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Abstract. The Earth’s equilibrium climate sensitivity (ECS)

to a doubling of atmospheric CO2, along with the transient

climate response (TCR) and greenhouse gas emissions path-

ways, determines the amount of future warming. Coupled

climate models have in the past been important tools to es-

timate and understand ECS. ECS estimated from Coupled

Model Intercomparison Project Phase 5 (CMIP5) models lies

between 2.0 and 4.7 K (mean of 3.2 K), whereas in the lat-

est CMIP6 the spread has increased to 1.8–5.5 K (mean of

3.7 K), with 5 out of 25 models exceeding 5 K. It is thus per-

tinent to understand the causes underlying this shift. Here

we compare the CMIP5 and CMIP6 model ensembles and

find a systematic shift between CMIP eras to be unexplained

as a process of random sampling from modeled forcing and

feedback distributions. Instead, shortwave feedbacks shift to-

wards more positive values, in particular over the Southern

Ocean, driving the shift towards larger ECS values in many

of the models. These results suggest that changes in model

treatment of mixed-phase cloud processes and changes to

Antarctic sea ice representation are likely causes of the shift

towards larger ECS. Somewhat surprisingly, CMIP6 mod-

els exhibit less historical warming than CMIP5 models, de-

spite an increase in TCR between CMIP eras (mean TCR

increased from 1.7 to 1.9 K). The evolution of the warming

suggests, however, that several of the CMIP6 models apply

too strong aerosol cooling, resulting in too weak mid-20th

century warming compared to the instrumental record.

1 Introduction

The equilibrium climate sensitivity (ECS) is defined as the

long-term globally averaged amount of surface temperature

increase in response to a doubling of atmospheric carbon

dioxide (CO2) relative to pre-industrial levels. An expres-

sion of ECS can be obtained from the linearized global ra-

diation balance equation N = F +λT , with N being the top-

of-atmosphere (TOA) radiation balance, F an external forc-

ing, λ the total feedback parameter, and T the global surface

temperature change. Assuming a new equilibrium is reached

(N = 0) after applying a sustained doubling of atmospheric

CO2, we obtain the following equation:

ECS =
−F2x

λ
, (1)

where F2x is the radiative forcing from a doubling of CO2,

equal to approximately 3.7 Wm−2. Here λ is the total climate

feedback parameter in units of Wm−2 K−1, defined as the

sum over all feedback processes, including cloud, water va-

por, lapse rate, surface albedo, Planck, and other feedbacks.

ECS endures as a key metric to examine the joint effect of

forcing and feedback on the climate system and for the com-

parison of different climate models to each other (Andrews

et al., 2012) and other lines of evidence besides climate mod-

els (Stevens et al., 2016).

Constraining the Earth’s ECS is a critical problem in cli-

mate science, as an accurate estimate is necessary both for

understanding the Earth’s past climate changes but also in

practice to provide reliable projections of future warming

(Collins et al., 2013). Despite achieving equilibrium with

the deep oceans requiring multiple millennia, Grose et al.

(2018) found that ECS explains more of the inter-model

spread in surface temperature change over the 21st century
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than other metrics of climate sensitivity, such as the com-

monly used transient climate response (TCR), which is the

warming by the time of doubling in a run with 1 % increase

in CO2 per year. Unfortunately, the Intergovernmental Panel

on Climate Change (IPCC) ”likely” range (greater than 66 %

probability) of 1.5–4.5 K for ECS, with a central estimate of

about 3 K, has not significantly changed since it was first pro-

posed 4 decades ago by Charney et al. (1979) through to the

Fifth IPCC Assessment Report (AR5) (Collins et al., 2013).

Early estimates of ECS were primarily based on various

climate model results starting from the pioneering study of

Arrhenius (1896), though the IPCC AR5 report assessment

includes other sources of evidence in addition to raw ECS

estimates from climate models. Recent community efforts to

improve on this stalemate on bounding ECS instead focuses

entirely on basic process understanding, historical warming,

and paleoclimate evidence (Stevens et al., 2016). This may

be viewed as scientists abandoning climate models as evi-

dence for ECS, but this is not true. On the contrary, models

are used as tools in several places within these three lines of

evidence, e.g., to estimate forcing, parts of the feedback, and

how temporary sea surface temperature patterns might affect

historical inference (Armour, 2017).

In light of this, it is certainly valuable to understand how

models obtain their respective ECS, and it is even more inter-

esting that the currently ongoing sixth phase of the Coupled

Model Intercomparison Project (CMIP6) exhibits a marked

increase in both inter-model mean (3.7 K) and range (1.8–

5.5 K) in ECS, relative to the previous CMIP5 phase (3.2 K,

2.0–4.7). More so, the CMIP6 models thus far exhibit an in-

teresting bi-modal distribution (Fig. 1), indicative that sys-

tematic changes to some but not all models are responsible

for the upward shift in model ensemble mean ECS.

Indeed, recent studies of several individual CMIP6 mod-

els, including CNRM-CM6-1 (Voldoire et al., 2019), CESM2

(Gettelman et al., 2019), E3SMv1 (Golaz et al., 2019), and

HadGEM3-GC3.1 (Bodas-Salcedo et al., 2019; Andrews

et al., accepted), each with an ECS of about 5 K or greater,

have pointed to model parameterization changes that in-

creased the positive shortwave cloud feedbacks or added

aerosol–cloud interactions as having driven up their ECS val-

ues.

In this study we set out to investigate whether the collec-

tive shift in modeled ECS between CMIP5 and CMIP6 could

have happened by chance as the result of a random sampling

process in model development and whether the structure of

the forcing and feedback shows signs of systematic behavior

across the ensembles. We round off by inspecting the abil-

ity of models to represent the evolution of the instrumental

record warming with a focus on early and late 20th century

warming. The results allude to excessive aerosol cooling in

early historical warming in a majority of the models.

Figure 1. Histograms displaying number of CMIP5 (a) or

CMIP6 (b) models that fall within 0.5 K ECS bins. ECS mean value

and standard deviation (SD) for CMIP5 and CMIP6 ensemble are

displayed in black and red, respectively, above each histogram.

