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ON THE CLIFFORD THEOREM FOR SURFACES

HAO SUN

(Received January 20, 2010, revised May 16, 2011)

Abstract. We give two generalizations of the Clifford theorem to algebraic surfaces.
As an application, we obtain some bounds for the number of moduli of surfaces of general
type.

Introduction. The classical Brill-Noether theory is to study special divisors or linear
systems on an algebraic curve, and the Clifford theorem is the first step of the theory (cf. [1]).
The main purpose of this paper is to generalize the Clifford theorem to algebraic surfaces.

Let X be a smooth projective complex surface and L a divisor on it. One of the funda-
mental problems in the surface case is to study the adjoint linear system |KX + L|. Roughly
speaking, the behavior of this linear system depends on the positivity of L. When L is posi-
tive, we have a celebrated method of Reider [15] (see also [4] and [16]). When L is zero, the
canonical system has also been studied systematically by Beauville [2]. When L is negative,
the linear system corresponds to the special divisors on a curve. Exactly, we say a divisor D

on X a special divisor if it is effective and h0(KX − D) > 0. However, for surfaces, we have
no general method to study such special divisors. In order to find a powerful method to study
special linear systems in the surface case, we need to establish first a Clifford-type theorem.

One easy generalization of the Clifford theorem is as follows. Let L be a special divisor
on X. From h0(L) + h0(KX − L) ≤ h0(KX) + 1 and the Riemann-Roch theorem, we get

h1(L) ≤ q + 1

2
L(KX − L) ,(1)

where q is the irregularity of X. If L = 0 or KX , the equality holds. As in the curve case, the
nontrivial problem is to characterize the equality. Our first result describes such conditions on
the surface and on the divisor L. We can assume that L � 0 and KX − L � 0.

THEOREM 0.1. If the equality in (1) holds then either L contains a divisor of the
movable part of |KX|, or L is contained in the fixed part of |KX|, or one of the following
cases occurs.

1. |KX| is composed of a rational pencil, and the movable part of |L| is a sum of some
fibers of the pencil.

2. |KX| is composed of a irrational pencil of elliptic curves. The corresponding elliptic
fibration is f : X → C with g(C) ≥ 2. There are two line bundles A and B on C such that
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f ∗A and f ∗B are respectively the movable part of |L| and |KX − L|. The Clifford index of
C is less than 2. Exactly, we have the following possible cases:

(a) 0 ≤ χ(OX) ≤ 2, C is hyperelliptic and one of A and B is a multiple of g1
2 ;

(b) χ(OX) = 0, q = g(C), C is a smooth plane quintic and both of A and B are
hyperplane sections;

(c) χ(OS) = 0, q = g(C), C is trigonal and one of A and B is g1
3 .

This theorem can be considered as a generalization of the Clifford theorem. We have
another type of generalization as follows.

THEOREM 0.2. Let X be a smooth minimal complex projective surface of general type.
Let L be a special divisor on X such that L � KX, then h0(L) ≤ KXL/2 + 1. If the equality
holds, then one of the following cases occurs.

1. h0(L) = 1 and L is a sum of (−2)-curves.
2. The movable part of |L| has no base points and ϕL : X → P 1 is a projective

surjective morphism, whose general fiber is an irreducible smooth curve of genus 2.
3. The movable part of |L| has no base points and ϕL is generically 2 to 1 onto a

surface of minimal degree in P h0(L)−1.

The two theorems will be proved in Sections 1 and 2, respectively.
The organization of the paper is as follows. In Section 1, we prove Theorem 0.1. In

Section 2, we will give some Clifford type inequalities on a surface (Propositions 2.1 and 2.3)
and prove Theorem 0.2. In Section 3, we use these two inequalities to define two indices α(X)

and β(X) on X like the Clifford index in the case of a curve. We study some basic properties
of α(X) and β(X) and give some bounds for them (Propositions 3.6 and 3.8). In Section 4, we
give a detailed description of X, when α and β are zero (Theorems 4.1 and 4.2). In Section 5,
we use our inequalities to give some bounds for the number of moduli of surfaces (Theorem
5.2).

Throughout the paper, we let X be a smooth complex projective surface and KX be its
canonical divisor. pg and q denote, respectively, h0(KX) and h1(OX). For a divisor L on X,
we let ϕL be the rational map defined by the linear system |L|. |L| is said to be composed
of a pencil if dim ϕL(X) = 1. Numerical equivalence between divisors is denoted by ≡ and
linear equivalence by ∼. gr

d denotes a linear system of degree d and dimension r on a smooth
projective curve. If E is a vector space we will denote by PE the space of one-dimension
subspaces of E.

The author would like to express his appreciation to professor Sheng-Li Tan for his ad-
vice, encouragement and the helpful discussions. The author is also grateful to the referee for
providing him some valuable suggestions and pointing out grammatical mistakes.

1. Proof of Theorem 0.1. In this section, we will prove Theorem 0.1. In the first
place, we need the following key lemma.

LEMMA 1.1. Suppose Z is a projective variety. Let L and D be cartier divisors on Z.
Assume Y is an irreducible and reduced closed subscheme of Z and denote IY the ideal sheaf
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of Y in Z. If h0(L) − h0(IY (L)) > 0 and h0(D) − h0(IY (D)) > 0, then we have

h0(L) − h0(IY (L)) + h0(D) − h0(IY (D)) ≤ h0(L + D) − h0(IY (L + D)) + 1 .

PROOF. For any Cartier divisor A on Z, we have the standard exact sequence

0 → IY (A) → OZ(A)
rY−→ OY (A) → 0 ,

where rY is the restriction map. We consider the linear system rY |A| on Y :

rY |A| = P rY (H 0(A)) ⊂ PH 0(OY (A)) .

We then define a map

µ : rY |L| × rY |D| → rY |L + D| ,
(L1,D1) �→ L1 + D1 .

It is easy to check that µ is well defined. But every element of rY |L + D| has finite compo-
nents, thus µ is finite. Hence

dim(Im(µ)) = dim(rY |L| × rY |D|) = h0(L) − h0(IY (L)) − 1 + h0(D) − h0(IY (D)) − 1 .

We know that

h0(L + D) − h0(IY (L + D)) − 1 = dim rY |L + D| ≥ dim(Im(µ)) .

