

The Clifford algebra Cl0,m over R
m is the algebra generated by ei, i = 1, . . . , m, under the

relations

eiej + eiej = 0, i �= j,

e2
i = −1.

(2.1)

This algebra has dimension 2m as a vector space over R. It can be decomposed as Cl0,m =
⊕m

k=0 Clk
0,m with Clk

0,m the space of k-vectors defined by

Clk
0,m := span{ei1 . . . eik, i1 < · · · < ik}.
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On the Clifford–Fourier Transform 5

In the sequel, we will always consider function f taking values in Cl0,m, unless explicitly

mentioned. Such functions can be decomposed as

f(x) = f0(x) +
m∑

i=1

ei fi(x) +
∑

i< j

eiej fi j(x) + · · · + e1 . . . em f1...m(x) (2.2)

with f0, fi, fi j, . . . , f1...m all being real-valued functions.

The Dirac operator (1.3) and the vector variable (1.4) together generate the Lie

superalgebra osp(1|2). This is the subject of the following theorem.

Theorem 2.1. The operators ∂x and x generate a Lie superalgebra, isomorphic with

osp(1|2), with the following relations:

{x, x} = −2|x|2 {∂x, ∂x} = −2∆,

{x, ∂x} = −2
(
E + m

2

) [
E + m

2
, ∂x

]
= −∂x,

[|x|2, ∂x] = −2x
[
E + m

2
, x

]
= x,

[∆, x] = 2∂x

[
E + m

2
,∆

]
= −2∆,

[∆2, |x|2] = 4
(
E + m

2

) [
E + m

2
, |x|2

]
= 2|x|2,

(2.3)

where E =
∑m

i=1 xi∂xi
is the Euler operator. �

Proof. This is the special case a= 2 and b = c = k= 0 of [8, Theorem 1]. The same result

was proved earlier, for example, in [17, Proposition 3.1]. �

The classical Laplace operator ∆ and |x|2 together generate sl2 and this Lie

algebra is the even subalgebra of osp(1|2) [8].

We further introduce the so-called Gamma operator (see, e.g. [10])

Γx := −
∑

j<k

ejek(xj∂xk
− xk∂xj

) = −x∂x − E.

The operators xj∂xk
− xk∂xj

are also called the Euler angles (see [24]). Note that Γx

commutes with radial functions, that is, [Γx, f(|x|)] = 0.

Denote by P the space of polynomials taking values in Cl0,m, that is,

P := R[x1, . . . , xm] ⊗ Cl0,m.
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6 H. De Bie and Y. Xu

The space of homogeneous polynomials of degree k is then denoted by Pk. The space

Mk := ker ∂x ∩ Pk is called the space of spherical monogenics of degree k. Similarly, Hk :=
ker ∆ ∩ Pk is the space of spherical harmonics of degree k.

The elements of Hk are functions of the form (2.2) with fi1,...,i j
being ordinary har-

monics. It follows, in particular, that the reproducing kernel of Hk is λ+k
λ

C λ
k(〈ξ, η〉), with

λ = (m − 2)/2 and C λ
k being the Gegenbauer polynomial, the same reproducing kernel for

the space of ordinary spherical harmonics of degree k (cf. [14, 24]). This means that

λ + k

λ

∫
Sm−1

C λ
k(〈ξ, η〉)Hℓ(ξ) dσ(ξ) = c δkℓ Hℓ(η), Hℓ ∈Hℓ (2.4)

with c = 2π
m
2

Γ (m/2)
. The definition shows immediately that Mk ⊂Hk. More precisely, we have

the following Fischer decomposition (see [10, Theorem 1.10.1]):

Hk =Mk ⊕ xMk−1. (2.5)

It is easy to construct projection operators to the components of this decomposition.

They are given by ([10, Corollary 1.3.3])

P1 = 1 + x∂x

2k + m − 2
,

P2 = − x∂x

2k + m − 2

and they satisfy P1 + P2 = 1, P1Hk =Mk, and P2Hk = xMk−1. We also have the relations

ΓxMk = −kMk, (2.6)

Γx(xMk−1) = (k + m − 2)xMk−1, (2.7)

which follows easily from Γx = −x∂x − E and Theorem 2.1.

In the sequel, we will often use the following well-known properties of

Gegenbauer polynomials (see [23]):

λ + n

λ
C λ

n(w) = C λ+1
n (w) − C λ+1

n−2(w) (2.8)

and

wC λ+1
n−1(w) = n

2(n+ λ)
C λ+1

n (w) + n+ 2λ

2(n+ λ)
C λ+1

n−2(w). (2.9)
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On the Clifford–Fourier Transform 7

From (2.8), we immediately obtain

C λ+1
n (w) =

⌊ n
2
⌋∑

k=0

λ + n− 2k

λ
C λ

n−2k(w). (2.10)

Now we define the inner product and the wedge product of two vectors x and y

〈x, y〉 :=
m∑

j=1

xj yj = −1

2
(xy + yx),

x ∧ y :=
∑

j<k

ejek(xj yk − xkyj) = 1

2
(xy − yx).

Here, the multiplication of vectors x and y of the form (1.4) is defined using the relations

(2.1) of the Clifford algebra.

For the sequel, we need the square of x ∧ y. This is most easily calculated as

follows:

(x ∧ y)2 = 1
4
(xy − yx)(xy − yx)

= 1
4
(xyxy + yxyx − 2|x|2|y|2)

= 1
4
(−2〈x, y〉xy − 2〈x, y〉yx − 4|x|2|y|2)

= −|x|2|y|2 + 〈x, y〉2,

from which we see that (x ∧ y)2 is real valued. As a consequence, we also obtain that

(x ∧ y)2 = −
∑

j<k

(xj yk − xkyj)
2.

In turn, this allows us to estimate

∣∣∣∣∣∣
xj yk − xkyj√

|x|2|y|2 − 〈x, y〉2

∣∣∣∣∣∣
≤ 1 ∀x, y∈ R

m. (2.11)

Let us fix some notations for the Clifford–Fourier transform and its inverse that

we wish to study. The operator exponential definition of the Clifford–Fourier transform

is given by (see [4], we follow the normalization given in [6])

e
iπm

4 e
iπ
4

(∆−|x|2∓2Γ ) = e
iπm

4 e∓ iπ
2

Γ e
iπ
4

(∆−|x|2). (2.12)
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8 H. De Bie and Y. Xu

The second equality follows because Γ commutes with ∆ and |x|2. Formally, we obtain

its inverse as follows

e− iπm
4 e− iπ

4
(∆−|x|2∓2Γ ).

We introduce a basis {ψ j,k,l} for the space S(Rm) ⊗ Cl0,m, where S(Rm) denotes

the Schwartz space. This basis is defined by

ψ2 j,k,l(x) := L
m
2

+k−1

j (|x|2)M
(l)
k e−|x|2/2,

ψ2 j+1,k,l(x) := L
m
2

+k

j (|x|2)xM
(l)
k e−|x|2/2,

(2.13)

where j, k∈ N, {M
(l)
k ∈Mk : l = 1, . . . , dimMk} is a basis for Mk, and Lα

j are the Laguerre

polynomials. The set {ψ j,k,l} forms a basis of S(Rm) ⊗ Cl0,m (as can be seen from (2.5)).

The action of the Clifford–Fourier transform on this basis is given by (see [4])

e
iπm

4 e∓ iπ
2

Γ e
iπ
4

(∆−|x|2)(ψ2 j,k,l) = (−1) j+k(∓1)kψ2 j,k,l,

e
iπm

4 e∓ iπ
2

Γ e
iπ
4

(∆−|x|2)(ψ2 j+1,k,l) = im(−1) j+1(∓1)k+m−1ψ2 j+1,k,l .

(2.14)

Observe that if the dimension m is even, there are two eigenvalues ±1. If the dimension

is odd, there are four eigenvalues, namely ±1 and ±i.

Combining formulas (1.1) and (1.2) for the classical Fourier transform with the

definition of the Clifford–Fourier transform (2.12) we obtain

e
iπm

4 e∓ iπ
2

Γ e
iπ
4

(∆−|x|2) ∼ (2π)−
m
2 e∓i π

2
Γy

∫
Rm

e−i〈x,y〉 f(x) dx.

Heuristically, this suggests that the Clifford–Fourier transform can be defined as an

integral transform with ei π
2
Γy e−i〈x,y〉 as its kernel. We give a formal definition as follows.

Definition 2.2. On the Schwartz class of functions S(Rm) ⊗ Cl0,m, we define

F± f(y) := (2π)−
m
2

∫
Rm

K±(x, y) f(x) dx,

F
−1
± f(y) := (2π)−

m
2

∫
Rm

K̃±(x, y) f(x) dx,
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On the Clifford–Fourier Transform 9

where

K±(x, y) := e∓i π
2
Γy e−i〈x,y〉,

K̃±(x, y) := e±i π
2
Γy ei〈x,y〉.

�

Since the kernels K± are defined via an exponential differential operator, it is

not immediately clear if the kernel is bounded. As a result, it is not clear if F± is well

defined even on S(Rm) and neither is it clear if F
−1
± is indeed the inversion of F±. The

main purpose of the paper is to answer these questions.

