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Introduction. Suppose that 5 is a topological semigroup which contains the

bicyclic semigroup B as a subsemigroup. Let T denote the closure of B in 5.

We investigate the structure of the semigroup T and the extent to which B deter-

mines this structure.

In §1, two properties of F are established which hold for arbitrary 5; namely,

that B is a discrete open subspace of F and T\B is an ideal of T if it is nonvoid.

In §11, we introduce the notion of a topological inverse semigroup and establish

several properties of such objects. Some questions are posed. In §111, it is shown

that if 5 is a topological inverse semigroup, then T\B is a group with a dense

cyclic subgroup. §IV contains a description of three examples of a topological

semigroup which contains B as a dense proper subsemigroup. Finally, in §V, we

assume that 5 is a locally compact topological inverse semigroup and show that

either B is closed in 5 or F is isomorphic with the last of the examples described

in §IV. A corollary about homomorphisms from B into a locally compact topo-

logical inverse semigroup is obtained which generalizes a result due to A. Weil

[1, p. 96] concerning homomorphisms from the integers into a locally compact

group.

All spaces are topological Hausdorff in this paper.

We state the definitions of Green's equivalence relations in a semigroup and the

definition of an inverse semigroup. Green's relations £f, &, Jf, and 3i on a semigroup

5 are defined by :

a@b if and only if a u aS=b\J bS,

a£Cb if and only if a u Sa=b u Sb,

JP=<e n 0t and &=£ ° 0t.

The notations Ra, La, Ha, and Da stand for the appropriate equivalence class of

a in 5.

A semigroup 5 is an inverse semigroup provided each element x of 5 has a

unique inverse ; that is, an element x~l of 5 such that xx " 1x=x and x " 1xx~1 = x~1.

For details about inverse semigroups and Green's relations, see [2]. We assume a

certain familiarity with these notions.

I. The bicyclic semigroup. B is the semigroup with identity 1 generated by two

elements p and q subject only to the condition that pq—l. The distinct elements
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of F are exhibited in the following useful array :

1      p      p2      p3 ■■■

q     qp    qp2     qp3 ■■■

q2   q2p   q2p2   q2p3 ■ ■ ■

q3   q3p   q3p2   q3p3 ■ ■ ■

In this array, the rows are the ^-classes of F, the columns are the JSf-classes,

the ^f-classes are points, and the idempotents lie on the diagonal starting at 1.

There is only one í^-class ; that is, F is a bisimple semigroup. The following lemma

follows by induction from the definition of F.

1.1. Lemma, (i) For each xe B, BxB=B.

(ii) For each x, y e B, {z \ xz=y} and {z \ zx=y) are both finite sets; that is, left

translation by x and right translation by x are finite-to-one functions.

1.2. Corollary. The only topology on B which makes B into a topological semi-

group is the discrete topology. Thus B is a discrete subspace of any topological

semigroup containing it.

Proof. In fact, suppose F is topologized so that right and left translations are

continuous and suppose that x e B is a limit point of F. Let y e B and consider yB.

\f{yx} is open in F, then there is an open set U about x so that yU={yx}. However

U must contain infinitely many points of F, even if F is only Tx. Since this contra-

dicts I.l.ii. we conclude that yx is a limit point of F. Similarly xy is a limit point

of F. We conclude from I. Li. that each point of F is a limit point of F. But

{l} = Rx n Lx = (B\qpB) n (B\Bqp) is open since qpB and Bqp are retracts of F

and hence closed. This contradicts our original assumption, so F must be discrete.

1.3. Theorem. Let B be contained densely in a topological semigroup T. Then B

is open in T and T\B is an ideal of T provided it is nonvoid.

