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We construct several geometric representatives for the Cn /Zm fractional branes on
either a partially or the completely resolved orbifold. In the process we use large
radius and conifold-type monodromies and provide a strong consistency check. In
particular, for C3 /Z5 we give three different sets of geometric representatives. We
also find the explicit Seiberg duality which connects our fractional branes to the
ones given by the McKay correspondence. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3072696�

I. INTRODUCTION

In recent years there have been significant advances in our understanding of the physical
properties of D-branes throughout the entire moduli space of a given Calabi–Yau compactification.
In particular, for type II compactifications Douglas showed that the topological B-branes are in
one-to-one correspondence with the objects of the derived category of coherent sheaves on the
Calabi–Yau variety.1 To relate the topological B-branes to the physical ones he also pioneered the
notion of �-stability. Subsequently Bridgeland axiomatized �-stability.

Since the Kahler deformations are exact in the topological B-model, the derived category
description of topological B-branes is valid at any point of the moduli space. On the other hand,
N=2 type II compactifications generically have a rich phase structure and the description of
B-branes in the various phases is quite different. This gives rise to interesting mathematical
statements, the best known of which is the celebrated McKay correspondence.

In general, determining the set of �-stable branes is cumbersome. One could start at a point
with a good understanding of stability, e.g., a large radius point, where �-stability reduces to
�-stability, and try to catalog what objects are lost and gained as the Kahler moduli are varied.2

Among the stable branes some of the most intriguing ones are the fractional branes. They are
fractional in the following sense: assume that we are given a Calabi–Yau threefold which develops
a singularity somewhere in the Kahler moduli space. We can probe the singularity using a space-
filling D3-brane. At this point in Kahler moduli space the probe D3-brane becomes �marginally�
unstable and decays into the fractional branes. This picture applies in a rather broad context and is
not restricted to orbifolds, although it was first discovered for orbifolds.

On the other hand, orbifolds provide a rich testing ground. In this case D-branes can be
described explicitly as boundary states in a solvable conformal field theory �CFT�. The world-
volume theory of the probe D3-brane, which is a quiver gauge theory,3 gives a very different
description of the D-branes, as objects in the derived category of representations of the quiver. The
McKay correspondence gives an equivalence between this category and the derived category of
coherent sheaves on the resolved space,4 as required by the topological string argument.

The McKay correspondence is a prototype of what happens in general: In different patches of
the moduli space one has very different looking descriptions for the D-branes, which sit in
inequivalent categories, but if one passes to the derived category then they all become equivalent.
Therefore it makes sense to talk about a geometric representative for a brane at any point in
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moduli space. Passing from an Abelian category to the derived category is physically motivated by
brane-antibrane annihilation, thorough tachyon condensation.1,5

In the quiver language the fractional branes are the simple representations, i.e., those that have
no nontrivial subrepresentations. Although the fractional branes are obvious in the quiver lan-
guage, their geometric incarnation is unclear. The McKay correspondence tells us that there should
be objects �bundles or perhaps complexes� on the resolved space whose Ext1-quiver is the one we
started with. One of the central problems in this area is to find these objects.

As a warm-up exercise one can try to determine the K-theory class of a fractional brane. So
far, even this question has been answered only in a limited context using mirror symmetry
techniques6 or the McKay correspondence.1

A first goal of this paper is to get a deeper understanding of the geometry of fractional branes
going beyond the K-theory. We do this without resorting to mirror symmetry or the McKay
correspondence. Instead we use the quantum symmetry of an orbifold theory to generate the
fractional branes as an orbit. This method has been successful for the C2 /Zn orbifolds.8

Ultimately one would like to understand the world-volume theory of D-branes at an arbitrary
point in the moduli space of a compact Calabi–Yau. Studying examples where one has at his
disposal different methods hopefully will teach us the “mechanics” of the geometric approach and
would certainly lead to results of phenomenological interest.