Remark 2.1. It is important to note that the kernels are not symmetric, in the sense

that K(x, y) �= K(y, x) (see, e.g., Theorem 3.2). Hence, we adopt the convention that we

always integrate over the first variable in the kernel. �

3 Series Representation of the Kernel

In this section, we derive series representations of the kernels introduced in the previous

section. We first focus on K−(x, y) = ei π
2
Γy e−i〈x,y〉.

We start from the decomposition of the classical Fourier kernel in R
m in terms

of Gegenbauer polynomials and Bessel functions (see [25, Section 11.5])

e−i〈x,y〉 = 2λΓ (λ)

∞∑

k=0

(k + λ)(−i)k(|x||y|)−k−λ Jk+λ(|x||y|) (|x||y|)kC λ
k(〈ξ, η〉),

where ξ = x/|x|, η = y/|y| and λ = (m − 2)/2. Then, using the fact that Γy commutes with

radial functions, we have

ei π
2
Γy e−i〈x,y〉 = 2λΓ (λ)

∞∑

k=0

(k + λ)(−i)k(|x||y|)−k−λ Jk+λ(|x||y|)ei π
2
Γy[(|x||y|)kC λ

k(〈ξ, η〉)]. (3.1)

We now prove the following lemma.

Lemma 3.1. For x = |x|ξ and y= |y|η,

ei π
2
Γy(|x||y|)kC λ

k(〈ξ, η〉) = 1

2
(ik+m−2 + i−k)(|x||y|)kC λ

k(〈ξ, η〉)

− λ

2(k + λ)
(ik+m−2 − i−k)(|x||y|)kC λ

k(〈ξ, η〉)

+ λ

k + λ
x ∧ y(ik+m−2 − i−k)(|x||y|)k−1C λ+1

k−1 (〈ξ, η〉). �
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10 H. De Bie and Y. Xu

Proof. Note that (|x||y|)kC λ
k(〈ξ, η〉) is a harmonic homogeneous polynomial of degree k.

It can hence be decomposed into monogenic components (with respect to the variables

y) according to (2.5). In order to obtain this decomposition, we first calculate

∂y((|x||y|)kC λ
k(〈ξ, η〉)) = k(|x||y|)k

y

|y|2 C λ
k(〈ξ, η〉) + (|x||y|)k

(
x

|x||y| −
〈x, y〉
|x||y|

y

|y|2

) (
d

dt
C λ

k

)
(〈ξ, η〉)

= k(|x||y|)k
y

|y|2 C λ
k(〈ξ, η〉) + 2λ(|x||y|)k−1

(
x − 〈x, y〉

y

|y|2

)
C λ+1

k−1 (〈ξ, η〉),

where we have used d
dt

C λ
k(t) = 2λC λ+1

k−1 (t). This yields

y∂y((|x||y|)kC λ
k(〈ξ, η〉)) = −k(|x||y|)kC λ

k(〈ξ, η〉) + 2λ(|x||y|)k−1(yx + 〈x, y〉)C λ+1
k−1 (〈ξ, η〉)

= −k(|x||y|)kC λ
k(〈ξ, η〉) − 2λ(|x||y|)k−1(x ∧ y)C λ+1

k−1 (〈ξ, η〉).

Thus, we have that (|x||y|)kC λ
k(〈ξ, η〉) = Fk + Gk with Fk ∈Mk and Gk ∈ yMk−1 given by

Fk =
(

1 − k

2k + m − 2

)
(|x||y|)kC λ

k(〈ξ, η〉)

− 2λ

2k + m − 2
(|x||y|)k−1(x ∧ y)C λ+1

k−1 (〈ξ, η〉),

Gk = 1

2k + m − 2
[k(|x||y|)kC λ

k(〈ξ, η〉) + 2λ(|x||y|)k−1(x ∧ y)C λ+1
k−1 (〈ξ, η〉)].

Using (2.6) and (2.7) we obtain

ei π
2
Γy Fk = i−kFk,

ei π
2
ΓyGk = ik+m−2Gk.

We can hence calculate

ei π
2
Γy(|x||y|)kC λ

k(〈ξ, η〉) = i−k

(
1 − k

2k + m − 2

)
(|x||y|)kC λ

k(〈ξ, η〉)

− i−k 2λ

2k + m − 2
(|x||y|)k−1(x ∧ y)C λ+1

k−1 (〈ξ, η〉)

+ ik+m−2

2k + m − 2
[k(|x||y|)kC λ

k(〈ξ, η〉) + 2λ(|x||y|)k−1(x ∧ y)C λ+1
k−1 (〈ξ, η〉)]
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On the Clifford–Fourier Transform 11

= i−k(|x||y|)kC λ
k(〈ξ, η〉) + k

2k + m − 2
(ik+m−2 − i−k)(|x||y|)kC λ

k(〈ξ, η〉)

+ 2λ

2k + m − 2
(ik+m−2 − i−k)(|x||y|)k−1(x ∧ y)C λ+1

k−1 (〈ξ, η〉)

= i−k(|x||y|)kC λ
k(〈ξ, η〉) + k

2(k + λ)
(ik+m−2 − i−k)(|x||y|)kC λ

k(〈ξ, η〉)

+ 2λ

2(k + λ)
(ik+m−2 − i−k)(|x||y|)k−1(x ∧ y)C λ+1

k−1 (〈ξ, η〉)

= 1

2
(ik+m−2 + i−k)(|x||y|)kC λ

k(〈ξ, η〉)

− λ

2(k + λ)
(ik+m−2 − i−k)(|x||y|)kC λ

k(〈ξ, η〉)

+ λ

k + λ
(ik+m−2 − i−k)(|x||y|)k−1(x ∧ y)C λ+1

k−1 (〈ξ, η〉),

thus completing the proof of the lemma. �

Combining formula (3.1) with Lemma 3.1, we find

K−(x, y) = ei π
2
Γy e−i〈x,y〉 = Aλ + Bλ + (x ∧ y)Cλ

with

Aλ := 2λ−1Γ (λ + 1)

∞∑

k=0

(im + (−1)k)(|x||y|)−λ Jk+λ(|x||y|) C λ
k(〈ξ, η〉),

Bλ := −2λ−1Γ (λ)

∞∑

k=0

(k + λ)(im − (−1)k)(|x||y|)−λ Jk+λ(|x||y|) C λ
k(〈ξ, η〉),

Cλ := −(2λ)2λ−1Γ (λ)

∞∑

k=1

(im + (−1)k)(|x||y|)−λ−1 Jk+λ(|x||y|) C λ+1
k−1 (〈ξ, η〉).

Introducing new variables z= |x||y| and w = 〈ξ, η〉 to simplify notations and sub-

stituting m = 2λ + 2, we have thus obtained the following theorem.

Theorem 3.2. The kernel of the Clifford–Fourier transform is given by

K−(x, y) = Aλ + Bλ + (x ∧ y)Cλ
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12 H. De Bie and Y. Xu

with

Aλ(w, z) = 2λ−1Γ (λ + 1)

∞∑

k=0

(i2λ+2 + (−1)k)z−λ Jk+λ(z) C λ
k(w),

Bλ(w, z) = −2λ−1Γ (λ)

∞∑

k=0

(k + λ)(i2λ+2 − (−1)k)z−λ Jk+λ(z) C λ
k(w),

Cλ(w, z) = −2λ−1Γ (λ)

∞∑

k=0

(i2λ+2 + (−1)k)z−λ−1 Jk+λ(z)

(
d

dw
C λ

k

)
(w),

where z= |x||y| and w = 〈ξ, η〉. �

The functions Aλ, Bλ, and Cλ satisfy nice recursive relations. They are given in

the following lemma.

Lemma 3.3. For m ≥ 2, or equivalently, λ ≥ 1, one has

Aλ(w, z) = − λ

λ − 1

1

z
∂w Aλ−1(w, z),

Bλ(w, z) = −1

z
∂w Bλ−1(w, z),

Cλ(w, z) = − 1

λz
∂w Aλ(w, z).

�

Proof. We start with the relation for Aλ(w, z). We rewrite this function as Aλ(w, z) =
Aodd

λ (w, z) + Aeven
λ (w, z) with

Aodd
λ (w, z) = −2λ−1Γ (λ + 1)(i2λ + 1)z−λ

∞∑

k=0

J2k+λ+1(z) C λ
2k+1(w),

Aeven
λ (w, z) = 2λ−1Γ (λ + 1)(1 − i2λ)z−λ

∞∑

k=0

J2k+λ(z) C λ
2k(w).

We then calculate, using d
dw

C λ
k(w) = 2λC λ+1

k−1 (w), that

∂w Aodd
λ (w, z) = −2λλΓ (λ + 1)(i2λ + 1)z−λ

∞∑

k=0

J2k+λ+1(z) C λ+1
2k (w)

= 2λ λ

λ + 1
Γ (λ + 2)(i2λ+2 − 1)z−λ

∞∑

k=0

J2k+λ+1(z) C λ+1
2k (w)

= − λ

λ + 1
zAeven

λ+1 (w, z)
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On the Clifford–Fourier Transform 13

and similarly ∂w Aeven
λ (w, z) = − λ

λ+1
zAodd

λ+1(w, z). This completes the proof of the first state-

ment.