Proof. Let xe B. Let U be an open set in F such that Un B={x}. Since F is

dense in F, U n F is dense in U*, the closure of Uin T. Thus U* = (Un B)*={x}

and so U={x}. Hence F is open in T. Now suppose x e T\B and y e T. If xy e B,

then there exist open sets U and F of F so that xeU, ye V and UV={xy). Now

i/nfi is infinite and there is some point w e Vn B. Hence (Í7 n B)(Vn F)

=>(£/n B)-w={xy}. This contradicts I.l.ii., so xy e T\B. Similarly, yx e T\B.

II. Topological inverse semigroups. Let F be a topological semigroup which is

algebraically an inverse semigroup. The inversion function on S, the function

taking x to x'1, is always 1-1 and onto; however, it may or may not be continuous.

If it is continuous, then S will be called a topological inverse semigroup. For

example, any topological group or any topological semilattice is a topological

inverse semigroup. On the other hand, the nonnegative real numbers with the
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usual topology and ordinary multiplication is an inverse semigroup which is not a

topological inverse semigroup.

For the remainder of this section, we assume that 5 is a topological inverse

semigroup.

II. 1. Proposition. Inversion is a homeomorphism on 5.

Proof. This follows from the facts that inversion is continuous and inversion is

its own inverse.

11.2. Proposition. Let A be an inverse subsemigroup of 5. Then A and A* are

topological inverse semigroups.

Proof. Let xa he a net in A converging to x g A*. Then x^1 converges to x'1,

and so x-1 g A* since xñ1 e A for all a. Thus A* is an inverse subsemigroup of 5.

The inversion functions on A and A* are simply the appropriate restrictions of the

inversion function on 5, and hence are continuous.

Let E denote the idempotents of 5.

11.3. Proposition. Let A be a dense inverse subsemigroup ofS. Then E=(En A)*,

that is, the idempotents of A are dense in the idempotents of 5.

Proof. Let e e E, and let U he an open set containing e. By the continuity of

multiplication there is an open set V^U so that eeV and V2^U. Note that

V1 n F= IF is an open set containing e by the continuity of the inversion function

on 5, and that IF= W'1. Now since A* = 5, we know that there is some xe A n W.

Hence x-1 elV-^W and xx-1^W2^V2cU.But xx-1 e En A, so(En A)* = E.

11.4. Proposition. If I is a compact ideal of 5, then the Rees quotient semigroup

Sjl (the semigroup obtained by identifying I to a point) is a topological inverse

semigroup under the quotient topology on SI I. Furthermore if S is locally compact,

then so is 5//.

Proof. It is well known that 5// is a topological semigroup and that 5// is

locally compact if 5 is locally compact.

Let xg5. Then since x=xx_1x and x_1=x""1xx-1 and / is an ideal of 5, it

follows that xe I if and only if x-1 el. Hence 5// is algebraically an inverse

semigroup.

To see the continuity of the inversion function on 5//, we note that the inversion

function on 5// is induced by the inversion function on 5; that is, the following

diagram commutes :

inversion
5-> S

natural natural
map map

5//-> SI I
inversion

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



118 CARL EBERHART AND JOHN SELDEN [October

Applying the induced function theorem [3, p. 126] establishes the continuity of

inversion on S/7.

11.5. Proposition. The functions x-^-xx'1 and x->x_1x are continuous

retractions of S onto E, the set of idempotents of S.

Proof. Obvious.

11.6. Corollary. The J? and 0t relations are closed in SxS. Further, J? is

closed in SxS and all maximal subgroups of S are closed in S.

Proof. We show that 01 is closed. A similar argument shows that .S? is closed.

The rest follows.

Let a,beS with Ra^Rb. Note that aa'1 eRa and bb'1 eRb, so aa-1^bb~1.

Choose disjoint subsets of F, U and F, which are open relative to F and which

contain aa'1 and bb'1 respectively. Let U' and V be the preimages of U and F

respectively under the mapping x^xx'1. Then, by II.5, U' and V are disjoint

open sets in S containing a and b respectively. Further if x e U' and y e V, then

xx~1^yy-1, and so x and y are not & related. Thus (i/'xF)nf=0. We

conclude that M is closed in SxS.

