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Abstract

The main focus of this paper is to approximate time series data based on the closed-loop
Volterra series representation. Volterra series expansions are a valuable tool for representing,
analyzing, and synthesizing nonlinear dynamical systems. However, a major limitation of
this approach is that as the order of the expansion increases, the number of terms that need
to be estimated grows exponentially, posing a considerable challenge. This paper considers
a practical solution for estimating the closed-loop Volterra series in stationary nonlinear time
series using the concepts of Reproducing Kernel Hilbert Spaces (RKHS) and polynomial kernels.
We illustrate the applicability of the suggested Volterra representation by means of simulations
and real data analysis. Furthermore, we apply the Kolmogorov-Smirnov Predictive Accuracy
(KSPA) test, to determine whether there exists a statistically significant difference between the
distribution of estimated errors for concurring time series models, and secondly to determine
whether the estimated time series with the lower error based on some loss function also has
exhibits a stochastically smaller error than estimated time series from a competing method. The
obtained results indicate that the closed-loop Volterra method can outperform the ARFIMA,
ETS, and Ridge regression methods in terms of both smaller error and increased interpretability.
Keywords: Time series analysis, Volterra series, Closed-loop method.
MSC Classification: 37M10, 62M10, 62M20.

1 Introduction

Nonlinear systems with memory are frequently encountered in time series analysis. One of the
primary objectives of time series analysis is to infer the functional relationship between the in-
put and output of these systems based on observations. The first approach to a nonparametric
characterization of nonlinear systems which is similar to the Taylor series dates back to Volterra
(1887). Volterra extended the standard convolution definition of linear systems using a series of
polynomial integral operators with increasing degree of nonlinearity. The Volterra series expan-
sion, proposed by Priestley (1988), forms a model for the system’s output as a polynomial in the
delayed inputs. Boyd and Chua (1985) showed that this model can provide a good representation
for a wide class of nonlinear systems. During the last years, many studies have been done in
diverse fields such as nonlinear differential equations, neuroscience, fluid dynamics, or electrical
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engineering, which can be represented by the Volterra operators, see for example (Giannakis and
Serpedin, 2001; Mathews and Sicuranza, 2000; Rugh, 1981).
Consider a dynamical system with an input variable xt and an output variable yt, observed at
discrete time points t = 1, . . . , T . The discrete Volterra series shares a conceptual similarity with
the Taylor polynomial expansion of yt in terms of (xt, xt−1, . . . , xt−m+1)

T , where m represents
the memory of the system. This study focuses on a specific process where the output yt can
be modeled by incorporating the lagged values of the original process. To accomplish this, we
employ a closed-loop version of the Volterra series, which captures the relationship between the
output yt and the delayed inputs, denoted as xt (equivalent to yt−1), for further details refer to
Barahona and Poon (1996). In this framework, we analyze time series using a discrete Volterra
series of order p and memory m as a model to approximate time series at time t = 1, ..., T . Let
YT = (y1, ..., yT ) denote a time series of length T , where every yt is a function of m-lagged vectors
(xt, xt−1, ..., xt−m+1)

T and as mentioned, xt ≡ yt−1. Using this definition, yt can be approximated
by applying a discrete Volterra series of order p as follows:

ŷt = a0 + a1yt−1 + a2yt−2 + ...+ amyt−m + am+1y
2
t−1 + am+2yt−1yt−2 + ...+ aM−1y

p
t−m, (1)

where M = M(m, p) is equal to the total dimension of the Volterra model. Therefore, each model
is characterized by its memory, m, and degree of nonlinearity, p. However, as shown in Equation
(7) below, the value of M increases exponentially with increasing m and p, which is a primary
challenge associated with the Volterra method. In this paper, the emphasis is to alleviate this
problem for closed-loop Volterra system by reformulating the series as operators in Reproducing
Kernel Hilbert Spaces (RKHS). This technique involves mapping the input variables to a new
space, so that the original nonlinear system becomes a linear system. From a practical standpoint,
the rich structure of the Volterra series expansion enables us to carry out inner product operations
efficiently, regardless of the dimensionality of the associated RKHS. In fact, the dimension of these
spaces can even be infinite.
The rest of the present paper is organized as follows. Section 2 considers the theory of Volterra
method for nonlinear systems and the discrete Volterra series for representing nonlinear time
series. Section 3 is devoted to estimating Volterra series using linear regression in RKHS. Section
4 presents empirical evidence from applications to simulated and real data, where the performance
of the Volterra method is compared to different approximation methods, and the paper concludes
in Section 5.