2 Model experiments and methodology

The CMIP5 ensemble analyzed in this work includes

27 models, and the CMIP6 ensemble includes the 25 mem-

bers available at the time of writing. The first realization for

each model (r1i1p1 for CMIP5 and r1i1p1f1 for CMIP6) was

used, and all climate model output was downloaded from the

Earth System Federation Grid (ESGF) nodes. All models are

listed in Tables 1 and 2 with their ECS, TCR, and feedback

parameter values.

2.1 Estimation of model climate sensitivities and

feedbacks

The ECS for each model was calculated from the CMIP

abrupt4xCO2 simulation, in which the CO2 concentration is

abruptly quadrupled at the beginning of the 150-year sim-

ulation and then held constant (Eyring et al., 2016). Since

some models exhibit control state drift, accurate estimates
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of ECS and TCR require correcting for this, which we do

here by assuming the underlying drift is approximately lin-

ear in time over the 150 years. The time slice of the pre-

industrial control simulation (piControl), corresponding to

the 150-year abrupt4xCO2 simulation is first chosen, begin-

ning at the simulation year at which abrupt4xCO2 branched

off of piControl. One must be cognizant that this information

is not always reliable, so in a few cases the correction may

not be accurate. A linear regression is then performed on the

global annual mean piControl surface temperature or TOA

radiative flux values to remove annual fluctuations, which is

then used as the new piControl. The regression values are

then subtracted from the global annual mean radiative fluxes

and surface temperatures from abrupt4xCO2 to obtain the

radiative flux and surface temperature anomalies. These re-

sulting anomalies are linearly regressed against each other,

following the Gregory method (Gregory et al., 2004), to ob-

tain the ECS value as one-half of the x-intercept, the total

climate feedback parameter λ as the slope of the regression,

and the forcing as one-half of the y-intercept. This method

does include what is often referred to as fast adjustments,

insofar as they happen in much less than a year. The thus es-

timated forcing is, however, biased slightly low due to curva-

ture of imbalance versus temperature found in several mod-

els. The ECS and feedback parameter do not change signif-

icantly if the global average, time average of the piControl

is subtracted from abrupt4xCO2 instead of a linear regres-

sion; however, it should be noted that differences in method-

ology can contribute some uncertainty to the ECS magnitude

(Boucher et al., submitted). Shortwave (SW) and longwave

(LW) feedback parameters are calculated in a similar manner

but using the TOA SW radiative flux anomalies or LW radia-

tive flux anomalies, respectively, instead of the total flux.

TCR is calculated from the 1pctCO2 CMIP simulation

(Eyring et al., 2016), in which CO2 is gradually increased

at a rate of 1 % per year. The corresponding time slice of pi-

Control is first removed in the same manner as for ECS, to

obtain the global annual mean 1pctCO2 surface temperature

anomalies. TCR is then calculated as the mean surface tem-

perature anomaly in a 20-year period centered on year 70 of

the simulation; the year at which the CO2 concentration is

doubled.

2.2 Estimation of model and observational historical

warming

Historical warming amounts were computed for each model.

The early and late periods are defined as 1900–1969 (pre-

1970s warming) and 1970–2005 (post-1970s warming), re-

spectively, with years corresponding to the Santa María, Mt.

Agung, El Chichón, and Pinatubo volcanic eruptions (1902–

1904, 1963–1964, 1982–1984, and 1990–1993, respectively)

excluded to limit the influence of natural volcanic aerosol

forcing. Pre-1970s warming is strongly influenced by the un-

certain aerosol cooling that offset some of the greenhouse

gas warming (Stevens, 2015), whereas post-1970s warm-

ing is dominated by greenhouse gas warming, while aerosol

cooling only changed slightly and so is expressive of TCR

and ECS (Jiménez-de-la Cuesta and Mauritsen, 2019). The

warming within each period is defined as the difference in

the mean surface temperature between 1994–2005 and 1970–

1989 for the late period and between 1900–1939 and 1940–

1969 for the early period.

Model historical warmings are compared to the same pe-

riods from the Cowtan and Way (2014) version 2.0 surface

temperature reconstruction for years 1850 to present. In this

reconstruction the land surface temperatures and sea sur-

face temperatures (SSTs) are based on the HadCRUT ver-

sion 4.2.0 and UAH version 5.6 global surface temperature

datasets. Missing data are infilled by kriging. Data coverage

uncertainty and ensemble uncertainty, or uncertainty arising

from the choice of parameter values used to create the re-

construction, are included in the data set. Uncertainty from

natural variability within each warming period is computed

based on the 100-member Max Planck Institut MPI-ESM1.1

model Grand Ensemble of historical climate change simu-

lations (Maher et al., 2019), which is larger than the recon-

struction uncertainties. Thus the total warming uncertainty is

taken as the observational uncertainty (the coverage uncer-

tainty and reconstruction parameter uncertainty) plus uncer-

tainty due to natural climate variability estimated from the

MPI Grand Ensemble, summed in quadrature.

3 Comparison of the model ensembles

In this section we will first inspect the global ECS and feed-

back parameters in the two CMIP ensembles, and then we

ask whether the shift could have happened by chance.

3.1 Shifts in climate sensitivity and global feedbacks

between CMIP5 and CMIP6

Figure 1 displays the distributions of ECS for CMIP5 and

CMIP6, with the mean value and standard deviation (SD) for

each ensemble also displayed. The ensemble mean ECS in-

creased from 3.2 K (range of 2.0–4.7 K) for CMIP5 to 3.7 K

(1.8–5.5 K) for CMIP6, an increase of 0.5 K or 17%. More-

over, the CMIP6 distribution is shifted towards higher ECS,

with a secondary peak at approximately 5 K. About 11% of

CMIP5 models have an ECS greater than 4 K, compared to

40% of CMIP6 models. Only one CMIP6 model, INM-CM4-

8, exhibits a smaller ECS (1.81 K) than is found in any model

in CMIP5.