We remark that 3¡ need not be closed in Sx S, as we shall see later.

If one views topological inverse semigroups as a generalization of topological

groups, then several questions arise, which can all be included in the general

question: what properties of topological groups generalize to topological inverse

semigroups ? Stated another way : given a theorem about topological groups, find

the appropriate generalization of it to topological inverse semigroups. For example,

each of the results in this section with the exception of II.4. can be regarded as a

generalization of a theorem about topological groups.

As an additional example, a well-known result about topological groups, due

to R. Ellis [4], is that a locally compact topological semigroup which is algebraically

a group is a topological group. The nonnegative real numbers under ordinary

multiplication and with the usual topology provide an easy counterexample to

the above statement if "inverse semigroup" is substituted for "group". We ask

whether the statement is true if "bisimple inverse semigroup" is substituted for

"group".

III. The closure of F in a topological inverse semigroup. In this section 5 will

again be a topological inverse semigroup, F will denote the bicyclic semigroup and

we assume that F<=F. Let F denote the closure of F in S. Then Fis a topological

inverse semigroup by II.2. Further each point of F is open in T and T\B is a closed

ideal of F provided T\B^ 0 by 1.2 and 1.3 respectively.

For the following three propositions we assume that T\B^ 0.

III. 1. Proposition. T\B is a group.
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Proof. Let x g T\B. So e=xx_1 g T\B since T\B is an ideal of T. Now suppose

f2 =/g T\B and that e ̂  ef Then there exist open sets U, V, and IF of F containing

e, f and ef respectively so that U n IF= 0 and UV<= W. Let E denote the idem-

potents of F. By III.3 we know that E=(E n B)*. Hence U n (E n B) is infinite

and F n (F n Ä) is infinite. Let c7npn g F n (F n 5). There is an m>« such that

qmpm e U n(E n B). Thus qmpmqnpn=qmpm eW,a contradiction since U O IF= 0.

Thus ef=e. A similar argument shows ef=f. Hence we obtain (T\B) n £={e},

and T\B is an inverse semigroup with only one idempotent. It follows that T\B is

a group.

111.2. Proposition. The idempotent e of T\B is the center of T. Furthermore the

function i/ifrom B into T\B which takes x to ex is a continuous homomorphism.

Proof. The first statement will follow if we can show that ep=pe and eq=qe.

For then e will commute with the elements of B and hence with the elements of

B* = T. Now e e (B n E)*, hence there is a net qnopn« in B n E converging to e.

Hence qep = lim qn« + 1pn« + 1. The set E is closed in T, so qep is idempotent. Further

qep e T\B. Hence qep = e. Multiply on the left by q~x=p and we obtain ep=pe.

Multiply on the right by p~1=q and we obtain 17e=eq. Thus e is in the center of T.

Now for x,yeB, exy = eexy = exey and so $ is a homomorphism. 1(1 is continuous

since multiplication is continuous and the second statement is proved.

111.3. Corollary. T\B is the closure of a cyclic subgroup, namely eB.

Proof. eB is a homomorphic image of B which lies in a group. Hence eB is a

cyclic subgroup of T\B by [2, p. 43]. Let x g T\B. Then x=lim xa where xa e B.

So x = ex = lim exa. Hence x g (eB)* and eB is dense in T\B.

rv. Three examples. In this section we shall describe three topological semi-

groups containing the bicyclic semigroup as a dense proper subsemigroup.

IV. 1. Example. The bicyclic semigroup with a zero adjoined as a limit point.

Let B0 = B\J {0} where 0 is some point not in B. Extend the multiplication on B

to B0 by defining Ox=xO=0 for all x e B0. BQis easily seen to be a semigroup.

Now topologize B0 by taking as a basis the points of B together with the sets of

the form qnpnBqnpn u {0}. This clearly defines a Hausdorff topology on B0 so that

B* = B0.