2 Volterra theory of stationary nonlinear systems

A closed system can be defined as a map between output yt and an m-lagged input vector
(yt−1, ..., yt−m)T , in the form

yt = f(yt−1, ..., yt−m), (2)

where f is a system operator that maps the delayed-input vector xt = (yt−1, ..., yt−m)T to the
corresponding output value yt. The system is typically assumed to be continuous and time invari-
ant, which means if the m-lagged input vector is time shifted then so is the output. Regarding to
traditional systems theory, f is restricted to be a sufficiently well-behaved compact linear operator
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H1, such that yt can be represented by a convolution of xt as

yt = H1xt =

∫
h(1)(m)yt−m dm, (3)

where h(1)(m) is a linear kernel or impulse response. An extension of this convolution expression
is the Volterra series expansion

yt = V xt = H0xt +H1xt +H2xt + ...+Hnxt + ..., (4)

where the zero-order kernel is simply the time average, i.e., H0xt = h(0) = ȳt of the output
function. The nth-order Volterra operator can be defined in the form

Hnxt =

∫
h(n)(m1, ...,mn)yt−m1 ...yt−mndm1...dmn, (5)

where the integral kernels h(n)(m1, ...,mn) are the Volterra kernels and 1 ≤ mi ≤ m. Depending
on the system, the integral can be defined over a finite or infinite time domain. The memory of
the system defines the support of the Volterra kernels, i.e., it specifies the time interval in which
past inputs can affect the current system output. As mentioned before, the Volterra series can be
thought of as a Taylor series with memory, except that the Taylor series only represents systems
that map input to output instantaneously, while the Volterra series represents systems in which
the output also depends on past inputs.

2.1 Discrete Volterra system

In applied signal processing, a discrete form of the Volterra system can be used for a finite sample
of data. Consider the nonlinear, discrete-time, and time-invariant input-output (I/O) relationship
as Equation (2). As such a nonlinear mapping can have infinite memory, finite memory truncation
is used in practice to yield ŷt = f(xt), where the input data is given as a delayed vector xt =
(yt−1, yt−2..., yt−m)T ∈ Rm of finite dimension (memory) m. The vectorial data can be generated
by a sliding window over a discretized time series. Then the nth-order closed-loop version of the
discretized Volterra operator in which the output yt feeds back as delayed input, is defined as the
function

Hn(x) =
m∑

i1=1

...
m∑

in=1

h
(n)
i1,...,in

yi1 ...yin , (6)

with a finite number of mn coefficients h
(n)
i1,...,in

of Volterra kernel, see Alper (1965). This equation
is composed of a linear combination of all ordered nth-order monomials of the delayed vectors
xt = (yt−1, yt−2..., yt−m)T up to degree p, i.e., 0 ≤ n ≤ p. Such a model has been shown to
provide a good representation for a wide class of nonlinear systems, see for example (Mathews
and Sicuranza, 2000; Palm and Poggio, 1977). It is usually assumed that the Volterra kernels
are symmetric with respect to permutations of indices; which means the products in Equation
(6) remain constant when two different indices are permuted. To obtain a unique representation
of Equation (6), it is necessary to keep only one of these permutations. After discarding the
redundant coefficients, the dimension of h(n) and the yi(t)’s is reduced to

(
m+n−1

n

)
. By utilizing
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these redundancies across all orders, it is possible to reduce the overall dimensionality to a level
given by:

M =

p∑
n=0

(
m+ n− 1

n

)
=

(
m+ p

p

)
=

(
m+ p

m

)
, (7)

which still grows rapidly as p and m increase. For example with m = 10 and p = 10, taking
into account the symmetry in the coefficients, it is still required to estimate (10+10)!

10!10! = 184, 756
parameters. So, in order to minimize the number of parameters that need to be estimated, it is
useful to redefine the Volterra series as operators within an RKHS.

3 Estimating closed-loop Volterra series using linear regression
in RKHS

To simplify the estimation of the closed-loop Volterra series, we can construct a Hilbert space
of functions that corresponds to the series. This Hilbert space will be shown to be a RKHS,
providing a convenient framework for estimation that is computationally feasible. The goal here

is to estimate h
(n)
i1,...,in

for n = 0, 1, ..., p, ij = 1, 2, ...,m and the given delayed-input and output

samples {xt, yt}Nt=1, where xt is as defined in Section 2. As the number of terms in higher-order
kernels grows exponentially, we transform the closed-loop Volterra series into a suitable form for
regression in the RKHS framework.

3.1 Regression in RKHS

Let us embed a one-dimensional time series YT = {y1, y2, ..., yT } with a length of T into the multi-
dimensional series {x1,x2, ...,xN} with vectors xt = (yt−1, ..., yt−m) ∈ Rm, where N = T −m and
t = {m+ 1, ..., T} ∈ RN . For a given set of observations (x1, ym+1), ..., (xN , yT ):

y1 y2 · · · ym ym+1

y2 y3 · · · ym+1 ym+2
...

...
. . .

...
...

yN yN+1 · · · yT−1 yT

 , (8)

the estimation of yt, last column of (8), as a function of row delayed-vectors xt, using linear
regression is of the form

yt = f(xt) =
M∑
j=1

γjφj(xt), (9)

where γj ∈ R, φj : Rm → R and M is as defined in Equation (7). In the case of pth-order Volterra
series, the φj ’s consist of all monomials of x up to order p. Utilizing a quadratic loss function l,
the φj can be found by minimizing the mean squared error over the dataset as follows,

l((x1, y1, f(x1)), ..., (xN , yN , f(xN )) =
1

N

N∑
j=1

(f(xj)− yj)
2, (10)
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where for ease of notation, we use indexes {1, ..., N} instead of {m+ 1, ..., T}. Now consider the
case in which instead of applying the monomials as basis functions, each φj is specified in terms
of a kernel function k in the form φj(x) = k(x,xj) for j = 1, ...,M . Especially, it is considered
that kernels are positive definite, i.e., for all choices of the x1, ...,xN from the input domain, the
Gram matrix K = [Kij = k(xi,xj)]