The average radiative forcing from CO2, as estimated us-

ing the Gregory method (Gregory et al., 2004), does not

change substantially between the CMIP ensembles, whereas

the range narrows slightly (Fig. 2 and Tables 1 and 2). The

total feedback parameter λ, however, does exhibit an in-

crease in ensemble mean, from −1.13 Wm−2 K−1 (± 0.28)
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Figure 2. ECS versus total net feedback parameter. The black curve

represents the expected ECS value based on a forcing of 3.7 Wm−2

over the range of feedbacks plotted (a) and effective forcing versus

total net feedback parameter. The black lines represent the expected

forcing–feedback relationship based on the ECS value given in the

label of each line (b). Circles represent CMIP5 models, and right-

facing triangles represent CMIP6 models. Mean value and SD for

each parameter for the CMIP5 and CMIP6 ensembles displayed in

black and red, respectively, on the appropriate axis in each plot. Plot

symbols are colored by ECS values as shown in the legend.

to −1.02 Wm−2 K−1 (± 0.32). This shift towards less nega-

tive values is also discernible in Fig. 2, particularly for mod-

els with ECS on the high end. Therefore, the decrease in λ

magnitudes, which alone determines most of the variation in

ECS, is the main driver behind the shift toward higher ECS

between the CMIP ensembles.

3.2 Could we obtain the CMIP6 ensemble mean ECS

by chance?

The results presented in Sect. 3.1 demonstrated a clear shift

in ECS from CMIP5 to CMIP6 but did not establish if

that shift was statistically significant. The recently published

Zelinka et al. (2020) found their increase in ensemble-mean

ECS to be just short of statistical significance (95% confi-

dence level or p < 0.05) using a Welch’s t test for equal

means; this t test does not assume equal variance in the sam-

ples being compared. However, for the subset of CMIP5 and

CMIP6 models examined in this work, also using a Welch’s

t test, we obtain a statistically significant shift. This may

seem to be inconsistent at first glance, but it should be noted

that Zelinka et al. (2020) included some models which we

did not and vice versa, which may influence the results of

t tests.

However, a potential complication exists when applying

such standard methods to compare mean ECS: statistical tests

for independence of means such as t tests usually rely on

an assumption of a Gaussian or approximately Gaussian un-

derlying distribution and may not be appropriate for sam-

ples with skewed distributions, such as ECS (Roe and Baker,

2007).

Instead, one might view such generational ensembles as

small random samples taken from some generic modeling

activities that are subject to noise. In this view, how likely

is it that we obtain the CMIP6 ensemble mean ECS increase

simply by chance? In other words, do the high CMIP6 cli-

mate sensitivities represent a statistically significant shift in

an envisioned underlying probability distribution based on

modeling, or are they encapsulated by the uncertainty of cli-

mate modeling? We address the question of statistical signif-

icance by assuming the underlying ECS distribution is well

described by Eq. (1).

First, one must understand that the mean of the resulting

ECS distribution is generally larger than the median, caused

by the positive skewness of the distribution (Roe and Baker,

2007); it should be noted that using the mean λ and mean

F2x in Eq. (1) therefore represents the median rather than the

mean ECS as the centroid of the underlying distribution. We

assume a Gaussian distribution for λ and F2x , then compute

the ECS distribution with Eq. (1) and determine the median

ECS values that correspond to the CMIP5 and CMIP6 means;

the probability of obtaining either CMIP mean from the re-

sulting distribution can then be assessed. To show how the

mean and median of the underlying ECS distribution differ,

we Monte Carlo sample feedback parameters from Gaussian

distributions with a SD equal to the average of the CMIP5

and CMIP6 ensemble SDs (0.29 Wm−2 K−1; see Tables 1

and 2) and forcing centered on 3.7 Wm−2 with a SD of 10 %.

This is the current best estimate (Etminan et al., 2016), and

choosing a different value has no appreciable effect on our

results, as forcing is in the numerator. A range of median

ECS values, including probable and improbable values from

between 0.1 and approximately 6 K (corresponding to mean

feedback parameters of −37 to −0.63 Wm−2 K−1 when forc-

ing is set to −3.7 Wm−2), were assessed, all with the SD

set to 0.29 Wm−2 K−1. Negative ECS and values exceeding

10 000 K are omitted. For each value of median ECS we can

then evaluate the resulting mean, which is quite close for

lower values of median ECS but diverges for higher sensi-
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Table 1. List of CMIP5 models and model climate parameters.