We get our desired inequality. �

REMARK 1.2. If we take Y to be an irreducible and reduced divisor, then the inequal-
ity is h0(L) − h0(L − Y ) + h0(D) − h0(D − Y ) ≤ h0(L + D) − h0(L + D − Y ) + 1.
Furthermore, if Y is ample enough, such that h0(L−Y ) = h0(D−Y ) = h0(L+D−Y ) = 0,
then we get h0(L) + h0(D) ≤ h0(L + D) + 1 which is well known.

PROOF OF THEOREM 0.1. If h0(KX − L) = 1 or h0(L) = 1, we have h0(L) = pg or
h0(KX − L) = pg , respectively. Our conclusions are obvious. Hence we assume h0(L) ≥ 2
and h0(KX − L) ≥ 2. In particular, X is either an elliptic surface or a surface of general type.

Let |L| = |M| + V be the decomposition into its movable and fixed parts. We claim that
h0(KX − L) > h0(KX − L − M). This is because if h0(KX − L) = h0(KX − L − M), then

h0(KX − L) + h0(M) = h0(KX − L − M) + h0(M) ≤ h0(KX − L) + 1 .

This implies h0(M) ≤ 1. It is absurd. Hence we proved the claim.
If dim ϕL(X) = 2, then h0(L) ≥ 3 and the general member of |M| is reduced and

irreducible. Since h0(KX −L) > h0(KX −L−M) and h0(L)−h0(L−M) = h0(L)−1 ≥ 2,
the conditions of Lemma 1.1 are satisfied. Hence by Lemma 1.1, we have

h0(L) − h0(L − M) + h0(KX − L) − h0(KX − L − M) ≤ pg + 1 − h0(KX − M) .

Since h0(L) + h0(KX − L) = pg + 1, we get h0(KX − M) ≤ h0(KX − L − M) + 1. This
implies h0(KX − L − M) ≥ h0(KX − M) − 1 ≥ 1. Thus we conclude that

h0(KX − M) − 1 + h0(M) ≤ h0(KX − L − M) + h0(M) ≤ h0(KX − L) + 1 ,
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i.e., h0(KX −M)+h0(M) ≤ h0(KX −L)+2. Since h0(KX −M) ≥ h0(KX −L), we obtain
h0(M) ≤ 2. It contradicts that h0(M) = h0(L) ≥ 3. Therefore |L| is composed of a pencil.
Similarly, |KX − L| is also composed of a pencil.

Since h0(L) + h0(KX − L) = pg + 1, i.e., dim |KX| = dim |L| + dim |KX − L|, we
can write every divisor in |KX| as a divisor in |L| plus a divisor in |KX − L|. Hence |KX| is
composed of a pencil. Let π : X̃ → X be a composite of blowing-ups such that the movable
part of |π∗KX| is base point free. We can assume that π is the shortest among those with

such a property. Let X̃
f−→ C

ε−→ P pg−1 be the Stein factorization of ϕπ∗KX . Then there
are two base point free divisors A and B on C such that f ∗A, f ∗B and f ∗(A + B) are
respectively the movable part of π∗L, π∗(KX − L) and π∗KX . Thus h0(L) = h0(π∗L) =
h0(f ∗A) = h0(A), h0(KX − L) = h0(B) and h0(A + B) = pg . If g(C) = 1, we have
h0(A) + h0(B) = deg(A + B) = h0(A + B). This implies h0(L) + h0(KX − L) = pg which
contradicts our assumptions. Hence g(C) 	= 1. When X is of general type, we know that
g(C) = 0, q ≤ 2 by Xiao’s estimate in [18] and, therefore, |KX| is composed of a rational
pencil.

When X is not of general type, it must be an elliptic surface. It follows that the movable
part of |KX| is base point free, X̃ = X and the general fiber of f is an elliptic curve. If
h1(A) = 0, then h0(A) = deg A − g(C) + 1. Thus we obtain

h0(B) = h0(A + B) + 1 − h0(A) = deg B + 1 + h1(A + B) ≥ deg B + 1 .

Hence g(C) = 0. Similarly, if h1(B) = 0, we also have g(C) = 0. Next we assume that both
of A and B are special divisors and g(C) ≥ 2. By the Clifford theorem, we have

pg + 1 = h0(A) + h0(B) ≤ deg(A + B)

2
+ 2 ≤ deg f∗ωX

2
+ 2 = pg + g(C) − 1

2
+ 2 .

Hence we obtain pg ≤ g(C) + 1 ≤ q + 1, i.e., χ(OX) ≤ 2. If h0(A) = deg A/2 + 1 or
h0(B) = deg B/2 + 1, we get the case (a) immediately. If h0(A) ≤ (deg A + 1)/2 and
h0(B) ≤ (deg B + 1)/2, then we have

pg + 1 = h0(A) + h0(B) ≤ deg(A + B)

2
+ 1 ≤ pg + g(C) − 1

2
+ 1 .

This implies pg ≤ g(C) − 1 ≤ q − 1, i.e., χ(OX) ≤ 0. Therefore we know that χ(OX) = 0,
g(C) = q = pg + 1, h0(A) = (deg A + 1)/2 and h0(B) = (deg B + 1)/2. By the classical
knowledge of algebraic curves, we get the cases (b) and (c). �

2. Proof of Theorem 0.2. In this section, firstly we will give some Clifford type
inequalities. Let L be a divisor on a smooth minimal complex projective surface X of general
type. Let |L| = |M| + V be the decomposition into its movable and fixed parts, and W the
image of ϕL.

PROPOSITION 2.1. If LKX ≥ 0, we have

h0(L) ≤ max

{
KXL

2
+ 1,

(KXL)2

2K2
X

+ 2

}
.
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PROOF. We can first assume that h0(L) ≥ 3.
Case A. dim W = 1. We can write L ∼

∑a
i=1 Fi + V ≡ aF + V , where a ≥ h0(L) − 1,

the F ′
i s are the fibers of ϕL and F 2 ≥ 0. Because of the nefness of KX we see that

LKX = aFKX + V KX ≥ (h0(L) − 1)FKX .