N
i,j=1 is positive definite. Such kernels can be represented as

a dot product in an associated linear space F which means there is a map (into feature space) Φ
such that k(x,x′) = Φ(x)TΦ(x′). This feature space consists of all possible polynomials in the x
up to, and including, order p. For example consider the case of p = 2 and m = 2 for x = {x1, x2},
then the feature expansion is Φ(x) = (1, x1, x2, x1x2, x

2
1, x

2
2)

T . For a fixed x and the kernel k(x, .),
F can be expressed with a space of functions with the property of an RKHS as

f(x) =
M∑
j=1

γjk(x,xj), (11)

which allows for the application of the so-called Representer theorem, see Theodoridis (2015, ch.11).
This theorem allows the empirical optimization of the loss function to be performed based on a
finite set of samples in a very efficient way, even if the estimated function belongs to very high (even
infinite) dimensional RKHS F. The theorem states: Let Ω be an arbitrary strictly monotonically
increasing function on R+, c be an arbitrary loss function and ∥.∥F represents the norm of RKHS.
Then each minimizer f ∈ F of the regularized minimization

argmin
N∑
i=1

c(yi, f(xi)) + Ω(∥f∥F), (12)

over γi and xi, admits a representation of the form

f(x) =
N∑
i=1

γik(x,xi), γi ∈ R, (13)

as a solution. By utilizing the quadratic loss function defined in Equation (10) and considering
a regularizer Ω of zero, the solution for the vector γ = (γ1, ..., γN ) can be computed by setting
the derivative of Equation (10) with respect to γ equal to zero. Then the result takes the form
γ = K−1

p y, where y = (y1, ..., yN )T , hence

f(x) = γTk(x) = yTK−1
p k(x), (14)

where k(x) = (k(x,x1), ..., k(x,xN ))T ∈ RN and denotes the x-th column of Kp.

3.2 Volterra series as a linear operator in RKHS

As previously mentioned, estimating coefficients in Equation (6) becomes challenging due to the
exponentially increasing number of coefficients for higher-order Volterra kernels. This problem
can be addressed by converting the Volterra series into a suitable form for regression in RKHS.
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Utilizing the discretized version of Volterra operators from Equation (6), the nth-order Volterra
operator is a sum of all nth-order monomials of the input vector x. We define the map Φn as

Φ0(x) = 1 and Φn(x) = (xn1 , x
n−1
1 x2, ..., x1x

n−1
2 , xn2 , ..., x

n
m), (15)

which contains all mn ordered monomials of degree n evaluated at x, such that Φn maps the input
x ∈ Rm into a vector Φn(x) ∈ Fn = Rmn

(remember here that x is a delayed-input vector). In
Equation (6), the nth-order Volterra operator can be expressed using Φn as a scalar product in
Fn:

Hn(x) = ηTnΦn(x), (16)

where ηn = (h
(n)
1,1,...,1, h

(n)
1,2,...,1, h

(n)
1,3,...,1, ...)

T ∈ Fn. Schölkopf and Smola (2018) showed that

Φn(x1)
TΦn(x2) = (xT

1 x2)
T = kn(x1,x2). (17)

To express the estimation problem as a scalar product in Fp, the idea used to express the nth-order
Volterra operator in terms of a scalar product is extended to the entire pth-order Volterra series.
This results in the following representation:

y(x) =

p∑
n=0

Hn(x) = (η(p))TΦ(p)(x), (18)

where Φ(p)(x) can be obtained by stacking the maps Φn into a single map Φ(p)(x) = (Φ0(x),Φ1(x),
. . . ,Φp(x))

T and η(p) ∈ F(p). The associated scalar product can easily be computed as

Φ(p)(x1)
TΦ(p)(x2) =

p∑
n=0

(xT
1 x2)

n = k(p)(x1,x2). (19)

There are different types of kernels where a specific case of this kernel is the inhomogeneous
polynomial kernel used in Dodd and Harrison’s Volterra estimation approach (Dodd and Harrison,
2002),

k(p)(x1,x2) = (1 + xT
1 x2)

p =

p∑
n=0

(
p

n

)
(xT

1 x2)
n, (20)

which corresponds to a mapping into the space of all possible polynomials of order up to p. For
infinite Volterra series, the kernel can be obtained as

k(∞)(x1,x2) = ex
T
1 x2 =

∞∑
n=0

1

n!
(xT

1 x2)
n. (21)

Therefore, it can be concluded that the Volterra series in both finite and infinite discrete states
can be expressed as linear operators in an RKHS.
The space of functions Φn(x), n = 0, ..., p has an RKHS structure, which implies that the estimation
of Equation (18) can be expressed in terms of kernels, as follows according to the representer
theorem:

ŷ(x) =

p∑
n=0

Hn(x) = yT (Kp + λIN )−1k(p)(x), (22)
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where the Gram matrix Kp and the coefficient vector k(p)(x) are computed using the kernel from
Equation (19), 1 = (1, 1, ...)T ∈ RN , and λ controls the trade-off between data fit and penalty
term. It is clear that using the RKHS representation, can avoid the need to compute the possibly
large number of coefficients explicitly.
The individual nth-order Volterra operators can be recovered in principle from Equation (22) by
collecting all terms containing monomials of the desired order and summing them up as follows

Hn(x) = yTK−1
p kn(x), (23)

where kn(x) = ((xT
1 x)

n, (xT
2 x)

n, ..., (xT
Nx)n)T . Furthermore, the coefficient vector ηn = (h

(n)
1,1,...,1,

h
(n)
1,2,...,1, h

(n)
1,3,...,1, ...)