Model ECS TCR F2x λ λSW λLW λCS,SW λCS,LW

ACCESS1.0 3.76 1.72 2.87 −0.76 0.78 −1.54 0.76 −1.62

BCC-CSM1.1 2.81 1.74 3.36 −1.19 0.49 −1.69 0.77 −1.90

BCC-CSM1.1(m) 2.77 2.00 3.88 −1.40 0.50 −1.90 0.49 −1.97

BNU 3.98 2.58 3.71 −0.93 0.66 −1.60 1.10 −1.75

CCSM4 2.90 1.64 3.43 −1.18 0.68 −1.86 0.94 −1.94

CNRM-CM5 3.21 2.04 3.67 −1.14 0.49 −1.63 0.79 −1.73

CNRM-CM5-2 3.40 1.63 3.68 −1.08 0.58 −1.66 0.90 −1.73

CSIRO-Mk3.6.0 4.05 1.76 2.58 −0.64 1.32 −1.96 0.85 −1.71

CanESM2 3.71 2.37 3.72 −1.00 0.40 −1.40 0.74 −1.86

FGOALS-g2 3.39 1.42 2.79 −0.82 0.76 −1.54 1.01 −1.71

GFDL-CM3 3.85 1.85 2.95 −0.77 1.27 −2.03 0.71 −1.97

GFDL-ESM2G 2.30 0.96 3.00 −1.30 0.55 −1.59 0.64 −1.70

GFDL-ESM2M 2.33 1.23 3.27 −1.40 0.62 −1.68 0.61 −1.69

GISS-E2-H 2.33 1.69 3.72 −1.60 −0.22 −1.37 0.54 −1.65

GISS-E2-R 2.06 1.41 3.66 −1.78 −0.37 −1.44 0.41 −1.96

HADGEM2-ES 3.96 2.38 3.63 −0.92 0.63 −1.54 0.42 −1.68

INM-CM4 2.01 1.22 2.91 −1.45 0.59 −2.04 0.68 −2.01

IPSL-CM5A-LR 3.97 1.94 3.17 −0.80 1.17 −1.97 0.46 −2.01

IPSL-CM5A-MR 4.03 1.96 3.30 −0.82 1.05 −1.87 0.44 −2.01

IPSL-CM5B-LR 2.58 1.44 2.64 −1.02 0.89 −1.91 0.57 −1.89

MIROC-ESM 4.68 2.15 4.23 −0.90 0.99 −1.89 0.82 −1.91

MIROC5 2.70 1.49 4.09 −1.51 0.39 −1.90 0.85 −1.86

MPI-ESM-LR 3.48 1.94 4.05 −1.16 0.51 −1.68 0.73 −1.85

MPI-ESM-MR 3.31 1.93 4.03 −1.22 0.57 −1.78 0.69 −1.91

MPI-ESM-P 3.31 1.96 4.24 −1.28 0.42 −1.71 0.68 −1.86

MRI-CGCM3 2.65 1.58 3.20 −1.21 0.92 −2.13 0.81 −1.93

NORESM1-M 2.75 1.34 3.05 −1.11 0.70 −1.82 0.86 −1.87

Ensemble mean ± SD: 3.20 ± 0.70 1.75 ± 0.38 3.44 ± 0.48 −1.13 ± 0.28 0.64 ± 0.37 −1.75 ± 0.37 0.71 ± 0.18 −1.84 ± 0.12

Table 2. List of CMIP6 models and model climate parameters.

Model ECS TCR F2x λ λSW λLW λCS,SW λCS,LW

BCC-ESM1 3.29 1.77 3.02 −0.92 0.65 −1.57 0.69 −1.83

BCCCSM2MR 3.07 1.60 3.06 −1.00 0.79 −1.79 0.71 −1.91

CESM2 5.15 1.99 3.19 −0.62 1.32 −1.94 0.54 −1.80

CESM2-WACCM 4.65 1.92 3.26 −0.70 1.34 −2.04 0.31 −1.86

CNRM-ESM2-1 4.75 1.82 2.96 −0.62 0.72 −1.35 0.75 −1.59

CNRMCM61 4.81 2.23 3.70 −0.77 0.68 −1.45 0.77 −1.76

CanESM5 5.58 2.75 3.68 −0.66 0.70 −1.36 0.78 −1.86

E3SM-1-0 5.27 2.91 3.28 −0.62 1.27 −1.89 0.54 −1.78

EC-EARTH3-VEG 4.17 2.76 3.34 −0.80 0.82 −1.62 0.86 −1.63

GFDL-CM4 3.79 – 3.14 −0.83 0.77 −1.59 0.80 −1.79

GFDL-ESM4 2.56 – 3.84 −1.50 0.13 −1.63 – –

GISSE2-1-G 2.60 1.66 3.84 −1.48 −0.04 −1.44 – –

GISSE2-1-H 2.99 1.81 3.47 −1.16 0.21 −1.37 – –

HADGEM3-GC31-LL 5.46 2.47 3.48 −0.64 1.64 −2.28 0.67 −1.83

INM-CM4-8 1.81 1.30 2.64 −1.46 0.53 −1.99 0.79 −1.88

IPSL-CM6A-LR 4.50 2.39 3.39 −0.75 1.10 −1.66 0.62 −1.51

MIROC-ES2L 2.66 1.51 4.03 −1.51 0.38 −1.89 0.76 −1.87

MIROC6 2.60 1.58 3.61 −1.39 0.61 −2.05 0.83 −1.98

MPI-ESM1-2-HR 2.84 1.57 3.60 −1.27 0.22 −1.49 0.63 −1.90

MRI-ESM2 3.11 1.67 3.37 −1.08 0.84 −1.93 0.84 −1.95

NESM3 4.50 – 3.78 −0.84 0.61 −1.45 0.81 −1.69

NORCPM1 2.78 1.55 3.58 −1.29 0.62 −1.89 0.82 −1.90

NORESM2-LM 2.49 1.48 3.44 −1.38 1.46 −1.89 0.57 −1.75

SAM0UNICON 3.67 2.08 3.85 −1.05 1.46 −2.56 0.82 −2.01

UKESM1-0-LL 5.31 2.79 3.56 −0.67 1.59 −2.26 0.72 −1.91

Ensemble mean ± SD: 3.78 ± 1.12 1.98 ± 0.48 3.44 ± 0.32 −1.00 ± 0.32 0.82 ± 0.46 −1.78 ± 0.46 0.71 ± 0.13 −1.82 ± 0.12
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Figure 3. Random sampling of ECS from Gaussian distributions of

λ and F2x . Panel (a) shows the relationship between the median and

mean of ECS, arising from the inverse relationship between ECS

and λ. Panel (b) shows distributions of mean ECS from random 25-

member ensembles centered at the means of CMIP5 and CMIP6.

tivities (Fig. 3a). For the CMIP5 mean of 3.2 K, the corre-

sponding median is 3.0 K, and for the CMIP6 mean of 3.7 K

the median is 3.4 K.

Using these medians we next address the question of

whether CMIP6 could be obtained simply by chance. To do

so, we first assume the underlying median ECS is 3.0 K and

make 100 000 random ensembles, each with 25 models (the

size of the CMIP6 ensemble studied here). The resulting dis-

tribution of mean ECS values of the random ensembles is

shown in Fig. 3. It turns out that less than 2 % of the samples

exceed 3.7 K, which is the mean of CMIP6. Likewise, if we

assume the underlying median is 3.4 K, centered at CMIP6,

then less than 2 % of the samples have a mean less than 3.2 K,

which is the mean of CMIP5. Thus, the shift in ensemble

mean ECS between CMIP5 and CMIP6 is extremely unlikely

to have been caused simply by chance.

4 Decomposition into longwave and shortwave

feedbacks

Having established that there is a systematic shift in feed-

back underlying the increase in ensemble mean ECS from

CMIP5 to CMIP6, we next divide the feedback into long-

wave, shortwave, all-sky, and clear-sky components and in-

spect the zonal mean distribution in order to seek the possible

underlying causes.