To see that multiplication is continuous : Let (x, y)e SxS. If x, y e B, then

{x}, {y}, and {xy} are open in B0 and continuity is no problem. If xe B and y=0,

let U=qnpnBqnpn u {0} be a basic open set about 0. Write x=qlpT and let

V = qn + rpn + rBqn + rpn + r u {0}.

Then

{x}- V = q'pr(qn+rPn*'Bqn+rpn+r U {0})

= qn + 'pn+rBqn+rpn+rU{0} c U.

A similar argument works for the case x=0, y e B.
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Finally if x=0, y = 0, then we simply note that each basic open set about 0 is a

subsemigroup of F0. This completes the argument that multiplication is continuous.

IV.2. Remarks. 1. F0 is a topological inverse semigroup, for 0 is its own unique

inverse and the inverse of a basic open set is a basic open set.

2. F0 contains two ^-classes, namely F and {0}. Hence F0 shows that the 3i

relation need not be closed in a topological inverse semigroup.

3. F0 is not locally compact. Each basic open set about 0 contains an infinite

discrete closed subset, for example, some ^-class of F with a finite number of

points removed.

IV.3. Example. The bicyclic semigroup with a left zero adjoined at the end of

each ^-class.

Let L={x0, Xx, x2,..., xn,...} be a set so that x( = x; if and only if i=j, and

Bc\L=0>. Let F have the left trivial multiplication; that is, define xy = x for

x,yeL. This is easily seen to be a semigroup operation on L. Let BL = B u L

and extend the operations on F and F by defining

xn'QP   = xn,        op ■ xn = X|-i + max W,n>

for xn e L, qipi e B.

It is evident upon inspection that the only associativity problem occurs when

x,y e B and zeL.ln this case, letting x=qnpn, y=qlpr and z=xu we have on the

one hand:
(xy)z = (qnpmqlpr)Xi = (q,"-'« + niax<m,iy-¡ + max<m,¡>)Xi

~ -Xn-m-r + i + max {r-i + max {m.II.i}'

On the other hand, we have

x(yz) = qnpm(q'prXi) = c7n/>mx,_r+max(r>1)

= -X-n-m + max {m,/-r + max {r.i}}'

Hence we need only show that

max {«i, I—r + max {r, /}} = I—r + max {r — l+max {m, I}, i}.

Case 1. Suppose max {m, l—r + max {/, /}}=«j. Then m^l—r+max {r, i}^/

and «j^/—r + max{r, i}^l—r+i, so

/— r + max {r — l+ max {m, I}, /'} = /— r + max {r — l+m, /} = /— r + (r—l+m)

= m — max {m, l—r + max {r, /}}.

Case 2. Suppose max{«i, /-r+max {r, /}} = /— r+max {r, i). Then we need

only show that max {r, /} = max {r-/+max {m, I}, /}.

Subcase 1. Suppose max{r, i} = r. Then 1=1—r+max {r, i}^m and so

max {r, /} = max {r, /+max {m, I}, /}.

Subcase 2. Suppose max {r, /} = /. Then if tern we have

max {/, /} = max {/•-/+max {m, I}, /},

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] ON THE CLOSURE OF THE BICYCLIC SEMIGROUP 121

and if m ̂  / we have

/— r+max{r, 1} = l—r+i ^ m = max {m, /},

and so i^r—/+max {m, I}, from which we conclude that

max {r—/+max {m, I}, i} — i = max {r, i}.

This completes the proof of associativity.

Now topologize BL by taking as a basis the points of B together with the sets of

the form

R„«pm u {xn},   where Rq» is the ^-class of qn.

It is easily seen that this defines a Hausdorff topology on BL and that B*=BL

in this topology. To check the continuity of the multiplication at (x, v) we need

only verify the case where xe B, yeL, for all the other cases are evident.