T of the Volterra operator can be obtained as

ηn = ΦT
n K−1

p y, (24)

where Φn = (Φn(x1),Φn(x2), ...,Φn(xN))T is a matrix containing all monomials corresponding
to the nth-order Volterra operator. Using the latter and stacking (18) for all input vectors X =
{x1,x2, ...,xN} and output vector y = (y1, y2, ..., yN )T , one arrives at the equation

y = ETΦ+ e, (25)

where Φ = (Φ(p)(x1) ... Φ(p)(xN ))T is a matrix of dimension N × M where M is defined in
Equation (7) and E = (η0 η1 ... ηp)

T . An estimate for E can be obtained by minimizing the mean

squared estimation error. In other words, we select the coefficients Ê that minimize the following
expression among all possible choices of E:

E{eeT } = E{(y −ETΦ)(y −ETΦ)T }, (26)

where E denotes the statistical expectation. To obtain the optimum coefficients Ê we use the
orthogonality principle as follows.

Theorem 3.1 (Orthogonality). In the pth-degree closed-loop Volterra system with square integrable
components of the monomial vectors Φ, the estimation error (y − ÊTΦ) is orthogonal to all
monomial vectors Φ. This implies that the expected inner product between the monomial vector Φ
and the estimation error is zero:

E
[〈

Φ,y − ÊTΦ
〉]

= 0. (27)

The square integrability condition ensures that the inner product and the integral involved in the
expectation are well-defined mathematical quantities.

Proof. The squared error defined in Equation (26), has the unique minimum which can be found
by differentiating with respect to E and setting the results equal to zero at point E = Ê as follows:

∂

∂E

[(
y −ETΦ

)2]
=

∂

∂E

[
(y −ETΦ)T (y −ETΦ)

]
= −2Φ(y −ETΦ)T = −2ΦT (y −ETΦ).
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Setting this derivative equal to zero, we obtain:

Ê = ΦT (ΦΦT )−1y, (28)

and vector y in Equation (25) can be estimated as

ŷ = ÊTΦ. (29)

Substituting the optimal value of E, (Ê), back into the expression for the expected inner product
between Φ and the estimation error, we get:

E
[
⟨Φ,y − ÊTΦ⟩

]
= E

[
⟨Φ,y −ΦT (ΦΦT )−1yΦ⟩

]
= E

[
⟨Φ, (I−ΦT (ΦΦT )−1Φ)y⟩

]
= 0,

where the last equality follows from the fact that (I−Φ(ΦTΦ)−1ΦT ) is a projection matrix that
projects onto the orthogonal complement of the column space of Φ. Therefore, the estimation
error is orthogonal to all monomial vectors Φ with square integrable components, completing the
proof.

Theorem 3.2. The closed-loop volterra estimator Ê defined in Equation (28), as a function of
memory length (m), is unbiased if e is zero mean and e and Φ are stochastically independent.

Proof. From Equations (28) and (25), we find that

Ê(m) = ΦT (ΦΦT )−1y = ΦT (ΦΦT )−1(ETΦ+ e) = E+ΦT (ΦΦT )−1e, (30)

for all values of m. Taking the expectation from both sides of (30) and using the fact that e and
Φ are stochastically independent, it follows that for all value of m

E(Ê(m)) = E. (31)

Remark 1. It is clear that if Ê(m) converges to E in mean-squared, i.e., limm→∞ E[(Ê(m) −
E)2] = 0, then it converges to E in probability, and, therefore, it can be concluded that Ê(m) is
a consistent estimator of E. To establish L2 convergence of Ê(m), the following conditions are
required:

1. Both Ê(m) and E should be bounded in the L2 norm.

2. The squared values of Ê(m) and E should have finite expected values.

Satisfying these conditions ensures L2 convergence of Ê(m) to E, supporting the conclusion that
Ê(m) is a consistent estimator of E.
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Corollary 1. Given the conditions in Theorems 3.1 and 3.2 and Equation (25), if Ê(m) converges
to E in probability, it can be easily deduced that limm→∞{ŷ(m) − y} → 0 in probability, where
ŷ(m) is defined as ŷ(m) = ÊT (m)Φ.