4.1 Global-mean all-sky and clear-sky feedbacks

Decomposition of the total feedback parameter into the all-

sky shortwave (SW; λSW) and longwave (LW; λLW) com-

ponents and examination of the clear-sky (CS) SW and

LW feedbacks (λCS,SW; λCS,LW), elucidates which classes of

feedbacks drive the increase in ECS. As shown in Fig. 4a,

a systematic shift toward more positive λSW has occurred

on average for the CMIP6 ensemble relative to CMIP5: the

mean λSW increased from 0.64 to 0.73 Wm−2 K−1, whereas

the mean λLW remained almost unchanged (mean of −1.74

and −1.78 Wm−2 K−1, respectively). However, much spread

in the SW and LW feedbacks exists within both ensembles as

indicated by the large SDs.

The shortwave feedback parameters are strongly associ-

ated with the total feedback parameter for both model ensem-

bles, with a correlation coefficient of 0.83 (p value less than

0.001) for CMIP5 and 0.56 (p value of 0.004) for CMIP6,

whereas the longwave feedbacks exhibited small, statistically

nonsignificant correlations with the total feedback parame-

ter (−0.21 and 0.11 for CMIP5 and CMIP6, respectively).

The longwave thus exhibits no consistent or systematic shift

with ECS, whereas these results suggest that λSW is the main

cause of both the variations and the shift in λ and thus of

ECS. These feedbacks suggest that much of the spread is

caused by cloud parameterizations and that cloud feedbacks

play an important role in the shift to higher ECS in CMIP6.

In contrast, no systematic shifts are evident in the clear-

sky feedback parameters (λCS,SW or λCS,LW) between the

CMIP eras (Fig. 4), and again much spread among mod-

els is evident in both ensembles. However, the spread in

CMIP6 λCS,SW is smaller than that for CMIP5, with a SD

of 0.13 compared to 0.18 Wm−2 K−1, indicating a greater

convergence of the CMIP6 λCS,SW values, while the SDs

for the clear-sky longwave feedbacks are of similar mag-

nitude (0.12 Wm−2 K−1). This is in contrast to the all-sky

feedbacks, where the SDs were larger for both SW and LW

for CMIP6. Lastly, the clear-sky feedbacks in Fig. 4b do

not exhibit a statistically significant slope for both ensem-

bles despite the spread among models, whereas the all-sky

feedbacks (Fig. 4a) exhibited statistically significant, nega-

tive slopes (−0.37 and −0.47 for CMIP5 and CMIP6, re-

spectively); the dominant direction of the spread has changed

between all-sky and clear-sky. Thus, another feedback be-

sides cloud feedback may be causing the spread, such as the
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Figure 4. All-sky λLW versus λSW for the CMIP5 and CMIP6 en-

semble (a) and clear-sky λCS,LW versus λCS,SW for CMIP5 and

CMIP6 (b). CMIP5 is shown as circles, and CMIP6 is shown as

right-facing triangles. Mean CMIP5 feedbacks and SDs are shown

as black circle and lines, and mean CMIP6 and SDs are shown as

dark gray triangle and lines in each plot. Lines of constant ECS

based on forcing of 3.7 Wm−2 are given in light gray. Plot symbols

colored by ECS values are as shown in the legend.

surface albedo feedback; it is also notable that the spread in

λCS,SW decreased between CMIP5 and CMIP6, suggesting

a shift in the underlying albedo feedback between ensembles.

4.2 Zonal-mean feedbacks

The all-sky and clear-sky feedback parameters are decom-

posed into zonal-mean feedback parameters, to further in-

vestigate the causes of the shifts in the shortwave feedbacks

and which regions may be the main drivers. The zonal mean

feedbacks are calculated similarly to the global annual mean

feedbacks, with the exception that the global annual mean

surface temperature anomalies are regressed instead against

zonal annual mean TOA imbalances. The radiation fluxes are

first divided into 10◦ latitude bins based on each model’s

grid, centered between 85◦ S and 85◦ N, and then the Gre-

Figure 5. All-sky zonal average λLW (a) and λSW (b) for the

CMIP5 ensemble average (blue) and CMIP6 ensemble (red).

Dashed blue and red lines indicate regions where the difference in

mean feedback is statistically significant (p < 0.05). Light blue and

red shading represent SD of each ensemble. Panel (c) displays the

difference between the CMIP6 and CMIP5 ensemble average SW,

LW, and net feedbacks as a function of latitude.

gory method is applied to compute the zonal-mean all-sky

and clear-sky feedbacks. These feedbacks are displayed in

Fig. 5 as a function of latitude for all-sky and Fig. 6 for clear-

sky.

Large differences in all-sky feedbacks between CMIP eras

tend to occur in the tropics and towards the poles. In par-

ticular, a broad swath of change is seen for the Southern

Hemisphere midlatitude and polar regions; the largest short-

wave feedback differences are found in these regions, where

the CMIP6 zonal shortwave feedbacks have substantially in-

creased (Fig. 5). Statistically significant (p < 0.05) differ-

ences in ensemble-mean zonal shortwave feedback, however,

occur solely within the Southern Hemisphere, within the

deep southern tropics (0–10◦ S), the extratropics (30–60◦ S),

and in the polar region between 70–80◦ S. Though smaller in

magnitude, clear-sky zonal shortwave feedback also shows

substantial increases between CMIP5 and CMIP6 poleward

of 60◦ S in the Southern Ocean (Fig. 6). The broad increases

from CMIP5 to CMIP6 in all-sky λSW across much of the

Southern Hemisphere extratropics, coupled with changes in

clear-sky feedback only within the southern polar regions,

further indicate that cloud feedbacks have changed between

CMIP eras. It is also notable that the variability among mod-
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Figure 6. Clear-sky zonal average λCS,LW (a) and λCS,SW (b) for

the CMIP5 ensemble average (blue) and CMIP6 ensemble (red).

Dashed blue and red lines in (a) and (b) indicate regions where

difference in mean feedback is statistically significant (p < 0.05).