This implies LKX ≥ 2FKX. When FKX ≥ 2, we get h0(L) ≤ LKX/2 + 1.
When FKX = 1, we have F 2K2

X ≤ (FKX)2 = 1 and LKX ≥ 2. But since FKX ≡
F 2(mod 2), this implies F 2 = 1 and K2

X = 1. Hence

h0(L) ≤ LKX + 1 ≤ (LKX)2

2
+ 1 = (LKX)2

2K2
X

+ 1 .

When FKX = 0, we get F 2 ≤ 0 by Hodge’s index theorem. Thus we have F 2 = 0 and
F ≡ 0. Hence F = 0. It is absurd.

Case B. dim W = 2. In this case, we have

M2 ≥ (deg ϕL)(deg W) ≥ (deg ϕL)(h0(L) − 2) .

When deg ϕL ≥ 2, we obtain M2 ≥ 2h0(L)− 4. When deg ϕL = 1, because X is a surface of
general type, W is not a ruled surface. Hence deg W ≥ 2n − 2 = 2h0(L) − 4. This implies
M2 ≥ 2h0(L) − 4. We obtain

LKX = MKX + V KX ≥ MKX ≥
√

M2K2
X ≥

√
(2h0(L) − 4)K2

X .

Therefore we conclude that h0(L) ≤ (KXL)2/2K2
X + 2. �

The following Castelnuovo type inequality is standard (cf. [12, Lemma 2.1]).

LEMMA 2.2. Let S be a smooth projective surface, D a divisor on S such that |D|
defines a birational map of S onto the image. If |D| has no fixed part and (KS − D)D ≥ 0,
then D2 ≥ 3h0(D) − 7.

PROPOSITION 2.3. If KXL ≥ K2
X, then h0(L) ≤ (KXL)2/2K2

X + 2. If 0 ≤ KXL ≤
K2

X , then h0(L) ≤ KXL/2 + 2. If one of the conditions holds, then ϕL is generically 2 to 1

onto a surface of minimal degree in P h0(L)−1.

PROOF. Case 1. KXL ≥ K2
X. This implies (KXL)2/2K2

X + 2 ≥ KXL/2 + 2. By
Proposition 2.1, we have h0(L) ≤ (KXL)2/2K2

X + 2. When the equality holds, from the
proof of Proposition 2.1, we obtain dim W = 2, M2 = 2h0(L) − 4, (MKX)2 = M2K2

X and
V KX = 0. Hence |M| is base point free, V is a sum of some (−2)-curves and M ≡ rKX for
some rational number r .

Assume deg ϕL = 1 and h0(M) ≥ 4. Then by Lemma 2.2, we have 2h0(M) − 4 =
M2 ≥ 3h0(M) − 7, i.e., h0(M) ≤ 3. This is a contradiction.

Assume deg ϕL = 1 and h0(M) ≤ 3. Then since dim W = 2, we have h0(M) = 3 and
W = P 2. Hence X is a rational surface. It contradicts our assumption on X.

Therefore deg ϕL = 2 and deg W = h0(L) − 2. Thus W is a surface of minimal degree.
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Case 2. KXL ≤ K2
X. In this case we have (KXL)2/2KX

2 + 2 ≤ KXL/2 + 2. By
Proposition 2.1, we obtain h0(L) ≤ KXL/2 + 2. When the equality holds, we also have
dim W = 2. Therefore (KXL)2/2KX

2 + 2 = KXL/2 + 2, i.e., KXL = K2
X. Thus we can

finish our proof similarly as Case 1. �

Now we will prove Theorem 0.2.

PROOF OF THEOREM 0.2. Since h0(KX−L) = h2(L) > 0, we have (KX−L)KX ≥ 0.
By Proposition 2.3, we get h0(L) ≤ KXL/2 + 2.

If h0(L) = KXL/2 + 2, we have K2
X = M2 = 2h0(L) − 4 and (MKX)2 = M2K2

X.
Therefore M ≡ KX. But since h0(KX − M) ≥ h0(KX − L) > 0, we know that M ∼ KX.
Hence h0(−V ) = h0(M − L) = h0(KX − L) > 0. This implies V = 0 and L = M ∼ KX.
It contradicts the assumption L � KX. Therefore we obtain h0(L) ≤ (KXL − 1)/2 + 2.

If h0(L) = (KXL − 1)/2 + 2, we have KXL = 2h0(L) − 3. When dim W = 1, we
obtain

KXL = 2h0(L) − 3 ≥ (h0(L) − 1)FKX .

This implies FKX = 1. Since F 2KX
2 ≤ (FKX)2 = 1 and FKX ≡ F 2 (mod 2), we

have F 2 = K2
X = FKX = 1. Thus F 2K2

X = (FKX)2 = 1. This implies F ≡ KX.
Since h0(KX − F) ≥ h0(KX − L) > 0, we know that F ∼ KX. Hence L ∼ KX. It
also contradicts the assumption L � KX. When dim W = 2, we have M2 ≥ 2h0(L) −
4 = KXL − 1 ≥ KXM − 1. Since M2 ≡ MKX (mod 2), we get M2 ≥ KXM . Because
dim W = 2, we can find a reduced and irreducible curve in |M|. Hence M is a nef divisor.
Since h0(KX − M) ≥ h0(KX − L) > 0, we have (KX − M)M ≥ 0 and (KX − M)KX ≥ 0.
It follows that M2 ≤ KXM ≤ K2

X. Hence M2 = KXM ≤ K2
X. By Hodge’s index theorem,

we get M2K2
X ≤ (KXM)2 = (M2)2, i.e., K2

X ≤ M2. Therefore K2
X = M2 = KXM and

M2K2
X = (KXM)2. Thus M ≡ KX. Because h0(KX − M) > 0 and M ∼ KX, we know that

M ∼ KX ∼ L. It contradicts the assumption L � KX again. Hence we conclude that

h0(L) ≤ KXL − 2

2
+ 2 = KXL

2
+ 1 .

Now we assume the equality holds, i.e., KXL = 2h0(L) − 2. If h0(L) = 1, then
KXL = 0. Hence L is a sum of (−2)-curves.

When dim W = 1, we have

2h0(L) − 2 = LKX = aFKX + V KX ≥ (h0(L) − 1)FKX .