The underlying assumption in the convergence analysis and consistency results presented in Re-
mark 1 and Corollary 1 is that the sample size N implicitly grows along with the memory m. This
assumption ensures that as the memory increases, a sufficient number of observations are available
in the sample to support the estimation of a model with a large memory.
Furthermore, similar to (12), the optimal solution for Equation (28) can be expressed as

Ê = ΦT (ΦΦT + λIN )−1y, (32)

where λ is a regularizing penalty term.
In the case of vector first-order autoregressive model, when yt = BTyt−1 + εt, Anderson and
Taylor (1979) showed that the least square estimate of B is strongly consistent due to the strong
consistency of the moment matrix. As an implication from Lemma 2 in Anderson and Taylor
(1979) and Remark 1, the obtained estimation of E is also consistent in the stronger sense, which
directly follows from the strong consistency of the matrix Φ with respect to m. The following
theorem shows that under a set of defined conditions, ÊN → E, where N is the number of windows
taken from time series of length T as defined in Section. 3.1.

Theorem 3.3 (Strong Consistency). Consider a given set of observations defined in (8) as a
vector autoregressive model V AR(m) with N variables. Let y0 is a N -vector of constants serving
the intercept of the model and et is a N -vector of error terms. Let yt = ETΦt + et, Ft be the
σ-algebra generated by (et,yt), t = 1, 2, ..., and F0 be the σ-algebra generated by y0. Assume that
E(et | Ft−1) = 0, E(eteTt | Ft−1) = Σ, E(y0) = 0, and E(y0y

T
0 ) = Γ, where Γ is the solution of

Γ−ETΓE = Σ and Σ is positive definite. Further assume that E(y4
t ) < ∞ and E(e4t ) < ∞, then:

(i) N−1 limN→∞ yty
T
t = Γ with probability one.

(ii) ÊN is a strong consistent estimator of E with probability one.

Proof. Using the Cauchy-Schwarz inequality, the fourth-order condition on {et} implies that∑∞
t=1 E t−2(e2ite

2
jt) < ∞, where eit is the ith component of et. Hence by the law of large num-

bers for martingales, see Feller (1991, ch.7),
∑N

t=1 t
−1eitejt converges with probability one and

N−1
∑N

t=1 eitejt → σij with probability one, where σij is an element ofΣ, andN−1
∑N

t=1 ete
T
t → Σ

9



with probability one, as well. Further,

N−1
N∑
t=1

ete
T
t = N−1

N∑
t=1

(yt −ETΦt)(yt −ETΦt)
T (33)

= N−1
[ N∑
t=1

yty
T
t −ET

N∑
t=1

Φty
T
t −

N∑
t=1

ytΦtE+ET
N∑
t=1

ΦtΦ
T
t E
]

= N−1
N∑
t=1

yty
T
t −ET (N−1

N∑
t=1

yty
T
t )E+ET (N−1

N∑
t=1

Φte
T
t )

+ (N−1
N∑
t=1

etΦ
T
t )E−ETN−1(y0y

T
0 − yNyT

N )E.

Under the condition
∑N

t=1 yt−iet is a martingale and using Kronecker’s lemma in Shiryaev (1996,
p.390), this expression converges to zero with probability one. Furthermore, the condition E(y4

t ) <
∞ implies E(y2tiy2tj) and hence

∑N
t=1 ytiytj converges with probability one and ytiytj/t converges

to zero with probability one, where yit is the ith component of yt. These results indicate that the
last three terms in Equation (33) converges to zero with probability one. Thus

( lim
N→∞

N−1
N∑
t=1

yty
T
t )−ET ( lim

N→∞
N−1

N∑
t=1

yty
T
t )E = Σ, (34)

with probability one. Hence limN→∞N−1
∑N

t=1 yty
T
t = Γ, which is the proof of part (i).

To show that ÊN is a strongly consistent estimator of E, it can be observed that since Σ is positive
definite, Γ is also positive definite, which implies limN→∞N−1

∑N
t=1 yty

T
t is positive definite.

Consequently, ÊN − E = (N−1
∑N

t=1 yty
T
t )

−1N−1
∑N

t=1 yte
T
t converges to zero with probability

one. Hence, strong consistency of the estimator is proved.

It is noteworthy that the Theorem 3.3 emphasizes the behavior of the estimator in relation to the
sample size N , and establishes conditions for strong consistency. However, it does not explicitly
consider the influence of the memory parameter m on the estimator.

3.2.1 Model Selection

Equation (4) describes the full Volterra kernel model, which, while comprehensive, is not always
the most interpretable representation of an input-output system. When a model has an excessive
number of coefficients, it can result in fitting noise rather than the underlying signal in the dataset,
which leads to overfitting. This can result in poor generalization to new data, inaccurate predic-
tions, and difficulty in interpreting the system’s performance. So, in practice a truncated version
of the Volterra representation of the time series is considered by selecting an optimal subset of
model parameters (p, m and λ). This procedure, known as model selection, helps to balance the
risk of underfitting or overfitting, leading to reliable and accurate models. For example different
choices for the weight λ, which controls the trade-off between performance smoothness and fitting
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error, can lead to overfitting or underfitting. Figure 1 illustrates how the kernel width σ affects

the fit of ridge regression with a Gaussian kernel, k(x, y) = exp(−∥x−y∥2
σ ), for an arbitrary time

series. Choosing σ too large results in a very smooth function that barely follows the shape of
the underlying data, in other words, we are underfitting. By choosing σ too small, there is a
strong preference for accommodating small fluctuations in the data due to noise, at the expense
of smoothness, in this case, we are overfitting. Finally, a good choice of σ lead to a regression
curve which fits the underlying trend without being overly affected by noise. In this regard, the
following statistical model selection method is used for configuration and estimation. First, split
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Figure 1: Effect of different choice of σ on the fit of Gaussian kernel ridge regression.