A second goal is to develop techniques to study monodromies in the Kahler moduli space.
Monodromies played a crucial role in the Seiberg–Witten theory9 and represent a subject of
interest in itself. Using geometric engineering one can relate the Seiberg–Witten monodromies to
D-brane monodromies.10,11 As we will see shortly, the functors implementing the monodromy
transformations are not simple by any measure. The relations they satisfy would be very hard to
guess without physical input. By the end, we will have performed some very strong consistency
checks. It is not surprising that a simple version of our functors, the Seidel–Thomas twist functors,
plays an important role in Bridgeland’s work on �-stability.12

A third motivation is to investigate what, if anything, can be gained by using stacks. Our
investigations are ultimately very different from the ones pioneered by Sharpe and collaborators.
Our approach relies on an extension of the McKay correspondence due to Kawamata and naturally
associates branes with regions of the moduli space where we have no solvable CFT description or
reliable supergravity approximation. Fortunately, the algebrogeometric tools are powerful enough
to produce several collections of fractional branes. This approach provides a detailed understand-
ing of the Yp,p spaces,13 as assumed in Ref. 14. It came as a surprise to the present author to realize
that using stacks, one can construct several collections of fractional branes for Cn /Zm for any n and
m! The same statement is far from being true without the use of stacks.

Let us illustrate this point using the main workhorse of the paper, C3 /Z5. This singularity has
two partial resolutions, with exceptional divisors P2�2,2 ,1� and P2�1,1 ,3�.2 Viewing both of them
as stacks, one has length 5 exceptional collections O ,O�1� , . . . ,O�4�. The candidate fractional
branes are the push forward of the dual collections. We prove that both P2�2,2 ,1� and P2�1,1 ,3�
lead to the same Ext1-quiver. Naturally, the details for the two cases are quite different, but the
final result is the same. The superpotential comes from the Ext2 and is related to an A�-structure.
So going from P2�2,2 ,1� to P2�1,1 ,3� does not change the quiver but reinterprets the different
terms in the superpotential in a nontrivial way.

Another motivation to understand fractional branes comes from the fact that they are related
to each other through partial resolutions of the singularity.3 For example, the resolution of the
C2 /Zn singularity has an exceptional divisor which is reducible, with n−1 irreducible components
Ci=P1.

The C2 /Zn singularity can also be thought of as being produced by the collision of n−1 C2 /Z2

1For the ample physics literature on this subject see, e.g., Ref. 7 and references therein.
2As a scheme P2�2,2 ,1� is just P2, but as stacks they are different.
3I learned about this line of reasoning from Paul Aspinwall.
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singularities. A C2 /Z2 fractional collection is given by OC ,OC�−1��1�, where C=P1. In Ref. 8 we
found the following C2 /Zn fractional collection: O�jCj

and OCi
�−1��1�, with Ci=P1 from above.

Moreover, we proposed a physical explanation for how the C2 /Zn collection is obtained from the
C2 /Z2 collections.

It is natural to try to extend the above procedure to an arbitrary singularity. This would also
answer the following more interesting question: What is the gauge theory on the world-volume of
a D3-brane probing a Calabi–Yau singularity. Phrasing it in this form, it is obvious that we are not
going to get a simple answer.

Given a singularity S, we can partially resolve it. This creates new singularities; call them Si.
Even if we started with an isolated singularity, the resolution might produce nonisolated ones �this
is the case even for C3 /Z5�; therefore i might be a continuous index. Viewed individually, the
singularity Si has its own fractional branes Fji

Si. As the Kahler modulus of the blow-up is turned off
some of the Fji

Si get destabilized and decay. The decay products are necessarily bound states of the
old Fji

Si and the ones that remain stable. We are guaranteed to find the fractional branes of the
singularity S among these. The question then is as follows: How do we recognize them? Is there
going to be a simple physical rule like the one proposed in Ref. 8 for C2 /Zn?

Once the fractional branes for a singularity have been obtained, the gauge theory on the probe
will be the quiver theory whose quiver is the Ext1-quiver of the fractional branes. This procedure
was dubbed “quiver LEGO.”8 Using the techniques of Ref. 15 the superpotential can also be
computed, and one might obtain models of phenomenological interest.