So suppose x=qnpm and v=x¡. Then xy=xn_m+mai£ (i>m). Let V=Rq'pi u {x(} be

a basic open set about xt where t=n — m + max {/, m}. Now choose the basic open

set Rq*pi+i u {x¡} about x(.

Let (7yy + i + fc g Rjp1+i. Then

(qnpm)(qlpi + i + k) = qtpi + k + m^im.i) eRqtpi.

We conclude that {qnpm}(RQlpi+''u {xf})c: V, and hence that multiplication is

continuous.

IV.4. Remarks. Bl is not an inverse semigroup, because idempotents do not

commute.

2. BL is locally compact, in fact,

BL = U (/V)* = U (*,» u {xn})
n n

and each of the sets /?,» u {xn} is a compact open subset of BL.

3. A similar construction can be made by adjoining a right zero to the end of

each ^f-class of B.

IV.5. Example. The bicyclic semigroup with the integers adjoined.

Let B¡ be the disjoint union of the bicyclic semigroup B and the integers /.

Define a relation J on B by qlpsJqmpn if and only if s — l—n — m. It is easily

verified that J is a congruence on B and that the quotient semigroup BjJ is

isomorphic with the integers under the correspondence « <-> Bn={q"ps \ s—l=n}.

It is an interesting exercise to show that, in fact, J is the only congruence on B so

that BjJ is isomorphic with the integers. We shall make use of this fact in §V.

Now extend the operations on B and /to B, by defining nqlps=n+s—l=qlpsn

for « g /, qlps e B.

To see that the extended operation is associative we need only check two

possibilities, the others being evident.
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Case 1. (nqlps)quPr = (n + s- l)qupr = n + s- l+v-u. Also

n-(qlpsqupr) = /¡.o'-s+maxis><<>n1'~u+max'(s-u>

= n + v-u+max{s, u}-l+s-max{s, u}

= n + v-u-l+s.

Hence (« ■ qlps)qupr = « • (qlP$qupr)-

Case 2. (n + m)qlps = n + m+s — l.

Also n + (mqlps)=n+(m+s—l)=n+m+s-l.  Hence (n + m)-qlps=n + (mq'ps).

This completes the proof of associativity.

Thus B, is a semigroup. It is easily seen that B, is an inverse semigroup and that

7 is the kernel of B,.

Now topologize B, by taking as a basis the points of F together with the sets of

the form BnA=qiBnpi u {«}, where « is an integer and / is a positive integer.

It is evident that this defines a Hausdorff topology on B¡ and that F* = B, in

this topology.

To establish the continuity of the operation we first prove a lemma.

Lemma. (1) Fn>iFm.,=F„+,„,,.

(2) If \l-s\SiSmax{2i-s, 2i-l), then

qlpsBn>2i U Bn¡2¡q'ps £ Fn+S_;>j.

Proof.

Bn.iBm.i = q'BnPVBmP' = q^B^

= q'Bn+mP1 = Fn + m>).

(qlps)q2iBnP2i = q2i-* + lBnp2t = q^-^B^p'

= q^n + s + lP* = Fn + S_M.

Also

q2>Bnp2'(q'p°) = q2<Bnp2i-' + ° = q^B^^W

£ q'Bn+s-iP* = Fn+S_M.

Hence (2) is also established.

Now to establish continuity we need only check the cases («, «i), («, g'//)» and

Cflíe 1. Continuity at («, «i). Let Fn+m(u{n + m} be a basic open set about

« + «j. Then Fn>i u {«} and Fmi u {«j} are basic open sets about n and «i respectively.

It follows from (1) of the lemma and the definition of the operation that

(Fn>i u {«})(Fm-i u {m}) ç Fn+m>i u {m+«}.

This completes case 1.