This implies KXF ≤ 2. If KXF = 1, by Hodge’s index theorem, we have F 2K2
X ≤

(FKX)2 = 1. This implies F 2 = K2
X = 1. But K2

X ≥ KXL = 2h0(L) − 2 ≥ 2. It is
impossible. Hence we have KXF = 2. It follows that F 2K2

X ≤ (FKX)2 = 4. Since K2
X ≥ 2

and FKX ≡ F 2 (mod 2), we obtain F 2 = 0 or F 2 = 2.
If F 2 = 2, then K2

X = KXL = 2. Thus F 2K2
X = (KXF)2 = 4. By Hodge’s index

theorem, we know that F ≡ KX. This implies V ∼ 0 and KX ∼ L ∼ F . It contradicts the
assumption L � KX .
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If F 2 = 0, then the movable part of |L| is base point free. Since KXF = 2, we conclude
that a = h0(L) − 1, W ∼= P 1 and g(F ) = (F 2 + FKX)/2 + 1 = 2. Therefore, the general
fiber of ϕL : X → W ∼= P 1 is an irreducible smooth curve of genus 2.

When dim W = 2, we have h0(L) ≥ 3 and KXL = 2h0(L) − 2 ≥ 4. Since M2 ≥
2h0(L) − 4 = KXL − 2 ≥ KXM − 2, KXM ≥ M2 and M2 − KXM is even, we know that
M2 = KXM or M2 = KXM − 2.

If M2 = KXM , the inequality (KXM)2 ≥ K2
XM2 implies that M2 ≥ K2

X. Since
K2

X ≥ KXM = M2, we have K2
X = M2 = KXM . By Hodge’s index theorem, we obtain

M ≡ KX . Since h0(KX − M) > 0, we obtain L ∼ M ∼ KX. It contradicts the assumption
L � KX .

If M2 = KXM − 2 = 2h0(M) − 4, we have that |M| is base point free and ϕL is
generically 2 to 1 onto a surface of minimal degree in P h0(L)−1. �

3. Clifford type indices on a surface. For a smooth connected projective curve, we
have an invariant, the Clifford index, introduced by Martens [14]. It plays an important role in
the study of curves. Because of Theorems 0.2 and 0.1, we can define two indices of Clifford
type on a smooth minimal surface X of general type.

DEFINITION 3.1. For a divisor L on X, we define two indices α(L) and β(L) by

α(L) = KXL − 2h0(L) + 2 ,

β(L) = q + 1

2
L(KX − L) − h1(L) .

Note that by the Serre duality theorem, we have β(L) = β(KX−L) and by the Reimann-
Roch theorem, we have h0(L) + h0(KX − L) = 1 + pg − β(L) and

α(L) + α(KX − L) = K2
X − 2(h0(L) + h0(KX − L)) + 4

= K2
X − 2(1 + pg − β(L)) + 4

= K2
X − 2pg + 2β(L) + 2 .

Next we define indices α(X) and β(X) for the surface X.

DEFINITION 3.2. Let S = {L ∈ Pic(X); h0(L) ≥ 2, h0(KX − L) ≥ 2}, we define
α(X) and β(X) by

α(X) =

min

L∈S
α(L) S 	= ∅

∞ S = ∅

β(X) =

min

L∈S
β(L) S 	= ∅

∞ S = ∅ .

Similarly as in the curve case, we say that L computes the index α(X) or β(X), if α(X) =
α(L) or β(X) = β(L), respectively.
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REMARK 3.3. When L computes α(X) or β(X), we can always assume |L| has no
fixed part. This assumption is convenient for our work. The reason is as follows. Let |L| =
|M|+V be the decomposition into its movable and fixed parts. If L computes α(X), we have
h0(L) = h0(M) and V KX ≥ 0. Therefore KXL− 2h0(X,L)+ 2 ≥ KXM − 2h0(X,M)+ 2,
i.e., α(L) ≥ α(M). If L computes β(X), we have h0(L) + h0(KX − L) = 1 + pg − β(X).
But since h0(L) + h0(KX − L) ≤ h0(M) + h0(KX − M) ≤ 1 + pg − β(X), we have
h0(M) + h0(KX − M) = 1 + pg − β(X). Hence M computes β(X) too.

EXAMPLE 3.4. Let Sd be a generic hypersurface of degree d in P 3. H denote the
hyperplane section of Sd . When d ≥ 5, Sd is a minimal surface of general type and KSd =
(d − 4)H . In this case, by the Noether-Lefschetz theorem, we have Pic(Sd) ∼= ZH . Hence
α(S5) = β(S5) = ∞.

Now we assume d ≥ 6. Let n be an integer such that 1 ≤ n ≤ d − 5. Then we have

h0(nH) = 1

6
(n + 1)(n + 2)(n + 3) .

Thus we obtain

α(nH) = nHKSd − 2h0(nH) + 2

= nd(d − 4) − 1

3
(n + 1)(n + 2)(n + 3) + 2.

Hence α(Sd ) = min1≤n≤d−5α(nH) = α(H) = d(d − 4) − 6. We also have

β(nH) = pg (Sd) + 1 − h0(nH) − h0((d − 4 − n)H)

= −1

2
d(n2 − (d − 4)n).

Therefore β(Sd) = min1≤n≤d−5β(nH) = β(H) = d(d − 5)/2.

For surfaces with α = ∞, we have the following theorem.

THEOREM 3.5. If S is a surface with α(S) = ∞, then α(S′) = ∞ for every small
deformation S′ of S.

PROOF. Let f : X → ∆ be a small deformation of X0 = S, 0 ∈ ∆, such that the Picard
scheme PicX /∆ and the Poincaré line bundle L on X × PicX /∆ exist (cf. [13]). Put

Wm,n = {y ∈ PicX /∆ ; h0(Ly) ≥ m,h2(Ly) ≥ n} .

By the semicontinuity theorem [9, Theorem 12.8], we know that Wm,n is a closed subscheme
of PicX /∆. Consider the natural morphism π : PicX /∆ → ∆. Then {p ∈ ∆ ; Wm,n ∩
π−1(p) = ∅} is an open subset of ∆. Since α(S) = ∞, we have {L ∈ Pic(S) ; h0(L) ≥
2, h2(L) ≥ 2} = ∅. Hence W2,2 ∩ π−1(0) = ∅ and {p ∈ ∆ ; W2,2 ∩ π−1(p) = ∅} 	= ∅. Thus
for every p ∈ {p ∈ ∆ ; W2,2 ∩ π−1(p) = ∅}, we have α(f −1(p)) = ∞. This completes the
proof of the theorem. �

The above theorem tells us the surfaces with α = ∞ form an open subset of the moduli
of surfaces. We now give some bounds for α(X) and β(X) as follows:
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PROPOSITION 3.6. If α(X) 	= ∞, then 0 ≤ α(X) ≤ K2
X − 2χ(OX) + 6.