The organization of the paper is as follows. In Sec. II we use toric methods to investigate the
geometry of the C3 /Z5 model together with its Kahler moduli space. Section III starts with a
review of the Fourier–Mukai �FM� technology, and then it is applied to the various C3 /Z5 mono-
dromies. In Sec. IV we use the Z5 monodromy to produce a collection of fractional branes. This
collection is compared to the one given by the McKay correspondence, and we produce an
interesting Seiberg duality. In Sec. V we turn to a collection of fractional branes on the partially
resolved Cn /Zm orbifold using a generalization of the McKay correspondence by Kawamata. The
partially resolved orbifold is singular, and it is not a global quotient either; hence it is particularly
pleasing that we can handle it directly by geometric methods. The Appendix contains some
spectral sequences that are used throughout the paper.

II. C3 /Z5 GEOMETRIES

In this section we review some aspects of the C3 /Z5 orbifold and the associated CFT. First we
work out the relevant toric geometry of C3 /Z5; then we turn our attention to the moduli space of
complexified Kahler forms and, in particular, its discriminant loci. We pay particular attention to
the singularities in the moduli space.

A. The toric geometry of C3 /Z5

Let us consider the C3 /Z5 variety with a supersymmetric Z5 action, i.e., Z5�SL�3,Z�. A priori
there are two choices for the Z5 action:

�z1,z2,z3� � ��z1,�z2,�3z3�, �5 = 1, �1�

and

�z1,z2,z3� � ��2z1,�2z2,�z3�, �5 = 1. �2�

But obviously the second one is the square of the first one, and therefore we can talk about the
C3 /Z5 variety, which is toric, and a convenient representation for it is provided by the fan in Fig.
1. More precisely, the fan for the C3 /Z5 toric variety consists of only one cone, generated by the
vertices v1, v2, and v3. In this figure we also included the vertices v4 and v5 corresponding to the
crepant resolution of the singularity. We denote the resolved space by X. The exceptional locus of

022304-3 Cn /Zm fractional branes J. Math. Phys. 50, 022304 �2009�
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the blow-up is reducible, and it has two irreducible components corresponding to v4 and v5. We
denote the divisors associated with vi by Di.

The linear equivalences among the divisors and their intersections are well known, and we
simply quote the result of Ref. 16:4

D4 · D5 = D4 · D1 = h, D4 · D2 = 0, D5 · D1 = f , D5 · D2 = h + 3f �3�

and

D4
2 = − 3h, D5

2 = − 2h − 5f . �4�

The tools of toric geometry immediately tell us that the divisor D4 is a P2, while D5 is the
Hirzebruch surface F3. There are curves in the class of h and f that lie in the compact divisors D4

and D5. In particular, f is a fiber of F3, and h is the �3 section s of F3. Similarly, h is the
hyperplane class of P2, while f does not intersect P2.

Let us spend a moment analyzing the Kahler cone and its dual, the Mori cone. From the
geometry it is clear that the curves h and f are the generators of the Mori cone of effective curves.
Shrinking h also shrinks the divisors D4, and hence gives a type II contraction, while shrinking f
collapses the Hirzebruch surface F3 onto its base, giving a type III degeneration.

The Kahler cone is dual to the Mori cone, and in our case both are two dimensional. The
Kahler generators are represented by cohomology classes. We can use Poincare duality and rep-
resent the Kahler classes by 4-cycles and, in particular, divisors. It is immediate from the inter-
section products in Ref. 16 that the ordered pair �h , f� is dual to the ordered pair �D1 ,D2�:

�h, f� � H2�X,Z� is dual to �D1,D2� � H4�X,Z� . �5�

Therefore the Kahler cone is generated by D1 and D2. The precise ordering in �5� will play an
important role later on.

By Lemma 3.3.2 in Ref. 17 there is a bijection between the Mori cone generators and the
generators of the lattice of relations of the point set A= �v1 , . . . ,v5�. In particular, h and f yield the
relations

Q = �1 0 1 − 3 1

0 1 0 1 − 2
	 . �6�

4Since C3 /Z5 is noncompact, one restricts to the intersections of the compact cycles with other cycles, in this case D4 and
D5.