Light blue and red shading represent SD of each ensemble. Panel (c)

displays the difference between the CMIP6 and CMIP5 ensemble

average SW, LW, and net feedbacks.

els within the CMIP6 ensemble has decreased relative to

CMIP5 in the shortwave for both all-sky and clear-sky, as

indicated by the smaller SD bounds on the ensemble aver-

ages in Figs. 5 and 6; the CMIP6 models display greater

agreement on the magnitude and sign of the zonal shortwave

feedbacks, though whether CMIP6 has become more realis-

tic cannot be determined here.

The largest and only statistically significant clear-sky

shortwave feedback changes occur over the Southern Ocean

latitudes (Fig. 6b and c), where a shift towards more positive

clear-sky shortwave feedback is found. This is suggestive of

increases in the sea-ice-induced surface albedo feedback in

CMIP6, likely due to increased abundance of sea ice near the

Antarctic in the underlying piControl climatology in CMIP6

relative to CMIP5 (Fig. 7). In fact, the only statistically sig-

nificant change in piControl sea ice coverage is found in the

Southern Ocean. Perhaps as a result of this larger base-state

abundance, the decrease in sea ice coverage in the Antarc-

tic in the abrupt4xCO2 simulation is also greater for CMIP6

than CMIP5 (Fig. 7). This reduction in sea ice abundance in

abrupt4xCO2 shown in Fig. 7, defined as the difference be-

tween the mean of the last 30 years of abrupt4xCO2 and the

mean over the piControl climatology, is statistically signifi-

Figure 7. Zonal average sea ice coverage from piControl for the

CMIP5 ensemble (blue) and CMIP6 ensemble (red) shown as solid

red and blue lines; dashed lines in these curves indicate regions

where difference in mean sea ice coverage is statistically significant

(p < 0.05). Light blue and red shading around the solid lines repre-

sent SD of each ensemble. Dashed-dotted lines represent the aver-

age difference in sea ice coverage between the zonal average piCon-

trol simulation (over the 150 years corresponding to abrupt4xCO2)

and the mean of the last 30 years of the abrupt4xCO2 simulation.

cantly (p < 0.05) correlated with ECS for the 70–80◦ S and

60–70◦ S latitude bands for the CMIP6 ensemble (correlation

coefficient of −0.8 and −0.69, respectively); no statistically

significant correlations were found between sea ice reduc-

tions in abrupt4xCO2 and ECS for CMIP5 within the South-

ern Hemisphere. Greater decreases in Antarctic sea ice in

abrupt4xCO2 are thus strongly associated with larger ECS,

likely through strengthening of the sea ice albedo as indi-

cated by the shift towards more positive clear-sky shortwave

feedbacks in this region. Further, regional maps of the dif-

ference in clear-sky shortwave feedbacks (Fig. 8) and sea ice

between CMIP5 and CMIP6 (Fig. 9) demonstrate that the in-

creased base-state sea ice abundance in piControl, greater re-

ductions in sea ice in abrupt4xCO2, and more positive clear-

sky shortwave feedbacks track each other over much of the

Southern Ocean; for example, larger clear-sky feedbacks in

the region of the Bellingshausen and Amundsen seas are as-

sociated with larger base-state sea ice and larger sea ice re-

ductions with warming. These features are found in most re-

gions of the Southern Hemisphere, with the exception of a re-

gion off eastern Antarctica displaying smaller clear-sky zonal

feedbacks in CMIP6 than CMIP5, suggesting that changes

across most of the Southern Ocean are responsible for the

increased shortwave feedbacks.

Larger decreases in sea ice coverage for abrupt4xCO2

are also seen in the Arctic but are accompanied by a much

smaller (and statistically insignificant) change in shortwave

feedback relative to the Antarctic; the underlying piCon-

trol sea ice coverage did not significantly increase between

CMIP5 and CMIP6 in the Arctic, leading to a lesser impact
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Figure 8. Map of the difference in clear-sky zonal feedbacks for the

Antarctic region between CMIP6 and CMIP5. Red colors indicate

that the CMIP6 feedback is larger than CMIP5, and blue indicates

that CMIP6 is smaller than CMIP5. Averaged on a 5◦ by 5◦ grid.

on the sea ice albedo feedback. Furthermore, in contrast to

the Antarctic, the difference in net feedback in the Arctic is

smaller than for the Antarctic, and the change in the clear-sky

shortwave feedback in Northern Hemisphere midlatitudes is

negative (albeit statistically insignificant; Fig. 6). Perhaps as

a result there is less intense Arctic amplification exhibited by

CMIP6 relative to CMIP5 (Fig. 10). Surface temperature in-

creases in the Arctic still exceed warming elsewhere in the

CMIP6 ensemble, but of a somewhat smaller magnitude than

CMIP5, likely due to a relatively lessened impact of sea ice

albedo on the feedback parameter.

We speculate that much of this behavior can be explained

by an increased focus on the representation of mixed-phase

clouds by the models’ microphysics parameterizations. Re-

cent studies have shown that the strength of the negative

cloud optical depth feedback is strongly dependent on the

relative partitioning of ice- and liquid-phase cloud conden-

sate in the control state (Tan et al., 2016). By increasing the

amount of liquid in supercooled clouds the negative optical

depth feedback is weakened and hence ECS increases. In ad-

dition, since liquid clouds are generally more reflective than

ice clouds, the long-standing Southern Ocean warm bias may

have been reduced through these efforts, thereby resulting in

more abundant sea ice. These effects could, together, explain

the nontrivial increase in ECS in the CMIP6 ensemble over

CMIP5.

Our feedback analysis results are broadly in agreement

with those of Zelinka et al. (2020). The global and zonal

all-sky shortwave feedbacks examined here clearly point to

clouds as the main driver behind the shift towards more pos-

itive total feedback, which in turn drove the shift towards

higher ECS. Zelinka et al. (2020) also found the increase

in ECS to be due to less negative total feedback, driven by

stronger positive low cloud shortwave feedbacks. Using ra-

diative kernels and the approximate partial radiative pertur-

bation technique to further analyze the cloud feedbacks, they

determined that the shortwave low cloud amount and opti-

cal depth (essentially what is referred to in Zelinka et al.,

2020, as the scattering feedback) feedbacks shifted towards

more positive values in CMIP6, particularly in the extratrop-

ics; this shift ultimately drove the total feedback parameter

towards less negative values. As in this work, the analysis of

Zelinka et al. (2020) pointed towards changes in model rep-

resentation of cloud processes in CMIP6 relative to CMIP5.