PROOF. α(X) ≥ 0 is an easy consequence of Theorem 0.2. Suppose that L computes
α(X). Then we have α(X) = KXL − 2h0(X,L) + 2. By Remark 3.3, we can assume |L| has
no fixed part. Let W be the image of ϕL.

Case A. dim W = 1. In this case, we have L ∼

∑a
i=1 Fi ≡ aF , where the F ′

i s are the
fibers of ϕL. Since

a ≥ h0(L) − 1 = KXL − α(X)

2
= aKXF − α(X)

2
,

we have

2a + α(X) ≥ aKXF.(2)

By the Riemann-Roch theorem, we obtain

h0(L) + h0(KX − L) ≥ a2

2
F 2 − a

2
KXF + χ(OX) .(3)

Since h0(L) = (KXL − α(X))/2 + 1 and h0(KX − L) ≤ (KX(KX − L) − α(X))/2 + 1, we
get from (3) the inequality

K2
X − 2χ(OX) + 4 + aKXF − a2F 2 ≥ 2α(X) .(4)

If F 2 ≥ 1, we have 2a ≤ a2 + 1 ≤ a2F 2 + 1. This and (2) imply aKXF − a2F 2 ≤
α(X) + 1. Hence by (4), we get α(X) ≤ K2

X − 2χ(OX) + 5.
If F 2 = 0, then |L| has no base points. We can assume that F is a smooth and irreducible

curve. When h0(L) = 2, we have W = P 1, and α(X) + 2 = aKXF . By (4), we get our
conclusion immediately. When h0(L) ≥ 3, from the standard exact sequence

0 → OX(L − F) → OX(L) → OF → 0 ,

it follows that h0(L − F) ≥ h0(L) − 1 ≥ 2. Therefore

1

2
((a − 1)KXF − α(X)) + 1 ≥ h0(L − F) ≥ h0(L) − 1 = 1

2
(aKXF − α(X)) .

This implies KXF ≤ 2. Since F 2 = 0, we have KXF = 2. Hence h0(L−F) = h0(L)− 1 =
a − α(X)/2, for a general fiber F . Inductively, we can get h0(L − iF ) = h0(L) − i, for
1 ≤ i ≤ h0(L) − 1. Let k = h0(L) − 2, then h0(L − kF ) = 2. On one hand, by the
Riemann-Roch theorem, we obtain

h0(L − kF ) + h0(KX − L + kF ) ≥ 1

2
(L − kF )(L − kF − KX) + χ(OX)

= k − a + χ(OX) .(5)

On the other hand,

h0(L − kF ) + h0(KX − L + kF ) ≤ 2 + 1

2
KX(KX − L + kF ) − 1

2
α(X) + 1

= 1

2
K2

X + k − a − 1

2
α(X) + 3 .
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Combining these two inequalities, we can get α(X) ≤ K2
X − 2χ(OX) + 6.

Case B. dim W = 2. This case implies that L2 ≥ 2h0(L)−4 = KXL−α(X)−2. Hence
by the Riemann-Roch theorem, we obtain

h0(L) + h0(KX − L) ≥ 1

2
L2 − 1

2
KXL + χ(OX)

≥ −1

2
α(X) − 1 + χ(OX) .(6)

Since

h0(L) + h0(KX − L) ≤ 1

2
(KXL − α(X)) + 1 + 1

2
(KX(KX − L) − α(X)) + 1

= 1

2
K2

X − α(X) + 2 ,

we obtain K2
X/2 − α(X) + 2 ≥ −α(X)/2 − 1 + χ(OX), i.e., α(X) ≤ K2

X − 2χ(OX) + 6. �

We can see easily the following corollary.

COROLLARY 3.7. If α(X) = K2
X − 2χ(OX) + 6, L computes α(X) and |L| has no

fixed part, then |L| is base point free and one of the following cases occurs.
1. h0(L) = 2, h1(L) = 0 and KX − L also computes α(X).
2. h0(L) ≥ 3 and |L| is composed of a pencil of genus 2.
3. h1(L) = 0, KX −L also computes α(X) and ϕL is generically 2 to 1 onto a surface

of minimal degree in P h0(L)−1.

PROPOSITION 3.8. If α(X) 	= ∞, then 0 ≤ β(X) ≤ α(X)/2 + q + 1.

PROOF. β(X) ≥ 0 is an easy consequence of Theorem 0.1. The following proof is
similar to that of Proposition 3.6. Keep the notation as in the proof of Proposition 3.6. We
assume L computes α(X) and |L| has no fixed part. Then we have α(X) = KXL−2h0(L)+2
and

h0(L) + h0(KX − L) = 1 + pg − β(L) ≤ 1 + pg − β(X) .(7)

Case A. dim W = 1. By (3) and (7), we obtain

β(X) ≤ q + a

2
KXF − a2

2
F 2 .(8)

If F 2 ≥ 1, we have 2a ≤ a2 + 1 ≤ a2F 2 + 1. This and (2) imply aKXF − a2F 2 ≤
α(X) + 1. From (8), it follows that β(X) ≤ α(X)/2 + q + 1/2.

If F 2 = 0, then |L| has no base points. When h0(L) = 2, then α(X) + 2 = aKXF . It
follows from (8) that β(X) ≤ α(X)/2 + q + 1. When h0(L) ≥ 3, similarly as in the proof of
Proposition 3.6, we have KXF = 2. Hence by (5), we get

h0(L − kF ) + h0(KX − L + kF ) ≥ k − a + χ(OX) ,
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where k = h0(L) − 2 = (KXL − α(X))/2 − 1. On the other hand, h0(L − kF ) + h0(KX −
L + kF ) ≤ 1 + pg − β(X). Combining them, we obtain

β(X) ≤ q + a − k = q + a − 1

2
(KXL − α(X)) + 1

= q + 1

2
α(X) + 1 + a − aKXF

2

= q + 1

2
α(X) + 1 .