FIG. 1. �Color online� The toric fan for the resolution of the C3 /Z5 singularity.
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B. The C3 /Z5 moduli space

The point set A= �v1 , . . . ,v5� admits four triangulations �see Fig. 2�. Therefore in the language
of Refs. 18 and 19 the gauged linear sigma model �GLSM� has four phases.5 The secondary fan
has its rays given by the columns of the matrix �6� and is depicted in Fig. 3. The four phases are
as follows: The completely resolved smooth phase, the two phases where one of the compact
divisors D4 or D5 has been blown up to partially resolve the Z5 fixed point, and finally the Z5

orbifold phase.
The phase corresponding to the cone C2 can be reached from the smooth phase C1 by blowing

down the divisor D5. This creates a line of Z2 singularities in the Calabi–Yau. We will refer to this
phase as the Z2 phase. Similarly, the phase C3 is reached by blowing down the divisor D4 and
creates a C3 /Z3 singularity. We call this the Z3 phase.

The orbifold points in the moduli space are themselves singular points. This fact is related to
the quantum symmetry of an orbifold CFT. For the Z2 point, the homogeneous coordinate ring
construction of Cox20 shows a C2 /Z2 singularity with weights �1,�1�. Alternatively, using the
“old”—group algebra C��∨� of the dual cone �∨—construction,21 one arrives at the affine scheme
Spec C�y−1 ,x2y ,x�=Spec C�u ,v ,w� / �uv−w2�. At the Z3 point the moduli space locally is of the
form C2 /Z3, with weights �1,2�.

But we can take the secondary fan in Fig. 3 literally, since it is the fan of moduli space,
viewed as a toric variety. The four cones then have natural coordinates associated with them, and
these are as follows:

C1 C2 C3 C4

x1 y1 = x1
2x2 z1 = 1/x1 w1 = 1/x1

2x2

x2 y2 = 1/x2 z2 = x1x2
3 w2 = 1/x1x2

3

. �7�

The coordinates �x1 ,x2� are good coordinates on a dense open subset of the moduli space but fail
at the boundary divisors corresponding to the toric compactification of the moduli space. This is
where one needs to make the above change of coordinates. One also notices the x1

2 and x2
3 terms,

which reflect the C2 /Z2 and C2 /Z3, respectively, singularities. We will use these coordinates mo-
mentarily.

5In the GLSM language the rows of this matrix represent the U�1� charges of the chiral superfields.

FIG. 2. �Color online� The four triangulations of the C3 /Z5 model.
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C. The discriminant

The primary components of the discriminant locus of singular CFTs can be computed using
the Horn parametrization.22,23 We briefly review the construction. Let Q= �Qi

a�i=1,. . .,n
a=1,. . .,k denote the

matrix of charges appearing in Cox’s holomorphic quotient construction.20 The primary compo-
nent of the discriminant, �0, is a rational variety, i.e., birational to a projective space. Horn
uniformization gives an explicit rational parametrization for �0. Accordingly, we introduce k
auxiliary variables, s1 , . . . ,sk, and form the linear combinations

�i = �
a=1

k

Qi
asa for all i = 1, . . . ,n . �8�

Let �xa�a=1,. . .,k be local coordinates on the moduli space of complexified Kahler forms or, equiva-
lently, on the complex structure moduli space of the mirror. �0 then has the following parametri-
zation:

xa = 

i=1

n

�i
Qi

a

for all a = 1, . . . ,k . �9�

In our context the matrix of charges in question is Q from Eq. �6�, and �x1 ,x2� are the local
coordinates on the moduli space corresponding to the large radius phase. Applying the Horn
uniformization equations, �8� and �9�, gives

x1 = −
s1

2�s1 − 2s2�
�3s1 − s2�3 , x2 = −

s2�3s1 − s2�
�s1 − 2s2�2 . �10�

Both equations are homogeneous, and therefore x1 and x2 depend only on the ratio s1 /s2. Elimi-
nating s1 /s2 gives the sought after equation for �0:

�0 = 3125x1
2x2

3 + 500x1x2
2 − 225x1x2 + 16x2

2 + 27x1 − 8x2 + 1. �11�

In fact this is the only component of the primary discriminant.
The discriminant curve itself is singular. It has two singular points:

�x1,x2� = �−
1

25
,
1

5
	 and �x1,x2� = �−

32

675
,

9

20
	 . �12�

The first singular point is a double root of the �0=grad �0=0 equation, while the second is a triple
root. This hints to the fact that the local structure of the two singular points is different.