data into a training set of size ntr and a test set of size nte = N − ntr. The training set is used to
estimate the model and the test set is kept to validate the results of the training set. These two
subsets are called in-sample and out-of-sample, respectively. Then, break the training set into k
equally sized chunks, each of size nk = ntr/k. The first fold is treated as a validation set, and for
each triple q = (λ,m, p), the Volterra model is fitted on the remaining k − 1 folds and used to
estimate performance measures. The first subset is returned to the training set, and the procedure
repeats with the second subset held out, and so on. Finally the optimum q∗ = (λ∗,m∗, p∗) triple
can be estimated by minimizing the lowest average validation error. This approach is called k-fold
cross-validation.
Theorem 3.4 below shows that the k-fold cross-validation method can help to reduce the risk of
overfitting or underfitting, leading to reliable and accurate models.

Theorem 3.4. In the model defined by Equation (25), we assume that e ∼ N(0, σ2), and the
matrix Φ has a covariance matrix Σ, with the minimum and maximum eigenvalues denoted by λ ∈
(0, σ2] and λ̄ < ∞, respectively. We are given a finite set of candidate models M = {1, 2, ...,Mc},
where for each model q ∈ M, f = ETΦ is estimated by f̂ q = ÊT

q Φ using the training dataset. Let

us suppose that the k-fold cross-validation criterion is constructed as CVk(q) = 1/nte
∑

ℓ(f̂q,y).
We define the model that achieves the best average prediction performance across all folds as q∗ =
argmin

q∈M
CVk(q). Then, as ntr increases, for all q ∈ M, we have P(ℓ(f̂q∗ ,y) ≤ ℓ(f̂q,y)) → 1. Here,
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ℓ is the mean squared error (MSE) loss function, which measures the average squared difference
between the predicted and true outputs over all input-output pairs in the dataset.

Proof. For two candidate models q and q′, the difference of squared prediction error of a test data
points is

ξq,q′ = (y − ÊT
q Φ)2 − (y − ÊT

q′Φ)2 = (35)

2eΦ(ÊT
q − ÊT

q′) + (Φ(ÊT
q −ET ))2 − (Φ(ÊT

q′ −ET ))2,

then by applying the Cauchy–Schwarz inequality and taking expectation from both side of (35)
we have

E(ξq,q′) ≤ (36)

2E(e)E(Φ(ÊT
q − ÊT

q′)) + E(Φ(ÊT
q + ÊT

q′ − 2ET ))E(Φ(ÊT
q − ÊT

q′)) ≤

λ̄E(ÊT
q + ÊT

q′ − 2ET )E(ÊT
q − ÊT

q′) ≤ cλ̄E(ÊT
q − ÊT

q′) = c0,

for some fixed constants c and c0. On the other hand

var(ξq,q′) ≥ var(2eΦ(ÊT
q − ÊT

q′)) = 4σ2E(Σ1/2(ET
q −ET

q′))
2 (37)

≥ 4λ2E(ET
q −ET

q′)
2.

Let q′ = q∗, combining Equations (36) and (37) we have

P

(
ξq,q∗ − E(ξq,q∗)√

var(ξq,q∗)
≤ c1

)
→ 1, (38)

for some constant c1 and, uniformly over all q ∈ M.
By consistency of the closed-loop Volterra estimator Ê from Theorem 3.3, it can be concluded that

supq∈M

∥∥∥Êq −Eq

∥∥∥
2
≤ δ. For large enough ntr, q ∈ M and using the Cauchy–Schwarz inequality,

we have

µ̂q,q∗ = E(ξq,q∗) = E((Φ(ÊT
q −ET ))2 − (Φ(ÊT

q∗ −ET ))2) ≥ (39)

(ÊT
q −ET )TΣ(ÊT

q −ET )− (ÊT
q∗ −ET )TΣ(ÊT

q∗ −ET ) ≥
λmin[(ÊT

q −ET )T (ÊT
q −ET )]− λδ = δ∗.

Now we need to provide an upper bound for σq,q∗ :

var(ξq,q∗) = (40)

var[2eΦ(ÊT
q − ÊT

q∗)] + var[Φ(ÊT
q + ÊT

q∗ − 2ET )Φ(ÊT
q − ÊT

q∗)] =

4σ2(ÊT
q −ET

q∗)
TΣ(ÊT

q −ET
q∗) + E[(Φ(ÊT

q + ÊT
q∗ − 2ET ))(Φ(ÊT

q − ÊT
q∗)]

2−
E2[(Φ(ÊT

q + ÊT
q∗ − 2ET ))(Φ(ÊT

q − ÊT
q∗)] = 4σ2(ÊT

q −ET
q∗)