Case B. dim W = 2. By (6) and (7), we get β(X) ≤ α(X)/2 + q + 1 immediately. �

Similarly as in the case of Corollary 3.7, we have the following corollary.

COROLLARY 3.9. If β(X) = α(X)/2 + q + 1, L computes α(X) and |L| has no fixed
part, then |L| is base point free and one of the following cases occurs.

1. h0(L) = 2, h1(L) = 0 and L computes β(X).
2. h0(L) ≥ 3 and |L| is composed of a pencil of genus 2.
3. h1(L) = 0, L computes β(X) and ϕL is generically 2 to 1 onto a surface of minimal

degree in P h0(L)−1.

4. Surfaces with α = 0 or β = 0. It is natural to ask what will happen when these
indices α and β are small. The answers for α = 0 and β = 0, respectively, are given in the
following theorems. We always assume L computes α(X) and |L| has no fixed part.

THEOREM 4.1. If α(X) = 0, then |L| has no base point and one of the following
occurs.

1. There exists a projective surjective morphism f : X → P 1, whose general fiber is
an irreducible smooth curve of genus 2.

2. X is the minimal resolution of a double covering of P 2, whose branch locus is a
reduced curve of degree 10 with only one infinitely near triple point as its essential singularity.
In this case, K2

X = 7, pg = 5, q = 0 and KX ∼ 2L − Z, where Z is an effective divisor with
LZ = 0 and KXL = 2L2 = 4.

3. X is the smooth minimal model of a double covering of Σ2, whose branch locus is
a reduced curve of |8∆0 + 14Γ | with at worst negligible singularities. In this case, K2

X = 9,
pg = 6, q = 0 and KX ∼ 3D, where 2D = L.

4. X is the minimal resolution of a double covering of P 2, whose branch locus is a
reduced curve of degree 10 with at worst negligible singularities. In this case, K2

X = 8,
pg = 6, q = 0 and KX ∼ 2L.

PROOF. Let W be the image of ϕL. Since L computes α(X), we get KXL − 2h0(L) +
2 = α(X) = 0.

When dim W = 1, by Theorem 0.2, we have |L| is base point free and the general fiber
of ϕL : X → W ∼= P 1 is an irreducible smooth curve of genus 2. Thus X is the surface of
type 1 in the theorem. When dim W = 2, by Theorem 0.2, we know that |L| is base point



280 H. SUN

free, ϕL : X → W is generically 2 to 1 and

L2 = KXL − 2 = 2h0(L) − 4 ≥ 2 .(9)

By Hodge’s index theorem, we obtain

K2
XL2 ≤ (KXL)2 = (L2 + 2)2 = (L2)2 + 4L2 + 4 .

This implies

K2
X ≤ L2 + 4

L2 + 4 .(10)

Since 2 ≤ h0(KX − L) ≤ KX(KX − L)/2 + 1, we have

K2
X ≥ KXL + 2 = L2 + 4 .(11)

Combining (10) and (11), we obtain

L2 + 4 ≤ K2
X ≤ L2 + 4

L2 + 4 ≤ L2 + 6 .

Thus we get three possible cases A: K2
X = L2 + 4, B: K2

X = L2 + 5 and C: K2
X = L2 + 6.

Case A. K2
X = L2 + 4. This implies that K2

X = KXL + 2. Then

2 ≤ h0(KX − L) ≤ 1

2
KX(KX − L) + 1 = 1

2
(KX

2 − KXL) + 1 = 2 .

Thus h0(KX −L) = 2. Let |KX −L| = |M ′| +V ′ be the decomposition into its movable and
fixed parts. Let φ : X ��� P 1 be the rational map defined by |KX − L|. Then there exists an
irreducible reduced curve F ′, such that F ′2 ≥ 0, M ′ ≡ bF ′ and b ≥ h0(KX − L) − 1 = 1.
Since

2 = (KX − L)KX = M ′KX + V ′KX ≥ bF ′KX ≥ F ′KX ,

we can get F ′KX = 2. Hence b = 1, F ′2 = 0 or 2. If F ′2 = 2, then (KX − L)F ′ =
M ′F ′ + V ′F ′ ≥ F ′2 = 2. Thus LF ′ ≤ KXF ′ − 2 = 0. By Hodge’s index theorem,
we get F ′2 ≤ 0. It is impossible. It follows that F ′2 = 0, and |M ′| is base point free.
Hence g(F ′) = (F ′2 + KXF ′)/2 + 1 = 2 and M ′ ∼ F ′. We know that the general fiber of
φ : X → P 1 is an irreducible smooth curve of genus 2. Therefore X is the surface of type 1
in the theorem.

Case B. K2
X = L2 + 5. Since 2 ≤ h0(KX − L) ≤ KX(KX − L)/2 + 1 = 5/2, we get

h0(KX − L) = 2. By (10), we have L2 + 5 ≤ L2 + 4/L2 + 4. This implies 2 ≤ L2 ≤ 4.
Since L2 = 2h0(L) − 4 is an even number, there are two cases B-I: L2 = 2 and B-II: L2 = 4.

Case B-I. We have K2
X = 7, KXL = 4 and h0(L) = 3. By Theorem 0.1, we have

pg (X) = h0(KX) ≥ h0(L) + h0(KX − L) = 5. Using Noether’s inequality, we know that
7 = K2

X ≥ 2pg(X) − 4, i.e., pg (X) ≤ 5. Thus we get pg (X) = 5 and K2
X = 7 < 10 =

2pg (X). Since K2
X ≥ 2pg(X), when X is irregular (See [7]), we conclude that q(X) = 0.

Since h0(L) = 3, we know that ϕL : X → W = P 2 is generically 2 to 1. Let X →
X′ f−→ P 2 be the Stein factorization of ϕL, X̃ the canonical resolution of the double covering
and mi the multiplicity of the corresponding singularity. R and B denote, respectively, the
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ramification divisor and the branch locus of ϕL. If H denotes a line on P 2, then we have
KX = ϕ∗

L(−3H) + R = −3L + R. By the theory of double covering (See [10, §2], [11, III,
§2] or [19, §1.3]), there exists an effective divisor Z on X, such that 2R = ϕ∗

LB − 2Z and
LZ = 0. Thus

BH = 1

2
ϕ∗

LBϕ∗
LH = (R + Z)L = RL = (KX + 3L)L = KXL + 3L2 = 10 .