Further, statistically significant increases in ensemble zonal

mean low cloud amount feedback were found in the South-

ern Hemisphere extratropics, consistent with our statistically

significant southern extratropical differences in all-sky zonal

feedbacks (though these include more than just cloud feed-

backs). Notably, Zelinka et al. (2020) found a decrease in

the spread of the albedo feedback for CMIP6, consistent

with the reduction in variability we found for the clear-sky

shortwave feedback, and Fig. S7 in their supplemental ma-

terial indicates that strengthened extratropical albedo feed-

back may be an important secondary driver of the increase in

ECS for many CMIP6 models. This is again consistent with

our results for the zonal shortwave clear-sky feedback, which

also demonstrate a decreased spread in clear-sky shortwave

feedbacks for CMIP6. Our zonal feedback analysis suggests

that the increased albedo feedback is found primarily in the

Southern Ocean and is linked to increased sea ice coverage

in this region in the CMIP6 piControl climatology. Increased

base-state sea ice coverage likely caused greater reductions

in sea ice in the abrupt4xCO2 simulations, which are associ-

ated with strengthened zonal clear-sky shortwave feedbacks

(as sea ice albedo feedback) in the Southern Ocean and larger

ECS. Model changes in representation of clouds and sea ice

are thus the likely culprits causing the change in sea ice cli-

matology, though the details of such changes and their effects

may vary among models and warrant further investigation.

5 Transient climate response, historical warming, and

aerosol cooling

The instrumental record warming is the prima facie test of

climate models: if models are not able to reproduce the his-

tory of warming then they do not represent a credible hypoth-

esis of how the climate system works. However, the warming

in a model is a result of both climate change feedbacks, ra-

diative forcing, deep-ocean heat uptake, and pattern effects,

and therefore modellers can trade off these factors to obtain

an overall warming in line with observations (Kiehl, 2007).

Some modeling centers use this explicitly to tune their mod-

els (Hourdin et al., 2017; Mauritsen et al., 2019), whereas

others state they do not do this (Schmidt et al., 2017). In ei-
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Figure 9. (a) Map of the difference in mean piControl sea ice abundance climatology between CMIP6 and CMIP5 in the Antarctic and

(b) of the difference between CMIP6 and CMIP5 in the reduction of sea ice abundance in abrupt4xCO2. Reduction in sea ice for each

CMIP ensemble calculated as difference in sea ice coverage between the average piControl simulation (over the 150 years corresponding to

abrupt4xCO2) and the mean of the last 30 years of the abrupt4xCO2 simulation. Averaged on a 5◦ by 5◦ grid.

Figure 10. Zonal average surface temperature anomaly from

abrupt4xCO2 relative to piControl for the CMIP5 ensemble aver-

age (blue) and CMIP6 ensemble (red). Light blue and red shading

represent the SD of each ensemble. Dashed blue and red lines indi-

cate regions where the difference in mean feedback is statistically

significant (p < 0.05).

ther case, representing historical warming is a necessary but

insufficient validation of a climate model.

A central metric that incorporates several of the factors

relevant for historical warming is the transient climate re-

sponse (TCR). TCR is computed from an idealized simula-

tion with a gradual 1% per year CO2 increase as the warming

around the time of doubling. Just as for ECS, TCR also has

increased in CMIP6 to a mean of 1.98 K (range 1.30–2.91 K)

compared to the CMIP5 mean of 1.75 K (0.96–2.58 K), as

seen in Fig. 11. One can obtain an approximate estimate of

TCR in terms of physical bulk properties of the climate sys-

tem (Jiménez-de-la Cuesta and Mauritsen, 2019):

TCR ≈
−F2x

λ − ǫγ
, (2)

where the product ǫγ is equal to 0.93 Wm−2 K−1, with an

uncertainty range of 0.54–1.32 Wm−2 K−1 in CMIP5 (Geof-

froy et al., 2013); ǫ is the deep-ocean heat uptake efficacy

representative of forced temporary pattern effects; and γ

is the deep-ocean heat uptake coefficient. The product ǫγ

controls the relationship between TCR and ECS. Models in

CMIP6 follow the predicted behavior of Eq. (2) using CMIP5

parameters surprisingly well (Fig. 11). However, the mean of

ǫγ increased to 0.98 Wm−2 K−1, while the uncertainty range

decreased (0.73–1.23 Wm−2 K−1) based on the CMIP6 en-

semble examined here relative to CMIP5. Though not a sta-

tistically significant difference between the two means, sev-

eral CMIP6 models with high TCR and ECS now fall out-

side the upper uncertainty bound for expected TCR when

using ǫγ based on CMIP6 (Fig. 11). These four high-TCR

CMIP6 models are associated with much smaller values for

ǫγ (0.54–0.69 Wm−2 K−1) and the total feedback parameter

(between −0.80 and −0.62 Wm−2 K−1), though it is left to

future work to disentangle the shifts in specific phenomena,

such as pattern effects, that contribute to this.

Given that TCR is on average higher in CMIP6 one might

naively expect stronger historical warming; however, this is

not the case (Fig. 12). Whereas CMIP5 on average tracked

the instrumental record quite well, warming slightly too

much in the latter half of the 20th century, the CMIP6 models

are systematically on average colder than observed starting

around 1940 but nearly catch up with global warming in the

beginning of the 21st century. Looking at individual model

simulations (Fig. 13) reveals that the spread in overall cen-

tennial warming also increased in CMIP6 and furthermore

that there is not a strong relationship with TCR.
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Figure 11. TCR versus ECS for the CMIP5 ensemble (black

circles) and CMIP6 ensemble (right-facing red triangles). Ex-

pected values based on forcing of 3.7 Wm−2 and a value of ǫγ =

0.93Wm−2 K−1 are shown by the black curve, and uncertainty of

the ǫγ value is shown as gray bounding lines. Dashed black and

gray curves represent the same expected values but are based on

a value of ǫγ = 0.98Wm−2 K−1 computed from the CMIP6 en-

semble. ECS and TCR mean values and SDs for the CMIP5 and

CMIP6 ensembles are displayed in black and red, respectively.