The proof for Bλ is similar and the third statement is trivial. �

Using exactly the same line of reasoning as leading to Theorem 3.2, we can also

calculate the kernel K+(x, y) and the inverse kernels K̃±(x, y). It follows that these ker-

nels satisfy the following relations:

Proposition 3.4. For x, y∈ R
m,

K+(x, y) = K−(x,−y),

K̃±(x, y) = K±(x, y).

In particular, in the case m even, K−(x, y) is real valued and the complex conjugation

can be omitted. �

As a consequence, it suffices to work with K−(x, y), which will be determined

explicitly in the following section.

4 Explicit Representation of the Kernel

We determine the explicit formula of K−(x, y) on R
m. It turns out that there is a distinct

difference between m being even and m being odd.

4.1 The case m even

4.1.1 The case m = 2

In this case λ = 0. We need the well-known relation [23, (4.7.8)]

lim
λ→0

λ−1C λ
n(w) = (2/n) cos nθ, w = cos θ, n≥ 1.

Then, it is easy to deduce that A0(w, z) = 0 and

B0(w, z) = J0(z) + 2

∞∑

k=1

J2k(z) cos(2kθ),

C0(w, z) = 2

z

∞∑

k=1

J2k−1(z)
sin(2k − 1)θ

sin θ
,
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14 H. De Bie and Y. Xu

where in the last series we have used the fact that d
dw

cos nθ = nsin nθ/ sin θ . By [15, p. 7,

formula (26)], we have

eizsin θ = J0(z) + 2

∞∑

k=1

J2k(z) cos(2kθ) + 2i

∞∑

k=1

J2k−1(z)
sin(2k − 1)θ

sin θ
.

Taking real and imaginary parts gives

B0(w, z) = cos(zsin θ) and C0(w, z) = sin(zsin θ)

zsin θ
.

Hence we have obtained the following theorem.

Theorem 4.1 (Clifford–Fourier kernel, m = 2). The Clifford–Fourier kernel is given by

K−(x, y) = ei π
2
Γy e−i〈x,y〉 = cos t + (x ∧ y)

sin t

t

with t = |x ∧ y| =
√

|x|2|y|2 − 〈x, y〉2. �

Note that the same result has also been obtained in [5], although the proof given

there is completely different.

4.1.2 The case m > 2

In the case m = 4 (or λ = 1) we have

A1(w, z) = 2z−1

∞∑

k=0

J2k+1(z) C 1
2k(w),

B1(w, z) = −2z−1

∞∑

k=0

(2k + 2)J2k+2(z) C 1
2k+1(w).

Using 2vJv(z) = z(Jv−1(z) + Jv+1(z)) and 2wC 1
k(w) = C 1

k−1(w) + C 1
k+1(w) we can rewrite B1 as

B1(w, z) = −
∞∑

k=0

(J2k+1(z) + J2k+3(z)) C 1
2k+1(w)

= −
∞∑

k=0

J2k+1(z) C 1
2k+1(w) −

∞∑

k=0

J2k+3(z) C 1
2k+1(w)
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On the Clifford–Fourier Transform 15

= −
∞∑

k=0

J2k+1(z)(C
1
2k+1(w) + C 1

2k−1(w))

= −2w

∞∑

k=0

J2k+1(z) C 1
2k(w)

= −zwA1(w, z).

Using the recursion relations for A, B, and C obtained in Lemma 3.3 we

subsequently have

Ak = (−1)k−1 kz−k−1∂k−1
w (w−1∂w B0),

Bk = (−1)kz−k∂k
w B0,

Ck = (−1)kz−k−2∂k
w(w−1∂w B0).

As we have already calculated B0 in the previous subsection, we have hence

obtained the following theorem.

Theorem 4.2. The kernel of the Clifford–Fourier transform in even dimension m ≥ 2 is

given by

K−(x, y) = ei π
2
Γy e−i〈x,y〉

= A(m−2)/2(z, w) + B(m−2)/2(z, w) + (x ∧ y) C (m−2)/2(z, w),

where z= |x||y|, w = 〈ξ, η〉 and

A(m−2)/2(z, w) = (−1)m/2 m − 2

2
z− m

2
−2∂

m
2

−2
w (w−1∂w cos(z

√
1 − w2)),

B(m−2)/2(z, w) = −(−1)m/2z1− m
2 ∂

m
2

−1
w cos(z

√
1 − w2),

C (m−2)/2(z, w) = −(−1)m/2z−1− m
2 ∂

m
2

−1
w (w−1∂w cos(z

√
1 − w2)). �

By using variables s = zw and t = z
√

1 − w2, we can carry out the differentia-

tion explicitly. The result is a completely explicit formula for the kernel of the Clifford–

Fourier transform in terms of a finite sum of Bessel functions. This is the subject of the

following theorem.
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16 H. De Bie and Y. Xu

Theorem 4.3 (m even). The kernel of the Clifford–Fourier transform in even dimension

m > 2 is given by

K−(x, y) = ei π
2
Γy e−i〈x,y〉

= (−1)
m
2

(π

2

) 1
2

(A∗
(m−2)/2(s, t) + B∗

(m−2)/2(s, t) + (x ∧ y) C ∗
(m−2)/2(s, t)),

where s = 〈x, y〉 and t = |x ∧ y| =
√

|x|2|y|2 − s2 and

A∗
(m−2)/2(s, t) =

⌊ m
4

− 3
4
⌋∑

ℓ=0

sm/2−2−2ℓ 1

2ℓℓ!

Γ (m
2
)

Γ (m
2

− 2ℓ − 1)
J̃(m−2ℓ−3)/2(t),

B∗
(m−2)/2(s, t) = −

⌊ m
4

− 1
2
⌋∑

ℓ=0

sm/2−1−2ℓ 1

2ℓℓ!

Γ (m
2
)

Γ (m
2

− 2ℓ)
J̃(m−2ℓ−3)/2(t),

C ∗
(m−2)/2(s, t) = −

⌊ m
4

− 1
2
⌋∑

ℓ=0

sm/2−1−2ℓ 1

2ℓℓ!

Γ (m
2
)

Γ (m
2

− 2ℓ)
J̃(m−2ℓ−1)/2(t)

with J̃α(t) = t−α Jα(t). �

Proof. The proof is carried out by induction. It is easy to check that the formulas

are correct for m = 4. Using Lemma 3.3, we need to prove that, for example, A∗
m/2 =

m/2
m/2−1

z−1∂w A∗
m/2−1. Indeed, we check this for the case m = 4p. Then, using the properties

z−1∂w J̃α(t) = sJ̃α+1(t) and z−1∂wsα = αsα−1

we can calculate

z−1∂w A∗
2p−1 = z−1∂w

p−1∑

ℓ=0

s2p−2−2ℓ 1

2ℓℓ!

Γ (2p)

Γ (2p− 2ℓ − 1)
J̃(4p−2ℓ−3)/2(t)

=
p−1∑

ℓ=0

s2p−1−2ℓ 1

2ℓℓ!

Γ (2p)

Γ (2p− 2ℓ − 1)
J̃(4p−2ℓ−1)/2(t)

+
p−2∑

ℓ=0

s2p−3−2ℓ 1

2ℓℓ!

Γ (2p)

Γ (2p− 2ℓ − 2)
J̃(4p−2ℓ−3)/2(t)

 b
y
 g

u
e
s
t o

n
 J

a
n
u
a
ry

 2
6
, 2

0
1
1

im
rn

.o
x
fo

rd
jo

u
rn

a
ls

.o
rg

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://imrn.oxfordjournals.org/


On the Clifford–Fourier Transform 17

= (2p− 1)s2p−1 J̃(4p−1)/2(t)

+
p−1∑

ℓ=1

s2p−1−2ℓ J̃(4p−2ℓ−1)/2(t)
1

2ℓℓ!

Γ (2p)

Γ (2p− 2ℓ)
(2p− 1)

= 2p− 1

2p
A∗

2p.

The other cases are treated similarly. �

4.2 The case m odd

Using Lemma 3.3 we immediately obtain an analog of Theorem 4.2.

Theorem 4.4. The kernel of the Clifford–Fourier transform in odd dimension m ≥ 3 is

given by

K−(x, y) = A(m−2)/2(z, w) + B(m−2)/2(z, w) + (x ∧ y) C (m−2)/2(z, w),

where z= |x||y| and w = 〈ξ, η〉 and

A(m−2)/2(z, w) = (−1)(m−3)/2 m − 2

2
z(3−m)/2∂ (m−3)/2

w A1/2

B(m−2)/2(z, w) = (−1)(m−3)/2z(3−m)/2∂ (m−3)/2
w B1/2,

C (m−2)/2(z, w) = (−1)(m−1)/2z(1−m)/2∂ (m−1)/2
w A1/2. �

In other words, it suffices to determine A1/2 and B1/2, which are given by (see

Theorem 3.2)

A1/2(w, z) =
(

π

2z

)1/2
1

2

∞∑

k=0

(−i + (−1)k)Jk+1/2(z) C
1/2
k (w),

B1/2(w, z) =
(

π

2z

)1/2 ∞∑

k=0

(k + 1/2)(i + (−1)k)Jk+1/2(z) C
1/2
k (w).