Hence B ∼ 10H and KX ∼ 2L − Z. Now we can compute the invariants of X̃. We have

χ(OX) = χ(OX̃) = 1

4
B

(
KP 2 + 1

2
B

)
+ 2χ(OP 2) −

∑
i

1

2

[
mi

2

]([
mi

2

]
− 1

)

= 7 − 1

2

∑
i

[
mi

2

]([
mi

2

]
− 1

)
,

K2
X̃

= 2

(
KP 2 + 1

2
B

)2

−
∑

i

2

([
mi

2

]
− 1

)2

= 8 − 2
∑

i

([
mi

2

]
− 1

)2

.

From the equality q(X̃) = q(X) = 0, it follows that

pg (X) = 6 − 1

2

∑
i

[
mi

2

]([
mi

2

]
− 1

)
.

Since pg (X) = 5, we have [mi/2] = 2 for only one index and K2
X̃

= 6. It follows that X̃ has
a (−1)-curve. Therefore X is the surface of type 2 in the theorem.

Case B-II. We have K2
X = L2 + 5 = 9 and KXL = L2 + 2 = 6 by (9). Thus L2K2

X =
36 = (KXL)2. Using Hodge’s index theorem, we have L ≡ (2/3)KX. It follows from (9)
that h0(L) = 4. By Theorem 0.1, we have pg (X) = h0(KX) ≥ h0(L)+h0(KX −L) = 6. By
Noether’s inequality, we obtain 9 = K2

X ≥ 2pg(X) − 4, i.e., pg (X) ≤ 6. Hence pg (X) = 6
and K2

X = 9 < 12 = 2pg (X). It follows that q(X) = 0.
Since deg W = L2/2 = 2, either W ∼= P 1 × P 1 or W is a quadric cone.
Assume W ∼= P 1 × P 1. Two rulings of W allow us to write L ∼ D1 + D2 with divisors

Di satisfying D2
i = 0 (i = 1, 2). Since 6 = KXL = KXD1 + KXD2, we may assume that

KXD1 is an even integer not greater than 3. Hence KXD1 = 2. But, this is absurd, because
LD1 = (2/3)KXD1 = 4/3.

Now we assume that W is a quadric cone. In this case, by the same argument as in the
proof of [10, Lemma 2, Case II b], we have L ∼ 2D + G, where |D| is a pencil and G is
an effective divisor with LG = 0. From the equality 4 = L2 = L(2D + G), it follows that
LD = 2. Since L ≡ (2/3)KX, we have KXD = 3. From LD = 2, we get (2D + G)D =
2D2 + DG = 2, hence D2 = 0 or 1. But 3 = KXD ≡ D2 (mod 2), hence D2 = 1 and
DG = 0. The equality 0 = LG = 2DG + G2 implies that G2 = 0. Then by Hodge’s index
theorem, we have G = 0. Thus L ∼ 2D and KX ≡ 3D.

Since h0(D) ≤ (1/2)KXD + 1 = 5/2, we have h0(D) = 2. By D2 = 1, we know |D|
has one base point P . Let σ : X̂ → X be the blowing-up with center P and put E = σ−1(P ).
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Then the movable part D̂ of |σ ∗D| defines a holomorphic map g : X̂ → P 1. Since |L|
has no base point, there exists η ∈ H 0(X̂,OX̂(σ ∗L)) which does not vanish on E. Take
ξ ∈ H 0(X̂,OX̂(2E)) such that (ξ) = 2E. Then ξ/η is a meromorphic section of OX̂(−2D̂).
Then g and ξ/η define a rational map h : X̂ → Σ2. Since η does not vanish on E, h is defined
everywhere so that h∗∆0 = 2E. We consider the linear system |∆0 + 2Γ | on Σ2. This give
rise to a morphism q : Σ2 → P 3 whose image coincides with W up to an automorphism of
P 3. Then by the construction, we have the following commutative diagram.

X̂
h−−→ Σ2

σ

� �q

X
ϕL−−→ W

Let H be a plane on P 3. R and B denote, respectively, the ramification divisor and the branch
locus of h. Then there exists an effective divisor Z on X̂, such that 2R = h∗B − 2Z and
Z is contracted by h. Since q∗H = ∆0 + 2Γ = −(1/2)KΣ2 , we have σ ∗(2D) = σ ∗L =
σ ∗ϕ∗

LH = h∗q∗H = h∗(∆0 + 2Γ ). The equality h∗∆0 = 2E implies that h∗Γ = σ ∗D − E.
Thus we obtain

KX̂ = h∗(−2∆0 − 4Γ ) + R = −4E − 4(σ ∗D − E) + R = −2σ ∗L + R .

As in Case B-I, we have

B∆0 = Rh∗∆0 = (KX̂ + 2σ ∗L)(2E) = 2(σ ∗KX + E + 2σ ∗L)E = −2 ,

BΓ = Rh∗Γ = (σ ∗KX + E + 2σ ∗L)(σ ∗D − E) = KXD + 2LD − E2 = 8 .

Hence B ∼ 8∆0 + 14Γ . This equality implies

KX̂ = h∗(4∆0 + 7Γ ) − Z − 2σ ∗L = 3σ ∗D + E − Z ,

i.e., KX ∼ 3D −σ∗Z. Since KX ≡ 3D, we get KX ∼ 3D and Z = 0. Let X be the canonical
resolution of the double covering h and mi the multiplicity of the corresponding singularity.
By the standard theory of double covering, we obtain

χ(OX) = χ(OX̂) = 1

4
B

(
− 2∆0 − 4Γ + 1

2
B

)
+ 2 −

∑
i

1

2

[
mi

2

]([
mi

2

]
− 1

)

= 7 − 1

2

∑
i

[
mi

2

]([
mi

2

]
− 1

)
,

K2
X

= 2

(
KΣ2 + 1

2
B

)2

−
∑

i

2

([
mi

2

]
− 1

)2

= 8 − 2
∑

i

( [mi

2

]
− 1

)2

.