To see the nature of the singularity we need to choose convenient coordinates around the
singularities. We treat the point �− 32

675 , 9
20

� first. A convenient change of variables is as follows:

(1, 0)x1

(0, 1)x2

(1,−2)

(−3, 1)
Smooth
phase

C1

Z5 phase

C4

Z2 phase

C2

Z3 phase

C3

FIG. 3. The phase structure of the C3 /Z5 model.
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�x1,x2� = �− 32
675 + 8

135y1, 9
20 + 3

4 y2� . �13�

In terms of the new variables the discriminant becomes

�0 = y1
2 + y2

2 + 2y1y2 + 10
3 y1y2

2 − 200
27 y1y2

3 + 5y1
2y2 + 25

3 y1
2y2

2 + 125
27 y1

2y2
3 + 80

27y2
3. �14�

This suggests a further change of variables: �y1 ,y2�� �y1−y2 ,y2�, in terms of which the leading
terms of �0 are

�0 = y1
2 − 20

3 y1y2
2 + 125

27 y2
3 + 5y1

2y2, �15�

which shows that �0 has a cusp at �x1 ,x2�= �− 32
675 , 9

20
�.

A similar analysis can be performed at the other singularity, �x1 ,x2�= �− 1
25 , 1

5
�, and show that

�0 has an ordinary double point there. The fact that one of the singularities is a cusp will be
important later on, in Sec. III C, as it allows for different monodromies around different parts of
the discriminant.

D. Intersections

We now turn to the question which will be of crucial importance. We have already seen that
the four maximal cones C1 , . . . ,C4 in Fig. 3 correspond to the four distinguished phase points.
Similarly, the four rays correspond to curves in the moduli space. It is immediate to see these are
all P1, at least topologically. For us the analytic structure is important, and we need to be more
careful here. The four curves connecting the different phase points are sketched in Fig. 4. The
curves in question are weighted projective lines: L1=P1�1,2� L2=P1�1,3�, L3=P1�2,5�, and
L4=P1�3,5�. Since the singularities are in codimension 1, these spaces in fact are not singular, and
they are all isomorphic to P1.

In terms of the coordinates �x1 ,x2� we have L1 : �x1=0� and L2 : �x2=0�. The discriminant �0

intersects these two lines. To see what the order of intersection is, observe that

�0�x1 = 0� = �4x2 − 1�2, �0�x2 = 0� = 27x1 + 1. �16�

Therefore �0 intersects L1 tangentially, while it is transverse to L2. We depicted this fact in Fig.
4 using a parabola and a short segment, respectively.

But what about the intersection of �0 with L3 and L4? Clearly �x1 ,x2� are not the proper
coordinates in these patches, but we can use the correct ones from Eq. �7�. Let us focus on L3 first.
In the coordinates �y1 ,y2� of the cone C2, L3 is given by the equation y2=0. To determine the form
of �0 in the new coordinates is more complicated, but there two different ways of doing it. The
naive way is to observe that y1y2=x1

2, while y2=1 /x2. So one can solve for x1 and x2 in terms of
y1 and y2 and substitute into �0 and then try to square an appropriately rearranged expression to
get rid of the �y1y2 terms.