We can rewrite their sum, using (−1)kC
1/2
k (w) = C

1/2
k (−w), as

A1/2(w, z) + B1/2(w, z) =
(

π

2z

)1/2

(U (w, z) + V(−w, z) + iV(w, z)),
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18 H. De Bie and Y. Xu

where

U (w, z) =
∞∑

k=0

(−1)kJk+1/2(z)Pk(w),

V(w, z) =
∞∑

k=0

kJk+1/2(z)Pk(w)

with Pk(w) = C
1/2
k (w) being the Legendre polynomials of degree k. We then obtain the

following integral representation for U and V .

Lemma 4.5. With w = cos θ, one has

U (w, z) =
( z

2π

)1/2
∫1

−1

eizue− z
2
(1−u2) cos θ J0

( z

2
(1 − u2) sin θ

)
du,

V(w, z) = 1√
π

( z

2

)3/2
∫1

−1

eizu e
z
2
(1−u2) cos θ (1 − u2)

×
[
cos θ J0

( z

2
(1 − u2) sin θ

)
− sin θ J1

( z

2
(1 − u2) sin θ

)]
du. �

Proof. We need to recall the generating function for the Legendre polynomials Pn(w)

(see [23, (4.10.7)])

∞∑

n=0

Pn(cos θ)

n!
rn = er cos θ J0(r sin θ), (4.1)

which implies, upon taking derivative on r and using J ′
0(z) = −J1(z),

∞∑

n=1

n
Pn(cos θ)

n!
rn−1 = er cos θ [cos θ J0(r sin θ) − sin θ J1(r sin θ)]. (4.2)

We also recall the integral representation for the Bessel function ([15, p. 81] or [23,

(1.71.6)])

Jα(z) = 1

Γ (α + 1
2
)Γ ( 1

2
)

( z

2

)α
∫1

−1

eizu(1 − u2)α− 1
2 du. (4.3)
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On the Clifford–Fourier Transform 19

Now, combining (4.1) with (4.3), we obtain readily with w = cos θ ,

∞∑

k=0

Jk+1/2(z)(−1)kPk(w) =
√

z

2π

∫1

−1

eizu

∞∑

k=0

Pk(cos θ)

k!

(−z

2
(1 − u2)

)k

du

=
√

z

2π

∫1

−1

eizu e− z
2
(1−u2) cos θ J0

( z

2
(1 − u2) sin θ

)
du,

where we have used J0(−z) = J0(z). Furthermore, using (4.2) we obtain

∞∑

k=0

kJk+1/2(z)Pk(w) =
( z

2π

)1/2
∫1

−1

eizu

∞∑

k=0

k
Pk(cos θ)

k!

( z

2
(1 − u2)

)k

du

= 1√
π

( z

2

)3/2
∫1

−1

eizu e
z
2
(1−u2) cos θ (1 − u2)

×
[
cos θ J0

( z

2
(1 − u2) sin θ

)
− sin θ J1

( z

2
(1 − u2) sin θ

)]
du

and complete the proof. �

Remark 4.1. One obvious question is whether it is possible to write U and V in terms

of sums in Bessel functions, as in Theorem 4.3, but we do not know if this is possible.

Moreover, the integral formulas in the lemma do not seem to yield an upper bound, as

in the subsequent Lemma 5.2, of the kernel K(x, y) for odd m. �

5 Further Properties of the Kernel Function

From the explicit expression for the kernel of the Clifford–Fourier transform, we can

derive several properties of the kernel. We start with a simple observation.

Proposition 5.1. Let m = 2. Then the kernel of the Clifford–Fourier transform satisfies

K−(x, z)K−(y, z) = K−(x + y, z).

If the dimension m is even and m > 2 then

K−(x, z)K−(y, z) �= K−(x + y, z). �
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20 H. De Bie and Y. Xu

Proof. If m = 2, then the kernel, given in Theorem 4.1, can be rewritten as

K−(x, y) = cos (x1y2 − x2y1) + e1e2 sin (x1y2 − x2y1). (5.1)

The result then follows using basic trigonometric identities. This result is also obtained

in [5, Proposition 5.1].

Now suppose m even and m > 2. We consider co-ordinates x1 �= 0 and x2 = · · · =
xm = 0 and similar for the y and z variables. Then the explicit formula for the kernel,

given in Theorem 4.3, reduces to

K−(x, y) =
m/2−1∑

j=0

aj(x1y1)
j, aj ∈ R

and similar for K−(y, z) and K−(x + y, z). We readily observe that K−(x, z)K−(y, z) is a

polynomial of higher degree than K−(x + y, z), hence the equality cannot hold. �

Remark 5.1. The result in Proposition 5.1 for m = 2 is not really surprising. As (e1e2)
2 =

−1, formula (5.1) implies that, upon substituting e1e2 by the imaginary unit i, the kernel

is equal to the kernel of the classical Fourier transform. This is clearly not the case for

higher even dimensions. �

The explicit formula allows us to study the (un)boundedness of the kernel. We

start with the following lemma.

Lemma 5.2. Let m be even. For x, y∈ R
m, there exists a constant c such that

|A∗
(m−2)/2(s, t) + B∗

(m−2)/2(s, t)| ≤ c(1 + |〈x, y〉|)(m−2)/2,

|(xj yk − xkyj)C
∗
(m−2)/2(s, t)| ≤ c(1 + |〈x, y〉|)(m−2)/2, j �= k. �

Proof. We work with the explicit formula of K−(x, y) in Theorem 3 and use the integral

representation for the Bessel function (see formula (4.3)). This implies immediately that

|z−α Jα(z)| ≤ c, z∈ R.
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On the Clifford–Fourier Transform 21

By the explicit formula of A∗
λ and B∗

λ , it follows readily that

|A∗
(m−2)/2(s, t)| ≤ c

⌊ m
4

− 3
4
⌋∑

ℓ=0

|s|m/2−2−2ℓ ≤ c(1 + |s|)m/2−2,

|B∗
(m−2)/2(s, t)| ≤ c

⌊ m
4

− 1
2
⌋∑

ℓ=0

|s|m/2−1−2ℓ ≤ c(1 + |s|)m/2−1,

so that |A∗
(m−2)/2(s, t) + B∗

(m−2)/2(s, t)| has the desired bound. Furthermore, integrating

by parts in (4.3) shows that for α > 1/2,

Jα(z) = −1

Γ (α + 1
2
)Γ ( 1

2
)

( z

2

)α 2α − 1

iz

∫1

−1

eiuzu(1 − u2)α−3/2 du,

from which it follows readily that

|z−α+1 Jα(z)| ≤ c, z∈ R.

Since t =
√

−(x ∧ y)2 and using (2.11), it then follows that

|(xj yk − xkyj)C
∗
(m−2)/2(s, t)| ≤ |t C ∗

(m−2)/2(s, t)|

≤ c

⌊ m
4

− 1
2
⌋∑

ℓ=0

|s|m/2−1−2ℓ ≤ c(1 + |s|)m/2−1.

This completes the proof. �

Recall that the kernel K−(x, y) is a Clifford algebra-valued function. It can be

decomposed as

K−(x, y) = K−
0 (x, y) +

∑

i< j

eiej K
−
i j (x, y) (5.2)

with K−
0 (x, y) and K−

i j (x, y) being scalar functions. Now we immediately have the

following bounds.
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22 H. De Bie and Y. Xu

Theorem 5.3. Let m be even. For x, y∈ R
m, one has

|K−
0 (x, y)| ≤ c(1 + |x|)(m−2)/2(1 + |y|)(m−2)/2,

|K−
i j (x, y)| ≤ c(1 + |x|)(m−2)/2(1 + |y|)(m−2)/2, j �= k. �

Proof. This follows immediately from Theorem 4.3, Lemma 5.2, |〈x, y〉| ≤ |x| · |y|, and the

elementary inequality 1 + |x| · |y| ≤ (1 + |x|)(1 + |y|). �

Since the integral representation of Jα also shows that J̃α(0) is a constant, we see

that the order (m − 2)/2 in the upper bound is sharp. Note that the kernel is bounded if

m = 2, which has already been observed in [5].

The bound of the kernel function defines the domain of the Clifford–Fourier

transform, see Theorem 6.1. In the following section, we will prove that F± maps

S(Rm) ⊗ Cl0,m continuously to S(Rm) ⊗ Cl0,m, for which the following properties of the

kernel will be instrumental. Recall that ∂x, defined in (1.3), is the Dirac operator and ∆

is the Laplacian.