TΣ(ÊT
q − ÊT

q∗)+

E
[
(ÊT

q + ÊT
q∗ − 2ET )T (ΦΦT − Σ)(ÊT

q − ÊT
q∗)
]2

≤ Cλ̄2 = c2,
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for some constant c2, and C. The last inequality is obtained as follow:
Let r = ÊT

q + ÊT
q∗ − 2ET and v = ÊT

q − ÊT
q∗ , then

E
[
rT (ΦΦT − Σ)v

]2
= E

[
(rTΦ)(vTΦ)− rTΣv

]2
≤ 2E

[
(rTΦ)2(vTΦ)2

]
+ 2E

[
(rTΣv)2

]
≤ E

[
(rTΦ)4 + (vTΦ)4

]
λ̄2 + 2

[
(rT v)

]2
λ̄2 ≤

[
(rT )4 + (vT )4

]
λ̄2 + 2

[
(rT v)

]2
λ̄2 =[

((rT )4 + (vT )4) + 2(rT v)
]
λ̄2 = Cλ̄2.

Combining Equations (39) and (40), we have

P

(
√
ntr

E(ξq,q∗)√
var(ξq,q∗)

≥ δ∗
√
c2

= c3

)
→ 1, (41)

which means the probability of choosing model q∗ versus model q approaches one as ntr increases
and, the proof is done.

Theorem 3.4 introduces model selection through cross-validation, allowing us to strike a balance
between capturing relevant nonlinear effects and ensuring consistent and accurate predictions by
carefully choosing the appropriate values for the parameters q = (λ,m, p).

4 Application

In this section, in terms of Root Mean Square Error (RMSE) as defined in Equation (42), we illus-
trate the performance of the proposed closed-loop Volterra method for approximating time series
in comparison with the following methods: Ridge regression, Autoregressive Fractionally Inte-
grated Moving Average (ARFIMA) model (see Hyndman and Khandakar, 2008), which is suitable
for long memory processes that display a long-term dependencies, and Exponential Smoothing
(ETS), (see Hyndman and Athanasopoulos, 2021) that can capture a variety of trend and seasonal
structures (additive or multiplicative) and combinations of those. The (RMSE) criterion is used
for computing the difference between the approximated values and the observations as follows:

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2, (42)

where ŷt is the estimated value at time t.
Moreover, for comparing the predictive accuracy of two sets of approximations, a Kolmogorov-
Smirnov Predictive Accuracy test is considered. In terms of approximated errors, the two-sample,
two-sided KSPA test hypothesis can be approximately represented as follows. Let εd1 and εd2
are the absolute or squared approximated errors from two approximating models d1 and d2 with
unknown continuous empirical cumulative distribution functions (ECDFs), then the two-sided
KSPA test will test the hypothesis: {

H0 : Fεd1
(z) = Fεd2

(z)

H1 : Fεd1
(z) ̸= Fεd2

(z)
, (43)
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which determine if there is a significant statistical difference between the distribution of predictive
errors or not. The next purpose of KSPA test is to determine whether the model which reports
the lowest error based on some loss function also reports a stochastically lower error against the
corresponding model. This is a one-sided KSPA test will test the hypothesis:{

H0 : Fεd1
(z) ≤ Fεd2

(z)

H1 : Fεd1
(z) > Fεd2

(z)
. (44)

Rejecting the null hypothesis in this case indicates that the ECDF of approximated errors from
model d1 is shifted towards the left and is above the ECDF of approximated errors from model d2.
In particular the acceptance of the alternate hypothesis confirms that model d1 reports a lower
stochastic error than model d2, for more details see Hassani and Silva (2015).
In following the performance of the proposed closed-loop Volterra method is evaluated in terms
of the RMSE criterion and KSPA test, by applying that to various real and simulated time series
data.

4.1 Simulated series

Example 1. We consider three autoregressive (AR), moving average (MA) and autoregressive
moving average (ARMA) processes as follows:

P1: yt = 0.5yt−1 + εt

P2: yt = εt − 0.9εt−1

P3: yt = yt−1 − 0.9yt−1 + εt − 0.8εt−1.

For each model P1, P2, and P3, we consider time series of length T = 100 and 100 simulation
runs. For all processes, we used εt as white noise, means εt ∼ N(0, 1). Optimal values for the
order p, the memory m and regularization parameter λ are computed based on cross-validation.
The maximum memory in the Volterra representation is set equal to 10, and the maximum order
is set equal to pmax = 5. We report our simulation results in terms of Root Mean Square Error
(RMSE) in Table 1. Table 1 reports the average RMSE values (averaged over the 100 Monte Carlo

Model p m Volterra Ridge regression ARFIMA ETS

P1
5 10 0.18 0.06 1.37 1.3
3 8 0.09 0.06 0.88 0.94

P2
5 10 1.08e-4 6.39e-6 0.99 1.3
3 8 4e-3 4e-4 1.02 1.28

P3
5 10 1.87e-7 7.12e-9 0.99 5.34
3 8 1.45e-5 4.22e-6 0.96 3.05

Table 1: RMSE results for models P1, P2, P3.

repetitions of the simulation) attained under each of the four aforementioned simulation methods.
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It becomes apparent from Table 1 that the closed-loop Volterra method has a higher accuracy in
approximating the models P1, P2 and P3 than ARFIMA and ETS methods, and very close results
to the Ridge regression method, for all considered choices of the parameters m and p.