Case 2. Continuity at (q'p\ n) and («, q'ps). Let Fn+S_,i( U {« + j-/} be a basic

open set about n+s-l, where i is chosen so that \l—s\SiSmax{2i-s,2i—l},
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(for example take i=s + l). Then ¿?n2i u {«} is a basic open set about « and {q'ps}

is open. It follows from (2) of the lemma that

[{qlPs}\Bn>2i u {«})] u [(A,2i u {n}){qlf}] S 5n+s_,,, u {n+s-l}

and this completes Case 2.

IV.6. Remarks. 1. B, is a topological inverse semigroup, since the inverse of a

basic open set is a basic open set.

2. /?, is locally compact, but not compact. Each basic open set is compact,

hence B¡ is locally compact. Each JSf-class and each ^-class of B is closed in B,

but not compact. This is also true because B is not embeddable into a compact

semigroup [5, p. 524].

3. B, contains two ^-classes, namely B and /. Since B* = B,, we have an example

of a locally compact topological inverse semigroup in which the S> relation is not

closed.

V. The closure of B in a locally compact topological inverse semigroup.   Let 5

be a locally compact topological inverse semigroup containing the bicyclic semi-

group B, let T= B*, and assume that F\/?# 0. Then by the results in sections I, II,

and III, we know that T\B is a topological group with a dense cyclic subgroup.

We shall show that in fact T\B is iseomorphic with the integers and Fis iseomorphic

with the last example of IV.

V.l. Proposition. Let E denote the idempotents ofT. Then E is compact.

Proof. E is closed in F so F is locally compact. Further E n (T\B) is a single

point, call it e, and E\e is a discrete subspace of E. Let U be an open subset of E

about e with U* compact. Note that U* = U and U is infinite, since e is the only

limit point of E. Suppose E\U is infinite. Then for each positive integer «, there

exists a positive integer r>n so that qrpr e E\U and q'+1pr+1 e U. By induction we

can find an infinite set A<=^ U\e such that pAq^E\U. But U is compact and A is

infinite so eeA*. Hence e epA*q^(pAq)*^E\U, a contradiction since eeU.

Consequently E\U is finite and we conclude that E is compact.

V.2. Lemma. The & (0Z)-class of 1 in B is the Se (3t)-class of 1 in T.

Proof. Let Rlt R[ he the ^-class of 1 in B and in T respectively. By [5, p. 524],

we have that R^R'^ Furthermore R[^B since T\B is an ideal. Now suppose

qlps e R[. Then

F = q'psT = q'ps(B u T\B) = qlpsB u qlps(T\B)

and since q'ps(T\B)çT\B, we have that q'psB=B. Hence q'pseRx and Ri = R[.

A similar argument shows that the -Sf-class of 1 in B is the .Sf-class of 1 in T

V.3. Proposition. T\B=£{e}.
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Proof. Assume T\B={e}. Let U he an open set containing e whose closure is

compact. By II.6 and V.2 we know that Lx and Fj are open and closed subsets of

T. Hence we may assume that U<^T\(LX u Fj). Note that U=U*. If «>0, then

the function from F to An={qlps \ s—l=n) u {e} given by x^xpn is 1-1, con-

tinuous, and onto. Hence An is homeomorphic with F for n > 0. If « < 0, then since

(A-n)~1 = Anand inversion is a homeomorphism, An is also homeomorphic with

F. In particular An is compact for each integer «.

Now since U n An is a compact open subset of An containing e, the only limit

point of T, we conclude that An\U is finite for each n. Also since An n (Fx u Fx)

r4 0, we have An\U^ 0 for each «. For each x e An\U, x=qi+np' for some natural

number /. Let xn denote that x e An\U for which / is as large as possible. Let A

be the set of all these xrn's.

Consider the continuous 1-1 functions/: A->U and g:f(A)^A defined by

f(x)=qxp and g(x)=pxq. Note that f(A) is an infinite subset of U and hence

eeflA)*. Therefore eeg(f(A)*)^g(f(A))*=A*. But A<^T\U, a closed set not

containing e. This is a contradiction, so F\F/{e}.