Proposition 5.4. For all m, the kernel K±(x, y) satisfies the properties

∂yK±(x, y) = ±(∓i)mK∓(x, y)x,

∆yK±(x, y) = −|x|2K±(x, y)

and

yK±(x, y) = ∓(∓i)m(K∓(x, y)∂x),

∆xK±(x, y) = −|y|2K±(x, y),

where ∆x means that the Laplacian ∆ is acting on the x variables and with

(K∓(x, y)∂x) =
m∑

i=1

(∂xi
K∓(x, y))ei

the action of the Dirac operator on the right-hand side. �
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On the Clifford–Fourier Transform 23

Proof. Using Theorem 2.1, it is easy to obtain

∂yΓ
k
y = (m − 1 − Γy)

k∂y,

yΓ k
y = (m − 1 − Γy)

ky

for k∈ N. Taking into account that, by definition, K±(x, y) = e∓i π
2
Γy e−i〈x,y〉, we subse-

quently calculate

∂yK+(x, y) = ∂y e−i π
2
Γy e−i〈x,y〉

= e−i π
2
(m−1−Γy)∂y e−i〈x,y〉

= (−i)m−1 ei π
2
Γy(−ix) e−i〈x,y〉

= (−i)mK−(x, y)x.

The expression for yK± is proved in a similar way. Using ∂2
x = −∆x and y2 = −|y|2

we immediately obtain the other two properties. �

Remark 5.2. We do not know the action of the usual partial derivatives on the kernel

except when m = 2. For m = 2, a quick computation using (5.1) shows that

∂x1
K−(x, y) = y2e1e2K−(x, y),

∂x2
K−(x, y) = −y1e1e2K−(x, y). �

6 Properties of the Clifford–Fourier Transform

As an immediate consequence of Theorem 5.3, we can now specify the domain in the

definition of the Clifford–Fourier transform. Let us define a class of functions

B(Rm) :=
{

f ∈ L1(Rm) :

∫
Rm

(1 + |y|)(m−2)/2| f(y)| dy< ∞
}

.

Theorem 6.1. Let m be an even integer. The Clifford–Fourier transform is well defined

on B(Rm) ⊗ Cl0,m. In particular, for f ∈ B(Rm) ⊗ Cl0,m, F± f is a continuous function. �
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24 H. De Bie and Y. Xu

Proof. It follows immediately from Theorem 5.3 that the transform is well defined on

B(Rm) ⊗ Cl0,m. The continuity of f follows from the continuity of the kernel and the

dominated convergence theorem. �

For m being even, we can now establish the inversion formula for Schwartz class

functions. First we state a lemma.

Lemma 6.2. Let m be even and f ∈ S(Rm). Then

F±(x f) = ∓(−1)m/2∂yF∓( f),

F±(∂x f) = ∓(−1)m/2yF∓( f).
�

Proof. The first identity follows immediately from Proposition 5.4. Because m is even,

the kernel K± has a polynomial bound according to Theorem 5.3 and we can apply

integration by parts, which gives the second identity by Proposition 5.4. �

Theorem 6.3. Let m be even. Then F± is a continuous operator on S(Rm) ⊗ Cl0,m. �

Proof. Using formula (5.2), we can rewrite F− as

F− =F
−
0 +

∑

i< j

eiejF
−
i j

with

F
−
0 ( f)(y) = (2π)−m/2

∫
Rm

K−
0 (x, y) f(x) dx,

F
−
i j ( f)(y) = (2π)−m/2

∫
Rm

K−
i j (x, y) f(x) dx.

Moreover, as, for example, ∆yK±(x, y) = −|x|2K±(x, y), we have immediately that also

∆yK−
0 (x, y) = −|x|2K−

0 (x, y),

∆yK−
i j (x, y) = −|x|2K−

i j (x, y)

and in particular

F
−
0 (∆x f)(y) = −|y|2F−

0 ( f)(y),

F
−
0 (|x|2 f)(y) = −∆yF

−
0 ( f)(y).

(6.1)

The same results hold for F
−
i j .
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On the Clifford–Fourier Transform 25

It clearly suffices to prove that F
−
0 and F

−
i j are continuous maps on S(Rm). We

give the proof for F
−
0 , the other cases being similar.

Recall that the Schwartz class S(Rm) is endowed with the topology defined by

the family of semi-norms

ρα,β( f) := sup
x∈Rm

|xα∂β f(x)|, α, β ∈ N
m
0 ,

and f ∈ S(Rm) if ρα,β( f) < ∞ for all α and β. The latter condition, however, is equivalent

to ρ∗
α,n( f) < ∞ for

ρ∗
α,n( f) := sup

x∈Rm

|xα∆n f(x)|, α ∈ N
m
0 , n∈ N0.

Indeed, by induction, it is easy to see that xα∂β f =
∑

cγ,δ∂
γ (xδ f(x)), where the sum is

over {(γ, δ) : |γ | < |α|, |δ| ≤ |β|} and cγ,δ are finite numbers, so that we only need to con-

sider the semi-norms defined by ‖∂α(xβ f)‖∞, and we also know that (cf. [11]) ‖∂αg‖∞ ≤
c(‖∆ng‖∞ + ‖g‖∞) for |α| ≤ 2n.

Now let α ∈ N
m
0 and n∈ N0. If |y| ≤ 1, then by (6.1) and Theorem 5.3,

|yα∆n
yF

−
0 f(y)| = |yα| · |F−

0 (|{·}|2n f)(y)|

≤ c(1 + |y|)(m−2)/2

∫
Rm

(1 + |x|)(m−2)/2|x|2n| f(x)| dx

≤ c1 sup
x∈Rm

|(1 + |x|)3m/2|x|2n f(x)|

as f is a Schwartz class function. For |y| ≥ 1, we use ∆xK−
0 (x, y) = −|y|2K−

0 (x, y) and

partial integration to conclude that

|yα∆n
yF

−
0 f(y)| = |yα| · |F−

0 (|{·}|2n f )(y)|

= |yα| · |y|−2σ |F−
0 (∆σ |{·}|2n f)(y)|

≤ c|y||α|−2σ (1 + |y|)(m−2)/2

∣∣∣∣
∫

Rm

(1 + |x|)(m−2)/2∆σ (|x|2n f(x)) dx

∣∣∣∣

≤ c2 sup
x∈Rm

|(1 + |x|)3m/2∆σ (|x|2n f(x))|

 b
y
 g

u
e
s
t o

n
 J

a
n
u
a
ry

 2
6
, 2

0
1
1

im
rn

.o
x
fo

rd
jo

u
rn

a
ls

.o
rg

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://imrn.oxfordjournals.org/
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if 2σ ≥ |α| + (m − 2)/2. Summarizing, we have

sup
y∈Rm

|yα∆n
yF

−
0 f(y)| ≤ max

{
c1 sup

x∈Rm

|(1 + |x|)3m/2|x|2n f(x)|,

c2 sup
x∈Rm

|(1 + |x|)3m/2∆σ (|x|2n f(x))|
}

.

This completes the proof. �

Remark 6.1. For m being odd, we do not know if the bound for the kernel still holds.

If it does, the above proof clearly carries over. �

The series expressions for Aλ, Bλ, and Cλ obtained in Theorem 3.2 allow us to

study the radial behavior of the Clifford–Fourier transform. This is the subject of the

following theorem.

Theorem 6.4. Let Mℓ ∈Mℓ be a spherical monogenic of degree ℓ. Let f(x) = f0(|x|)
be a real-valued radial function in S(Rm). Further, put ξ = x/|x|, η = y/|y| and r = |x|.
Then one has

F−( f0(r)Mℓ(x)) = (−1)ℓMℓ(η)

∫+∞

0

rm+ℓ−1 f0(r)z−λ Jℓ+λ(z) dr (6.2)

and

F−( f0(r)xMℓ(x)) = −imηMℓ(η)

∫+∞

0

rm+ℓ f0(r)z−λ Jℓ+1+λ(z) dr

with z= r|y| and λ = (m − 2)/2. �

Proof. We prove the first property in the case ℓ is even. Then we have, using (2.4)

∫
Rm

Aλ f0(r)Ml(x) dx = c2λ−1Γ (λ + 1)(im + 1)
λ

ℓ + λ
Mℓ(η) ×

∫+∞

0

rm+ℓ−1 f0(r)z−λ Jℓ+λ(z) dr

and

∫
Rm

Bλ f0(r)Ml(x) dx = −c2λ−1Γ (λ)(im − 1)λMℓ(η) ×
∫+∞

0

rm+ℓ−1 f0(r)z−λ Jℓ+λ(z) dr.
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The term containing Cλ is more complicated. We first rewrite

x ∧ yMℓ = −yxMℓ − 〈x, y〉Mℓ

and calculate both terms separately. As yxMℓ ∈Hℓ+1, we obtain using (2.10)

∫
Rm

Cλ f0(r)yxMl(x) dx = c2λΓ (λ + 1)(im + 1)Mℓ(η)

∫+∞

0

rm+ℓ−1 f0(r)

∞∑

k=ℓ/2+1

z−λ J2k+λ(z) dr.