The equality q(X̂) = q(X) = q(X) = 0 implies that

pg (X) = 6 − 1

2

∑
i

[mi

2

]([
mi

2

]
− 1

)
.
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Since pg (X) = 6, we have [mi/2]([mi/2] − 1) = 0 for all indices. Thus B ∈ |8∆0 +
14Γ | is a reduced curve with at worst negligible singularities. Therefore, in this case, X is the
surface of type 3 in the theorem.

Case C. K2
X = L2 + 6. From (10), it follows that L2 + 6 = K2

X ≤ L2 + 4/L2 + 4.
This implies L2 ≤ 2. Thus L2 = 2 and K2

X = 8. By (9), we get h0(L) = 3 and KXL = 4.
Hence K2

XL2 = 16 = (KXL)2. By Hodge’s index theorem, we conclude that KX ≡ 2L.
Since h0(L) = 3, we know that ϕL : X → W = P 2 is generically 2 to 1. Let mi be

the multiplicity of the corresponding singularity. R and B denote, respectively, the ramifi-
cation divisor and the branch locus of ϕL. If H denotes a line on P 2, then we have KX =
ϕ∗

L(−3H)+R = −3L+R. By the theory of double covering, there exists an effective divisor
Z on X such that 2R = ϕ∗

LB − 2Z and LZ = 0. We get BH = RL = (KX + 3L)L = 10,
i.e., B ∼ 10H . Thus KX ∼ −3L + 5L − Z ∼ 2L − Z. Since KX ≡ 2L, we obtain
KX ∼ 2L and Z = 0. By [10, Lemma 5], we know that B ∈ |10H | is a reduced curve
with at worst negligible singularities. Therefore X is the surface of type 4 in the theorem and
pg (X) = 6 − (1/2)

∑[mi/2]([mi/2] − 1) = 6. �

Now, we assume L computes β(X) and |L| has no fixed part.

THEOREM 4.2. If β(X) = 0, then |KX| is composed of a rational pencil and |L| is a
sum of some fibers of the pencil.

PROOF. It is just a special case of Theorem 0.1. �

When α or β increase, the surface become more and more complicated and we can not
hope to give a detailed description of the surface.

5. The number of moduli of a surface.

DEFINITION 5.1. For a surface of general type S, we define M(S), which is the num-
ber of moduli of S, to be the dimension of its Kuranishi space B, i.e., the maximum of the
dimensions of the irreducible components of B (cf. [5]).

Hence we have

10χ(OS) − 2K2
S = h1(TS) − h2(TS) ≤ M(S) = dim B ≤ h1(TS) .

By [3], we have h0(TS) = h0(Ω1
S(−KS)) = 0. By Serre duality, h2(TS) = h0(Ω1

S(KS)), and
we have

M(S) ≤ h1(TS) = 10χ(OS) − 2K2
S + h0(Ω1

S(KS)) .(12)

Hence one can give an upper bound for M(S) by giving an upper bound for h0(Ω1
S(KS)). The

following theorem improves the inequality given in [6, Theorem B].

THEOREM 5.2. Let X be a smooth minimal complex projective surface of general type.
We have the inequality M(X) ≤ 10χ(OX) + (5/2)K2

X + 4. Furthermore, if q(X) > 0, then
M(X) ≤ 10χ(OX) + (1/2)K2

X + 4.
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PROOF. We can assume h0(Ω1
X(KX)) > 0. We know that Ω1

X(KX) is KX-semistable
(cf. [8, Corollary 1.2], [3] or [17]). Thus we can find an invertible sheaf OX(L) such that it
is an maximal invertible subbundle of Ω1

X(KX) of maximal slope. Then Ω1
X(KX)/OX(L) is

torsion free and (Ω1
X(KX)/OX(L))∨∨ ∼= OX(3KX − L). Hence we obtain

h0(Ω1
X(KX)) ≤ h0(L) + h0((Ω1

X(KX)/OX(L))) ≤ h0(L) + h0(3KX − L) .(13)

Case 1. KXL < K2
X. The inequality implies KX(3KX−L) > 2K2

X. By the assumption
h0(Ω1

X(KX)) > 0, we have KXL ≥ 0. Thus by Proposition 2.3, we get h0(L) ≤ KXL/2 + 2
and h0(3KX − L) ≤ (KX(3KX − L))2/2K2

X + 2. It follow from (13) that

h0(Ω1
X(KX)) ≤ KXL

2
+ 2 + (KX(3KX − L))2

2K2
X

+ 2

= (KXL − (5/2)K2
X)2 − (25/4)(K2

X)2

2K2
X

+ 9

2
K2

X + 4

≤ (0 − (5/2)K2
X)2 − (25/4)(K2

X)2

2K2
X

+ 9

2
K2

X + 4

= 9

2
K2

X + 4 .

Hence M(X) ≤ 10χ(OX) − 2K2
X + h0(Ω1

X(KX)) ≤ 10χ(OX) + (5/2)K2
X + 4.

Case 2. KXL ≥ K2
X. By Proposition 2.3, we get h0(L) ≤ (KXL)2/2K2

X + 2. Since
Ω1

X(KX) is KX-semistable, we have KXL ≤ (3/2)K2
X. Hence KX(3KX − L) ≥ (3/2)K2

X.
By Proposition 2.3, we obtain h0(3KX − L) ≤ (KX(3KX − L))2/2K2

X + 2. From (13), it
follows that

h0(Ω1
X(KX)) ≤ (KXL)2

2K2
X

+ 2 + (KX(3KX − L))2

2K2
X

+ 2

= (KXL − (3/2)K2
X)2 − (9/4)(K2

X)2

K2
X

+ 9

2
K2

X + 4

≤ (K2
X − (3/2)K2

X)2 − (9/4)(K2
X)2

K2
X

+ 9

2
K2

X + 4

= 5

2
K2

X + 4 .

Hence M(X) ≤ 10χ(OX) − 2K2
X + h0(Ω1

X(KX)) ≤ 10χ(OX) + (1/2)K2
X + 4.

When q(X) = h0(Ω1
X) > 0, we know that OX(KX) ⊂ Ω1

X(KX). Thus KXL ≥ K2
X.

Therefore, by Case 2, we have M(X) ≤ 10χ(OX) + (1/2)K2
X + 4. �
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