Furthermore, in terms of the defined KSPA tests (Equations (43) and (44)) and for d1 as closed-
loop Volterra method, the obtained results are given in Table 2. In order to account for multiplicity
in this study, within each of the three scenarios, we control the FWER, i.e., the probability of
making at least one false discovery among the 6 considered hypotheses. The FWER is controlled
at the level of α = 0.05 using the Bonferroni correction, as described by Bonferroni (1935). Based

Model
Test hypothesis

Volterra

Ridge regression ARFIMA ETS

P1
Two-sided − ∗ ∗
One-sided − ∗ ∗

P2
Two-sided ∗ ∗ ∗
One-sided − ∗ ∗

P3
Two-sided ∗ ∗ ∗
One-sided − ∗ ∗

Table 2: Comparison of adjusted p-values (p̃) for Example 1 (m = 8, p = 3): Significance: ∗
(p̃ < 0.05), - (non-significant). P-values were adjusted within each scenario via the Bonferroni
correction.

on the results in Table 2 at a 95% confidence level, it can be concluded that the two-sided KSPA
tests show statistically significant differences between the distribution of estimated time series
errors from the Volterra method and other methods in in all models P1, P2, and P3, except for
the Ridge regression method in model P1. Next, we applied the one-sided KSPA test to find out
whether estimated time series errors from Volterra method (which have the lower RMSE in most
cases) report a lower stochastic error than other estimated time series errors. The one-sided KSPA
tests indicate that the Volterra method provides lower stochastic error than other methods, and
provides supplementary evidence to the conclusion from the two-sided KSPA test for the existence
of a statistically significant difference between the two estimated time series. While for model P1,
both Volterra and Ridge regression methods have obtained very close results and for the model P3,
it seems that the ridge regression model provides less stochastic error than the Volterra method
for estimating time series.

4.2 Real data

Example 2. As the first real data we use the Death series of length 72, which shows the monthly
accidental deaths in the USA between 1973 and 1978. This dataset can be found in many time
series books (see for example Brockwell and Davis, 2016) and in every R software installation.
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Example 3. As a second real data example, we consider a time series of length 100, which
measures the annual flow of the Nile River at Aswan between 1871 and 1970. This data can be
found in many time series books (see for example Durbin and Koopman, 2012) and in every R

software installation.

Table 3 displays the RMSE results for comparing all methods for examples 2 and 3, for m = 10
and p = 5. From Table 3, it can be seen that based on the RMSE values, the Volterra method

Data Volterra Ridge regression ARFIMA ETS

Example 2 8.46e-06 6.82e-05 1.65 1.28

Example 3 2.62e-07 9.42e-07 1.65 7.96

Table 3: Root Mean Square Error (RMSE) Results for Death and Nile series.

and the ridge regression method have close results, while the error produced by the closed-loop
Volterra method is much less compared to the ARFIMA and ETS methods.
Furthermore, the obtained results from two-sided and one-sided KSPA tests for Examples 2 and 3,
show that p-values for all comparisons are less than 5%. It means at 5% significance level, based
on the two-sided KSPA test, there are statistically significant differences between the closed-loop
Volterra method against Ridge regression, ETS, and ARFIMA methods, and based on the results
of the one-sided KSPA test, it can be concluded that the closed-loop Volterra method outperforms
the other methods in terms of accuracy in estimation, as it consistently produces estimates with
smaller errors. Following a subset of results obtained from comparing the closed-loop Volterra
method via other methods are represented in Figures 2 and 3.
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Figure 2: Histogram of errors and ECDFs of errors for USA Death series data in example 2.
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Figure 3: Histogram of errors and ECDFs of errors for Nile series data in example 3.

Figures 2 and 3 display the histograms of errors and the ECDFs for examples 2 and 3 obtained
via Volterra and Ridge regression methods. The distribution of the absolute errors from Volterra
and Ridge regression can be seen in Figures 2 and 3 (left and middle). However, without a
formal statistical test it is not possible to determine whether there exists a statistically significant
difference between the distribution of these errors. Now to identify if one method does indeed
provide a lower stochastic error than the other method, we look at the ECDF’s plot which is
shown in Figures 2 and 3 (right). In this case it is clear that based on the ECDF, the closed-loop
Volterra method provides a lower stochastic error than the Ridge regression method.

5 Conclusion

In this paper, we have presented the application of closed-loop Volterra from the field of kernel
methods for approximating the time series. Especially, we have utilized the discrete closed-loop
Volterra theory by applying polynomial kernels in a regularized regression framework. Through
a simulation study, comparisons between closed-loop Volterra and Ridge regression, ARFIMA,
and ETS methods for estimating time series were carried out using both simulated and real data
using the RMSE criterion. The results indicated that the proposed closed-loop Volterra method
outperforms other defined methods generally for different levels of m and p.
Furthermore, the results of the KSPA test were considered to evaluate the efficiency of the closed-
loop Volterra method. The results clearly indicate that the proposed closed-loop Volterra method
outperforms competing methods such as Ridge regression, ARFIMA, and ETS in terms of lower
stochastic errors.
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