To calculate the second term, we first apply (2.9) followed by (2.10), yielding

∫
Rm

Cλ f0(r)〈y, x〉Ml(x) dx

= −c2λΓ (λ + 1)(im + 1)Mℓ(η)

∫+∞

0

rm+ℓ−1 f0(r)

∞∑

k=ℓ/2+1

z−λ J2k+λ(z) dr

− c
ℓ

ℓ + λ
2λ−1Γ (λ + 1)(im + 1)Mℓ(η)

∫+∞

0

rm+ℓ−1 f0(r)z−λ Jℓ+λ(z) dr.

Collecting all terms then gives the desired result.

The other cases are treated in a similar way. �

When ℓ = 0, the transform (6.2) is, up to a constant, the Hankel transform Hλ

defined by [25, p. 456]

Hλ f(s) :=
∫∞

0

f(r)
Jλ(rs)

(rs)λ
r2λ+1 dr (6.3)

for λ > − 1
2
. The inverse Hankel transform is given by

f(s) :=
∫∞

0

Hλ f(r)
Jλ(rs)

(rs)λ
r2λ+1 dr, (6.4)

which holds under mild conditions on f . As a consequence, we have the follow-

ing corollary.

Corollary 6.5. If f(x) = f0(|x|), then F− f(x) = Hλ f0(|x|). �

In particular, this shows that F− coincides with the classical Fourier transform

for radial functions. This is as expected, since Γx commutes with radial functions.
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Another corollary is the action of F− on the basis {ψ j,k,l} defined in (2.13).

Theorem 6.6. For the basis {ψ j,k,l} of S(Rm) ⊗ Cl0,m , one has

F±(ψ2 j,k,l) = (−1) j+k(∓1)kψ2 j,k,l ,

F±(ψ2 j+1,k,l) = im(−1) j+1(∓1)k+m−1ψ2 j+1,k,l .

In particular, the action of F± coincides with the operator e
iπm

4 e∓ iπ
2

Γ e
iπ
4

(∆−|x|2) when

restricted to the basis {ψ j,k,l} and

F
−1
± F± = Id (6.5)

on the basis {ψ j,k,l}, with F
−1
± as in Definition 2.2. Moreover, when m is even, (6.5) holds

for all f ∈ S(Rm) ⊗ Cl0,m. �

Proof. For F− this follows from the explicit expression of {ψ j,k,l} (see formula (2.13)),

Theorem 6.4 and the following identity (see [23, exercise 21, p. 371]):

∫+∞

0

r2λ+1(rs)−λ Jk+λ(rs) rkLk+λ
j (r2) e−r2/2 dr = (−1) jskLk+λ

j (s2) e−s2/2,

where Lα
j is the Laguerre polynomial. The proof for F+ is similar and the resulting eigen-

values clearly coincide with the ones given in formula (2.14). Using Proposition 3.4 and

Definition 2.2, one computes the eigenvalues of F−1
± on the basis {ψ j,k,l} in a similar way.

Formula (6.5) then immediately follows.

For m being even, the final result follows from Theorem 6.3 and the fact that

{ψ j,k,l} is a dense subset of S(Rm) ⊗ Cl0,m. �

7 Generalized Translation Operator

The convolution f ∗ g plays a fundamental role in classical Fourier analysis. It is

defined by

( f ∗ g)(x) =
∫

Rm

f(y)g(x − y) dy,

and it depends on the translation operator τy : f �→ f(· − y). Under the Fourier transform,

τy satisfies τ̂y f(x) = e−i〈x,y〉 f̂(x), x ∈ R
m. We define a generalized translation operator

related to the Clifford–Fourier transform.
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Definition 7.1. Let f ∈ S(Rm) ⊗ Cl0,m. For y∈ R
m the generalized translation operator

f �→ τy f is defined by

F−τy f(x) = K−(y, x)F− f(x), x ∈ R
m.

�

By Theorem 6.6, this operator is well defined when m is even and it can be

expressed, by the inversion of F−, as an integral operator

τy f(x) = (2π)−
m
2

∫
Rm

K−(ξ, x)K−(y, ξ)F− f(ξ) dξ. (7.1)

We should emphasize at this point that functions taking values in the Clifford

algebra Cl0,m do not commute, that is, fg �= gf , in general. As a result, it is not clear

what properties can be established for the generalized translation operator that we just

defined. We start with an observation.

Proposition 7.2. Let m = 2. Then for all functions f ∈ S(Rm) ⊗ Cl0,m one has

τy f(x) = f(x − y).

If the dimension m is even and m > 2 then in general

τy f(x) �= f(x − y).
�

Proof. This follows immediately from Proposition 5.1. �

In the case m = 2, the explicit formula of the kernel function shows that one can

identify the Clifford–Fourier transform with the ordinary Fourier transform, so that the

above result is not surprising. In the case of m > 2, the above proposition suggests that

the generalized translation is something new. However, our main result below shows,

rather surprisingly, that τy coincides with the classical translation operator if f is a

radial function.

Theorem 7.3. Let f ∈ S(Rm) be a radial function on R
m, f(x) = f0(|x|) with f0 : R+ �→ R,

then τy f(x) = f0(|x − y|). �

The proof of this theorem is long. The key ingredient is a compact formula for

the integral ∫
Sm−1

K−(rη, x)K−(y, rη) dω(η),
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30 H. De Bie and Y. Xu

where
∫

Sm−1 dω(η) = 1, which is derived using the series representation of the kernel func-

tion. The computation is divided into several auxiliary lemmas. In all these lemmas

k and l are natural numbers and λ = (m − 2)/2. We also use x ′ = x/|x| and y ′ = y/|y|.

Lemma 7.4. Put Ik = {k, k − 2, k − 4, . . .}. Then

∫
Sm−1

〈η, y ′〉C λ+1
k (〈η, y ′〉)C λ

l (〈η, x ′〉) dω(η) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, l − 1 �∈ Ik,

k + 1

2(k + 1 + λ)
C λ

l (〈y ′, x ′〉), l − 1 = k,

C λ
l (〈y ′, x ′〉), l + 1 ∈ Ik.

�

Proof. Expand 〈η, y ′〉C λ+1
k (〈η, y ′〉) using formula (2.9). Then apply (2.10) and use the

reproducing property of (2.4). This yields the result. �

Lemma 7.5. Put Ik = {k, k − 2, k − 4, . . .}. Then

∫
Sm−1

ηC λ+1
k (〈η, y ′〉)C λ

l (〈η, x ′〉) dω(η)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y ′C λ
l (〈y ′, x ′〉), l + 1 ∈ Ik,

y ′
[

l

2l + m − 2
C λ

l (〈y ′, x ′〉) + 2λ

2l + m − 2
x ′ ∧ y ′C λ+1

l−1 (〈y ′, x ′〉)
]

l − 1 = k,

0 l − 1 �∈ Ik. �

Proof. We start by decomposing C λ
l (〈η, x ′〉) in monogenic components. We have

C λ
l (〈η, x ′〉) = Fl + Gl , with Fl ∈Ml and Gl ∈ ηMl−1 given by (see the proof of Lemma 3.1)

Fl =
(

1 − l

2l + m − 2

)
C λ

l (〈η, x ′〉) − 2λ

2l + m − 2
x ′ ∧ η C λ+1

l−1 (〈η, x ′〉),

Gl = l

2l + m − 2
C λ

l (〈η, x ′〉) + 2λ

2l + m − 2
x ′ ∧ η C λ+1

l−1 (〈η, x ′〉).

Note that ηFl is the restriction to the unit sphere of an element of Hl+1 and ηGl the

restriction to the unit sphere of an element of Hl−1 (because η2 = −1). Using (2.10), we can

now apply (2.4), yielding the lemma. �

Lemma 7.6. One has

∫
Sm−1

(y ′ ∧ η)C λ+1
k (〈η, y ′〉)C λ

l (〈η, x ′〉) dω(η) = − λ

k + 1 + λ
δl−1,k(x

′ ∧ y ′)C λ+1
k (〈x ′, y ′〉). �
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Proof. Note that y ′ ∧ η = y ′η + 〈η, y ′〉 and that y ′2 = −1. The lemma then follows, using

Lemmas 7.4 and 7.5. �

Lemma 7.7. Put k≤ l. Then

∫
Sm−1

C λ+1
k (〈η, y ′〉)C λ+1

l (〈η, x ′〉) dω(η) = C λ+1
k (〈x ′, y ′〉),

provided k + l is even. If k + l is odd, the integral is zero. �

Proof. When k + l is even, we calculate, using (2.10) and (2.4),

∫
Sm−1

C λ+1
k (〈η, y ′〉)C λ+1

l (〈η, x ′〉) dω(η)

=
∫

Sm−1

⎛
⎝

⌊ k
2
⌋∑

j=0

λ + k − 2 j

λ
C λ

k−2 j(〈η, y ′〉)

⎞
⎠

⎛
⎝

⌊ l
2
⌋∑

j=0

λ + l − 2 j

λ
C λ

l−2 j(〈η, x ′〉)

⎞
⎠ dω(η)

=
∫

Sm−1

⎛
⎝

⌊ k
2
⌋∑

j=0

(
λ + k − 2 j

λ

)2

C λ
k−2 j(〈η, y ′〉)C λ

k−2 j(〈η, x ′〉)

⎞
⎠ dω(η)

=
⌊ k

2
⌋∑

j=0

λ + k − 2 j

λ
C λ

k−2 j(〈x ′, y ′〉)

= C λ+1
k (〈x ′, y ′〉).