V.4. Remark. We observe that local compactness is necessary to the proof,

because of Example IV.3.

V.5. Corollary. T\B is iseomorphic with the integers. Further, the homomorphism

ijj o/HI.2 is onto and the restriction of</i to Fj U Lx is 1-1 and onto.

Proof. By III.3, T\B is a locally compact group containing a dense cyclic sub-

group. By Weil's theorem, T\B is iseomorphic with the integers or T\B is compact.

But if T\B is compact, then the Rees quotient semigroup T/T\B is, by II.4, a

locally compact topological inverse semigroup. Now it is easily seen that T¡T\B

contains F as a dense subsemigroup and that (T¡T\B)\B is a single point. However

this contradicts the previous proposition; hence T\B is iseomorphic with the

integers.

Now eB=if>(B) is dense in T\B and T\B is discrete. Hence >f>(B) = T\B; that is,

tfi is onto. The last statement follows since the congruence on F determined by the

homomorphism ib is precisely the congruence J on B described in IV.5.

Recall that Bn={qlps e B \ s—l=n}, for each integer n.

V.6. Lemma. For each integer n, B* is a compact open subset of T. Further

B* = Bn U {epn} ifn^O andB* = Bn U {eqn} ifnSO.

Proof. Note that B* = E by II.3 and hence is compact by V.l. Also if «^0,

then F* = (B0pn)* = B*pn, since B* is compact, and hence F* is compact. Also

B* = B0 u {e}, so B* = (B0pn)* = B*pn = (B0 u {e})pn = B0p* u {epn} = Bn u {epn} if

«^0 and similarly F* = Fn u {eqn} if n^O.

To see that F* is open let U be an open set containing « so that U n T\B={n}.

U exists by V.5. By the regularity of T, we can choose an open F containing « so
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that V* <= U and V* is compact. Since « is the only limit point of F* and veV

we have that F= V*. Hence F n (T\B*) is a finite open set, and therefore n lies

in the interior of B*. Every other point of B* is open in T, so B* is open.

V.7. Theorem. F is iseomorphic with B,, the bicyclic semigroup with the integers

adjoined.

Proof. Define f:B,^T by

f(x) = x       if X G B

= epn   if x = « g / and « ^ 0

= eqn   if x = « g / and n < 0.

It is clear that/is a well-defined function with domain B, and range T. fis 1-1

on B. Also /is 1-1 on / since/(«) = *l>(pn) for «^0 and /(«) = ^(qn) for «<0 and

^¿jUT^is 1-1.

To see that/is a homeomorphism, consider/|ßn u {«}. It is not hard to see that

/maps the compact open set Bn u {«} of B, in a 1-1 continuous fashion onto the

compact open set B* = Bnu {epn} or B* = BnKJ {eqn}, depending on the sign of «.

Hence f\Bn u {«} is a homeomorphism for each «. From this we conclude that/

is a homeomorphism.

To see that/is a homomorphism, we note that/|ß is a homomorphism and

that/is continuous on B,. From this it readily follows that/is a homomorphism

on B* = B,.

This completes the proof of V.7.

V.8. Corollary. Let 0 be a homomorphism from B into a locally compact

topological inverse semigroup. Then one and only one of(i), (ii), and (iii) is true:

(i) 0(B) is a finite cyclic group.

(ii) 0(B) is the integer and either 6(B) is a closed discrete subspace of S or else

the closure of 0(B) is compact.

(iii) 0 is 1-1 and 0(B) is a closed discrete subspace of S or the closure of 0(B) is

iseomorphic with B¡.

Added in proof. The authors have learned that 1.1, 1.2, 1.3, and 1.5 were also

proved by R. J. Koch and A. D. Wallace in Notes on inverse semigroups, Rev.

Roumaine Math. Pures Appl. 9(1964), 19-24.
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