The more efficient method is to go back to the Horn parametrization and run it for the
coordinates �y1 ,y2�. This amounts to replacing the matrix �6� with

Smooth
pointL2

Z2

point

L1

Z5

point
L3

Z3

point

L4

∆0

∆0

∆0

∆0

•

•

•

•

P0•

FIG. 4. The moduli space of the C3 /Z5 model.
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Q = �2 1 2 − 5 0

0 − 1 0 − 1 2
	 . �17�

Both methods give the same answer:

�0 = �y2 − 4�4 + 510y1
2�105 − 3 · 105y2 + 2 · 55 · 37y2

2 − 23 · 153y2
3 + 2 · 35 · 52y2

4 − 36y2
5�y1.

�18�

One immediately has that

�0�y1 = 0� = �y2 − 4�4, �0�y2 = 0� = �3125y1 + 16�2. �19�

This would suggest a fourth order and a tangential intersection, but in fact we have to remember
that the �y1 ,y2� coordinates double all the intersections, and hence we have a tangential and a
transverse intersection.

To shed more light on the last statement, let us recall that the curve L1, given by the equation
x1=0, after the change of coordinates y1=x1

2x2 becomes y1=02, exhibiting the doubling that we
referred to before. The tangential intersection at y2=4 is the previous x2=1 /4 point, which was
also a tangential intersection. The curve y2=0 is none other than L3, and hence it is transverse to
�0.

Finally we turn to the intersection of L4 and �0. In this case the naive elimination method fails
due to the cube root, but the Horn parametrization works. A similar analysis shows that the curve
L4 given by the equation z1=0 is also transverse to �0.

III. C3 /Z5 MONODROMIES

We start this section with a brief review of FM functors. Then we express the various mono-
dromy actions on D-branes in terms of FM equivalences. The remaining part of the section deals
with expressing the D-brane monodromies appearing in the C3 /Z5 moduli space in terms of FM
functors.

A. Fourier–Mukai functors

For the convenience of the reader we review some of the key notions concerning FM functors
and at same time specify the conventions used. We will make extensive use of this technology in
the rest of the paper. Our notation follows.24

Given two nonsingular proper algebraic varieties, X1 and X2, an object K�D�X1	X2� deter-
mines a functor of triangulated categories 
K :D�X1�→D�X2� by the formula6


K�A� ª Rp2��K�

L

p1
��A�� , �20�

where pi :X	X→X is projection to the ith factor:

�21�

The object K�D�X1	X2� is called the kernel of the FM functor 
K.
It is convenient to introduce the external tensor product of two objects A�D�X1� and B

�D�X2� by the formula

6D�X� denotes the bounded derived category of coherent sheaves on X. Rp2� is the total right derived functor of p2�, i.e.,

it is an exact functor from D�X� to D�X�. Similarly, �

L

is the total left derived functor of � . In later sections these
decorations will be subsumed.
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A � B = p2
�A�

L

p1
�B . �22�

The importance of FM functors when dealing with derived categories stems from the following
theorem of Orlov.7

Theorem 3.1: Let X1 and X2 be smooth projective varieties. Suppose that F :D�X1�→D�X2� is
an equivalence of triangulated categories. Then there exists an object K�D�X1	X2� , unique up
to isomorphism, such that the functors F and 
K are isomorphic.

The first question to ask is how to compose FM functors. Accordingly, let X1, X2, and X3 be
three nonsingular varieties, while let F�D�X1	X2� and G�D�X2	X3� be two kernels. Let
pij :X1	X2	X3→Xi	Xj be the projection map. A well-known fact is as follows.

Proposition 3.2: The composition of the functors 
F and 
G is given by the formula


G � 
F � 
H, where H = Rp13��p23
� �G��

L

p12
� �F�� . �23�

Proposition 3.2 shows that composing two FM functors gives another FM functor, with a
simple kernel. The composition of the kernels F and G�D�X	X� is therefore defined as

G � F ª Rp13��p23
� �G��

L

p12
� �F�� . �24�

There is an identity element for the composition of kernels: ���OX�, where � :X�X	X is the
diagonal embedding. For brevity we will denote ���OX� by O�:

O� ª ���OX� . �25�

O�=���OX� has the expected properties

O� � G = G � O� = G for all G � D�X 	 X� . �26�

Finally, the functors


23:D�X1 	 X2� → D�X1 	 X3�, G23 � D�X2 	 X3�, 
23�− � ª G23 � − ,

�27�

12:D�X2 	 X3� → D�X1 	 X3�, G12 � D�X1 	 X2�, 
12�− � ª − � G12

are morphisms between triangulated categories, i.e., they preserve distinguished triangles.
The composition of kernels is also associative,

G3 � �G2 � G1�  �G3 � G2� � G1. �28�

Now we have all the technical tools ready to study the monodromy actions of physical interest.