If k + l is odd, a similar calculation shows the result is zero. �

Lemma 7.8. Suppose k≤ l. Then one has

∫
Sm−1

〈η, y ′〉C λ+1
k (〈η, y ′〉)〈η, x ′〉C λ+1

l (〈η, x ′〉) dω(η)

=

⎧
⎪⎨
⎪⎩

〈x ′, y ′〉C λ+1
k (〈x ′, y ′〉), k< l,

k + 1

2(k + 1 + λ)
〈x ′, y ′〉C λ+1

k (〈x ′, y ′〉) + k + 1 + 2λ

2(k + 1 + λ)
C λ+1

k−1 (〈x ′, y ′〉), k= l

provided k + l is even. If k + l is odd, then the integral is zero. �

Proof. Take k + l even. First decompose 〈η, y ′〉C λ+1
k (〈η, y ′〉) and 〈η, x ′〉C λ+1

l (〈η, x ′〉)
according to the recursion formula (2.9). This reduces the integral to four different
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integrals that we calculate separately. We obtain

I1 = (k + 1)(l + 1)

4(k + λ + 1)(l + λ + 1)

∫
Sm−1

C λ+1
k+1 (〈η, y ′〉)C λ+1

l+1 (〈η, x ′〉) dω(η)

= (k + 1)(l + 1)

4(k + λ + 1)(l + λ + 1)
C λ+1

k+1 (〈x ′, y ′〉)

using Lemma 7.7. Similarly, we find

I2 = (k + 1)(l + 1 + 2λ)

4(k + λ + 1)(l + λ + 1)

∫
Sm−1

C λ+1
k+1 (〈η, y ′〉)C λ+1

l−1 (〈η, x ′〉) dω(η)

= (k + 1)(l + 1 + 2λ)

4(k + λ + 1)(l + λ + 1)

⎧
⎨
⎩

C λ+1
k+1 (〈x ′, y ′〉), k< l,

C λ+1
l−1 (〈x ′, y ′〉), k= l

and also

I3 = (k + 1 + 2λ)(l + 1)

4(k + λ + 1)(l + λ + 1)

∫
Sm−1

C λ+1
k−1 (〈η, y ′〉)C λ+1

l+1 (〈η, x ′〉) dω(η)

= (k + 1 + 2λ)(l + 1)

4(k + λ + 1)(l + λ + 1)
C λ+1

k−1 (〈x ′, y ′〉),

I4 = (k + 1 + 2λ)(l + 1 + 2λ)

4(k + λ + 1)(l + λ + 1)

∫
Sm−1

C λ+1
k−1 (〈η, y ′〉)C λ+1

l−1 (〈η, x ′〉) dω(η)

= (k + 1 + 2λ)(l + 1 + 2λ)

4(k + λ + 1)(l + λ + 1)
C λ+1

k−1 (〈x ′, y ′〉).

Now summing I1 + I2 + I3 + I4 and using formula (2.9) in the other direction completes

the proof. �

Lemma 7.9. Put Ik = {k, k − 2, k − 4, . . .}. Then

∫
Sm−1

〈η, x ′〉C λ+1
k (〈η, x ′〉)(η ∧ y ′)C λ+1

l (〈η, y ′〉) dω(η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, l �∈ Ik,

(x ′ ∧ y ′)C λ+1
l (〈x ′, y ′〉), l + 2 ∈ Ik,

k + 1

2(k + λ + 1)
(x ′ ∧ y ′)

C λ+1
l (〈x ′, y ′〉),

l = k.
�

Proof. First expand 〈η, x ′〉C λ+1
k (〈η, x ′〉) using (2.9) and apply (2.10) to the result.

The lemma then follows immediately using Lemma 7.6. �
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We need some algebraic results before we can prove the final lemma. Recall that

η ∧ x ′ = −x ′η − 〈η, x ′〉,

y ′ ∧ η = −ηy ′ − 〈η, y ′〉.

This allows us to compute

(η ∧ x ′)(y ′ ∧ η) = (x ′η + 〈η, x ′〉)(ηy ′ + 〈η, y ′〉)

= 〈η, x ′〉〈η, y ′〉 − x ′y ′|η|2 + x ′η〈η, y ′〉 + ηy ′〈η, x ′〉

= |η|2〈x ′, y ′〉 − (x ′ ∧ y ′)|η|2 + (x ′ ∧ η)〈η, y ′〉

− 〈x ′, η〉〈η, y ′〉 + (η ∧ y ′)〈η, x ′〉

= 〈x ′, y ′〉 − (x ′ ∧ y ′) + (x ′ ∧ η)〈η, y ′〉 − 〈x ′, η〉〈η, y ′〉 + (η ∧ y ′)〈η, x ′〉,

where we used |η|2 = 1. This decomposition allows us to obtain the following lemma.

Lemma 7.10. One has

∫
Sm−1

(η ∧ x ′)C λ+1
k (〈η, x ′〉)(y ′ ∧ η)C λ+1

l (〈η, y ′〉) dω(η)

= δkl

(k + 1)(k + 1 + 2λ)

4λ(k + λ + 1)
C λ

k+1(〈x ′, y ′〉) − δkl

λ

k + λ + 1
(x ′ ∧ y ′)C λ+1

k (〈x ′, y ′〉). �

Proof. First use the formula

(η ∧ x ′)(y ′ ∧ η) = 〈x ′, y ′〉 − (x ′ ∧ y ′) + (x ′ ∧ η)〈η, y ′〉 − 〈x ′, η〉〈η, y ′〉 + (η ∧ y ′)〈η, x ′〉.

This splits the integral into five terms. These terms can immediately be calculated using

the Lemmas 7.7–7.9. Putting everything together yields

∫
Sm−1

(η ∧ x ′)C λ+1
k (〈η, x ′〉)(y ′ ∧ η)C λ+1

l (〈η, y ′〉) dω(η)

= δkl

k + 1 + 2λ

2(k + λ + 1)
(〈x ′, y ′〉C λ+1

k (〈x ′, y ′〉) − C λ+1
k−1 (〈x ′, y ′〉))

− δkl

λ

k + λ + 1
(x ′ ∧ y ′)C λ+1

k (〈x ′, y ′〉).
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The first term can be further simplified as follows:

wC λ+1
k (w) − C λ+1

k−1 (w) = k + 1

2(k + λ + 1)
C λ+1

k+1 (w) +
(

k + 1 + 2λ

2(k + λ + 1)
− 1

)
C λ+1

k−1 (w)

= k + 1

2(k + λ + 1)
(C λ+1

k+1 (w) − C λ+1
k−1 (w))

= k + 1

2λ
C λ

k+1(w),

where we subsequently used (2.9) and (2.10). This completes the proof. �

Now we have all necessary ingredients to establish the key step.

Theorem 7.11. For all m ∈ N0, m ≥ 2,

∫
Sm−1

K−(rη, x)K−(y, rη) dω(η) = 2λΓ (λ + 1)u−λ Jλ(u)

with u= r
√

|x|2 + |y|2 − 2〈x, y〉 and λ = (m − 2)/2. �

Proof. First we rewrite K−(x, y) (see Theorem 3.2) as

K−(x, y) = Fλ(w, z) + x ′ ∧ y ′Gλ(w, z)

with

Fλ(w, z) = 2λ−1Γ (λ)

∞∑

k=0

fkz−λ Jk+λ(z)C
λ
k(w),

Gλ(w, z) = 2λ−1Γ (λ)

∞∑

k=1

gkz−λ Jk+λ(z)C
λ+1
k−1 (w)

and with x ′ = x/|x|, y ′ = y/|y|, w = 〈x ′, y ′〉, z= |x||y| and λ = (m − 2)/2. The coefficients fk

and gk are given by

fk = λ(im + (−1)k) − (k + λ)(im − (−1)k),

gk = −2λ(im + (−1)k).
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Using this decomposition of K−, the integral

∫
Sm−1

K−(rη, x)K−(y, rη) dω(η)

splits into four pieces I1 + I2 + I3 + I4 which we calculate separately. For I1, we can use

(2.4) to obtain

I1 =
∫

Sm−1

Fλ(z1, w1)Fλ(z2, w2) dω(η)

= 4λ−1Γ (λ)2

∞∑

k=0

λ

λ + k
fk fk(z1z2)

−λ Jk+λ(z1)Jk+λ(z2)C
λ
k(〈x ′, y ′〉),

where we use the notation z1 = r|x|, z2 = r|y|, w1 = 〈η, x ′〉 and w2 = 〈η, y ′〉. For I2, we use

Lemma 7.6 to see that the nondiagonal terms again vanish, yielding

I2 =
∫

Sm−1

η ∧ x ′Gλ(z1, w1)Fλ(z2, w2) dω(η)

= −4λ−1Γ (λ)2x ′ ∧ y ′
∞∑

k=1

λ

λ + k
gk fk(z1z2)

−λ Jk+λ(z1)Jk+λ(z2)C
λ+1
k−1 (〈x ′, y ′〉)

and similarly for I3

I3 =
∫

Sm−1

Fλ(z1, w1)y ′ ∧ ηGλ(z2, w2) dω(η)

= −4λ−1Γ (λ)2x ′ ∧ y ′
∞∑

k=1

λ

λ + k
fkgk(z1z2)

−λ Jk+λ(z1)Jk+λ(z2)C
λ+1
k−1 (〈x ′, y ′〉).