Figure 12. Ensemble mean historical surface warming in CMIP5

and CMIP6 compared with observations. Shading on the models is

the ensemble SD. The baseline is 1850–1900.

Figure 13. As in Fig. 12 but for individual model runs.

Panel (a) shows CMIP5 models, and panel (b) shows CMIP6 mod-

els. Color coding is according to the respective models’ TCR.

To demonstrate at this point that the most likely explana-

tion for why CMIP6 on average warms less is because of

stronger aerosol cooling we divide warming into the pre-

1970s and post-1970s (Fig. 14). The rationale behind this

division is that aerosol cooling, which has offset some of

the greenhouse gas warming, increased rapidly with indus-

trialization up until around 1970, when air quality regula-

tions being implemented resulted in stabilized global aerosol

cooling. Since the amount of anthropogenic aerosol cooling,

in contrast to greenhouse gas warming, is highly uncertain

(Bellouin et al., 2019) and varies among models, total forc-

ing uncertainty in the pre-1970s period dominates the global

temperature response (Stevens, 2015). In the post-1970s pe-

riod, the greenhouse gas forcing change instead dominates

and is less uncertain, such that the variations in TCR are more

important (Jiménez-de-la Cuesta and Mauritsen, 2019).

Interestingly, the majority of models from both ensembles

underpredict the pre-1970s warming (Fig. 14), with a few

CMIP6 models exhibiting close to no warming and several

exhibiting less than 0.1 K of warming. This is a strong in-

dication that many models apply too strong aerosol cooling

and that this is more outspoken in CMIP6. About half the

models, however, make up for this lack of warming by in-

stead warming more than observed in the post-1970s period.

As expected, there is no apparent relationship between pre-
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Figure 14. Post-1970s warming (surface temperature change be-

tween the 1970–1990 and 1994–2005 periods) versus pre-1970s

warming (surface temperature change between the 1900–1939 and

1940–1969 periods), with plot symbols colored by TCR bins shown

in the legend. Circles represent CMIP5 models, and right-facing tri-

angles represent CMIP6 models. Observational pre- and post-1970s

warming is plotted as a black circle with uncertainty as black lines.

Solid gray lines represent the outer bounds of pre- and post-1970s

warming, summing to total observed warming.

1970s warming and TCR, but a correlation exists with post-

1970s warming, with higher TCR models exhibiting larger

post-1970s warming. This is most apparent for models with

TCR of 1.5–2.0 K (statistically significant correlation coef-

ficient of 0.72 for CMIP6; CMIP5 correlation is not signifi-

cant) and smaller or nonsignificant correlation for other TCR

ranges. None of the models with TCR greater than 2.5 K pro-

vide a realistic post-1970s warming. Unfortunately, Radia-

tive Forcing Model Intercomparison Project (RFMIP)-style

simulations are available for CMIP6 but not for CMIP5, as

these types of experiments are best suited for deciphering the

causes of the exaggerated aerosol cooling.

6 Conclusions

We have compared the CMIP5 and CMIP6 model ensem-

bles in terms of their climate sensitivities, feedback param-

eters, and historical warming evolution. The ECS and to-

tal feedback parameter values were computed with the Gre-

gory method, and we found that both the ensemble mean

ECS and the spread in ECS values has increased between

CMIP5 (mean 3.2 K, spread 2.0–4.7 K) and CMIP6 (mean

3.7 K, spread 1.8–5.5 K).

We examined whether this shift in ECS between ensem-

bles could have arisen simply by chance or whether it is

a statistically significant change. This is a critical question

because it speaks to whether such a shift in ECS is truly unex-

pected or not. We modeled distributions of forcing and feed-

backs as random samples from Gaussian distributions cen-

tered at CMIP5 and determined that the probability of obtain-

ing the CMIP6 ensemble mean ECS value was less than 2 %.

Previous model ensemble mean ECS values are similar to

those obtained for the CMIP5 ensemble, together suggesting

that the CMIP6 ensemble mean ECS is indeed highly un-

usual.

This shift towards higher ECS for the CMIP6 ensemble

is primarily driven by increases in the shortwave feedback

parameter for some models within the ensemble. The mean

total feedback parameter increased from −1.13 Wm−2 K−1

for CMIP5 to −1.02 Wm−2 K−1 for CMIP6, and the mean

all-sky shortwave feedback parameter increased from 0.64 to

0.81 Wm−2 K−1. While the all-sky shortwave feedback pa-

rameters exhibited statistically significant correlations with

the total feedbacks for each CMIP ensemble, no statistically

significant correlation or systematic change was seen for the

longwave feedback parameters. This constitutes a systematic

shift in feedbacks underlying the increase in ensemble mean

ECS and are suggestive of the role of cloud feedback pro-

cesses. The global and zonal clear-sky shortwave feedback

parameters also suggested a significant role for the albedo

feedback in the increase in ECS, likely driven by increases

in Southern Ocean sea ice coverage in CMIP6 relative to

CMIP5. We speculate that these results are due to changes

in model treatment of mixed-phase cloud processes reducing

the negative optical depth cloud feedback and affecting the

low cloud amount feedback and resulting changes to Antarc-

tic sea ice representation and are the likely cause of the sys-

tematic shift towards larger ECS.

Lastly, we examined the historical warming in the model

ensembles, which surprisingly despite an increase in ECS

and TCR is weaker in CMIP6 than in CMIP5. Whereas

CMIP5 models on average track the instrumental record

warming fairly well, CMIP6 models are colder than ob-

served from around 1940 and onwards and only catch up

with global warming in the early 21st century. Detailed ex-

amination of pre- and post-1970s warming suggests that the

majority of climate models from both ensembles exaggerate

anthropogenic aerosol cooling but that this is more so the

case for some CMIP6 models. Models that best agree with

observations of post-1970s warming tend to have midrange

TCR, whereas no model with a TCR above 2.5 K matches

observations.
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