Finally, we can calculate the term I4 using Lemma 7.10 as follows:

I4 =
∫

Sm−1

η ∧ x ′Gλ(z1, w1)y ′ ∧ ηGλ(z2, w2) dω(η)

= 4λ−1Γ (λ)2

∞∑

k=1

k(k + 2λ)

4λ(k + λ)
gkgk(z1z2)

−λ Jk+λ(z1)Jk+λ(z2)C
λ
k(〈x ′, y ′〉)

− 4λ−1Γ (λ)2x ′ ∧ y ′
∞∑

k=1

λ

k + λ
gkgk(z1z2)

−λ Jk+λ(z1)Jk+λ(z2)C
λ+1
k−1 (〈x ′, y ′〉).
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Adding these four terms then gives

I1 + I2 + I3 + I4 = 4λ−1Γ (λ)2

∞∑

k=0

(
λ

λ + k
fk fk + k(k + 2λ)

4λ(k + λ)
gkgk

)
(z1z2)

−λ

× Jk+λ(z1)Jk+λ(z2)C
λ
k(〈x ′, y ′〉)

− 4λ−1Γ (λ)2x ′ ∧ y ′
∞∑

k=1

λ

k + λ
(gk fk + fkgk + gkgk)(z1z2)

−λ

× Jk+λ(z1)Jk+λ(z2)C
λ+1
k−1 (〈x ′, y ′〉).

It is not difficult to check for all k that gk fk + fkgk + gkgk = 0, so the term in x ′ ∧ y ′

vanishes. Similarly, we can compute that

λ

λ + k
fk fk + k(k + 2λ)

4λ(k + λ)
gkgk = 4λ(k + λ)

for k> 0. For k= 0 we only have the term f0 f0 = 4λ2. This allows to conclude that

I1 + I2 + I3 + I4 = 4λλΓ (λ)2

∞∑

k=0

(k + λ)(z1z2)
−λ Jk+λ(z1)Jk+λ(z2)C

λ
k(〈x ′, y ′〉).

Now we invoke the addition formula for Bessel functions (see [25, Section 11.4]), given by

u−λ Jλ(u) = 2λΓ (λ)

∞∑

k=0

(k + λ)(z1z2)
−λ Jk+λ(z1)Jk+λ(z2)C

λ
k(〈x ′, y ′〉)

with u= r
√

|x|2 + |y|2 − 2〈x, y〉. This completes the proof of the theorem. �

We can now prove our main theorem in this section.

Proof of Theorem 7.3. If f(x) = f0(|x|) is real valued and radial, then F−( f0)(x) is a

radial function as well and it coincides with the ordinary Fourier transform f̂(x). With a

slight abuse of notation, we write F−( f0)(x) = f̂0(r), with r = |x|. Using polar coordinates
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ξ = rη, r = |ξ |, we can then write

τy f(x) = 21− m
2

Γ (m
2
)

∫+∞

0

rm−1 f̂0(r)

[∫
Sm−1

K−(rη, x)K−(y, rη) dω(η)

]
dr.

By Theorem 7.11, we obtain

τy f(x) =
∫+∞

0

rm−1 f̂(r)u−λ Jλ(u) dr

with u= r
√

|x|2 + |y|2 − 2〈x, y〉. This means that τy f is the Hankel transform of f̂ by (6.3).

However, f̂(x) = Hλ f0(|x|), so that by the inversion of the Hankel transform, we obtain

τy f(x) = f0(

√
|x|2 + |y|2 − 2〈x, y〉) = f0(|x − y|),

thus completing the proof. �

8 Generalized Convolution and the Clifford–Fourier Transform

Using the generalized translation, we can define a convolution for functions with values

in the Clifford algebra.

Definition 8.1. For f, g ∈ S(Rm) ⊗ Cl0,m, the generalized convolution, f ∗Cl g, is

defined by

( f ∗Cl g)(x) := (2π)−m/2

∫
Rm

τy f(x)g(y) dy, x ∈ R
m. �

If f and g both take values in the Clifford algebra, then f ∗Cl g is not commuta-

tive in general. We are interested in the case when one of the two functions is radial.

Theorem 8.2. If g ∈ S(Rm) ⊗ Cl0,m and f ∈ S(Rm) is a radial function, then f ∗Cl g

satisfies

F−( f ∗Cl g)(x) =F− f(x)F−g(x).

In particular, under these assumptions one has

f ∗Cl g = g ∗Cl f. �
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Proof. If f is a radial function then so is F− f , which implies in particular that F− f ·
h= h · F− f for any Clifford algebra valued function h. Hence, by the definition of the

Clifford–Fourier transform and the Fubini theorem,

F−( f ∗ g)(x) = (2π)−m

∫
Rm

K−(ξ, x)

[∫
Rm

τy f(ξ)g(y) dy

]
dξ

= (2π)−m/2

∫
Rm

[
(2π)−m/2

∫
Rm

K−(ξ, x)τy f(ξ) dξ

]
g(y) dy

= (2π)−m/2

∫
Rm

F−(τy f)(x)g(y) dy= (2π)−m/2

∫
Rm

K−(y, x)F− f(x)g(y) dy

= (2π)−m/2
F− f(x)

∫
Rm

K−(y, x)g(y) dy=F− f(x)F−g(x)

where we have used the fact that K−(y, x)F− f(x) =F− f(x)K−(y, x). The same proof

shows also that

F−(g ∗Cl f)(x) =F−g(x)F− f(x)

from which it immediately follows that f ∗Cl g = g ∗Cl f . �

Since the Clifford–Fourier transform coincides with the ordinary Fourier trans-

form for radial functions, we have, in particular, that for φ(x) = e−|x|2/2,

F−φ(x) = φ̂(x) = φ(x).

We denote by φt the function φt(x) := t−m/2φ(x/
√

t), t > 0. A change of variable shows

φ(
√

tx) = φ̂t(x).

Lemma 8.3. Let m be even. If f ∈ B(Rm) ⊗ Cl0,m, then

φt ∗Cl f(x) = (2π)−m/2

∫
Rm

K−(ξ, x)F− f(ξ)φ(
√

tξ) dξ, x ∈ R
m.

�
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Proof. Just like in the classical case, this is a simple application of Fubini’ s theorem.

(φt ∗Cl f)(x) = (2π)−m/2

∫
Rm

τyφt(x) f(y) dy

= (2π)−m

∫
Rm

[∫
Rm

K−(ξ, x)K−(y, ξ)φ̂t(ξ) dξ

]
f(y) dy

= (2π)−m/2

∫
Rm

K−(ξ, x)

[
(2π)−m/2

∫
Rm

K−(y, ξ) f(y) dy

]
φ(

√
tξ) dξ

= (2π)−m/2

∫
Rm

K−(ξ, x)F− f(ξ)φ(
√

tξ) dξ,

where we have used the fact that φ̂t(ξ) = φ(
√

tξ) is a radial function so that it commutes

with f(y). �

We are now in the position to establish an inversion formula for the Clifford–

Fourier transform in B(Rm) ⊗ Cl0,m.

Theorem 8.4. Let m be even. If f ∈ B(Rm) ⊗ Cl0,m and F− f ∈ B(Rm) ⊗ Cl0,m, and if

g(x) = (2π)−m/2

∫
Rm

K−(ξ, x)F− f(ξ) dξ, x ∈ R
m,

then g ∈ C (Rm) and f(x) = g(x) a.e. �

Proof. By the above lemma,

(φt ∗Cl f)(x) = (2π)−m/2

∫
Rm

K−(ξ, x)F− f(ξ) e−t|ξ |2/2 dξ.

For each x, the bound of the kernel shows that the integrand on the right-hand side is

bounded by c(x)(1 + |ξ |)(m−2)/2F− f(ξ) with c(x) = (1 + |x|)(m−2)/2, which has a finite inte-

gral as F− f ∈ B(Rm) ⊗ Cl0,m, so that the right-hand side converges, as t → 0, to g(x) for

every x ∈ R
m by the dominated convergence theorem.

On the other hand, since φt is radial, φt ∗Cl f coincides with the classical convo-

lution, φt ∗Cl f = φt ∗ f . It is well known (cf. [22]) that if φt ∗ f converges to f in norm,

there is a subsequence tj so that φtj
∗ f converges to f a.e., so that f(x) = g(x) a.e. �
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[15] Erdélyi, A., W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental

Functions, vol. II. New York: McGraw-Hill, 1953.

[16] Heckman, G. J. “A remark on the Dunkl differential-difference operators.” In Harmonic Anal-

ysis on Reductive Groups, edited by W. Barker and P. Sally, 181–91. Progress in Mathematics

101. Basel: Birkhäuser, 1991.
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