B. Monodromies in general

The moduli space of CFTs contains the moduli space of Ricci-flat Kahler metrics. This, in
turn, at least locally has a product structure, with the moduli space of Kahler forms being one of
the factors. This is the moduli space of interest to us. In what follows we study the physics of
D-branes as we move in the moduli space of complexified Kahler forms. This space is a priori
noncompact, and its compactification consists of two different types of boundary divisors. First we
have the large volume divisors. These correspond to certain cycles being given infinite volume.
The second type of boundary divisors is the irreducible components of the discriminant. In this
case the CFT becomes singular. Generically this happens because some D-branes �or several of

7Theorem 2.18 in Ref. 25. The theorem has been generalized for smooth quotient stacks associated with normal projective
varieties Ref. 26.
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them, even infinitely many� go massless at that point, and therefore the effective CFT description
breaks down. For the quintic this is the well-known conifold point.

The monodromy actions around the above divisors are well understood. We will need a more
abstract version of this story in terms of FM functors, which we now recall.8

Large volume monodromies are shifts in the B field: “B�B+1.” If the Kahler cone is higher
dimensional, then we need to be more precise and specify a two-form or, equivalently, a divisor D.
Then the monodromy becomes B�B+D. We will have more to say about the specific D soon.

The simplest physical effect of this monodromy on a D-brane is to shift its charge, and this
translates in the Chan–Paton language into tensoring with the line bundle OX�D�. This observation
readily extends to the derived category.

Proposition 3.3: The large radius monodromy associated with the divisor D is

LD�B� = B�

L

OX�D� for all B � D�X� . �29�

Furthermore, this is a FN functor 
L , with kernel

L = ��OX�D� , �30�

where � :X�X	X is again the diagonal embedding.9

For the conifold-type monodromies one has the following conjecture.10

Conjecture 3.4: If we loop around a component of the discriminant locus associated with a
single D-brane A becoming massless, then this results in a relabeling of D-branes given by the
autoequivalence of the derived category D�X� ,

B � C�RHomD�X��A,B��

L

A → B� . �31�

This action is again of FM type. Lemma 3.2 of Ref. 28 provides us with the following simple
relation for any B�D�X�:


C�A∨�A→O���B�  C�RHomD�X��A,B��

L

A → B� , �32�

where for an object A�D�X� its dual is defined by

A∨ = RHomD�X��A,OX� . �33�

Throughout the paper C�f� refers to the cone of the morphisms f :A→B.
Since the functor 
C�A∨�A→O�� will play a crucial role, we give it a name:

TA ª 
C�A∨�A→O��, TA�B� = C�RHomD�X��A,B��

L

A → B� . �34�

The question of when is TA an autoequivalence has a simple answer. For this we need the
following definition.

Definition 3.5: Let X be smooth projective Calabi–Yau variety of dimension n . An object
E�D�X� is called n -spherical if ExtD�X�

r �E ,E� is equal to Hr�Sn ,C� , that is, C for r=0,n and zero
otherwise.

One of the main results of �Ref. 28� is the following theorem �Proposition 2.10�.
Theorem 3.6: If E�D�X� is n -spherical then the functor TE is an autoequivalence.
This brief review brings us to a point where we can apply this abstract machinery to study the

C3 /Z5 monodromies and eventually use them to construct the fractional branes.

8For an extensive treatment of monodromies in terms of FM functors see Ref. 27.
9For a proof of this statement we refer to Ref, 8.
10Originally due to Kontsevich, Morrison, and Horja and presented in Ref. 27.
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C. C3 /Z5 monodromies

Now we have all the ingredients necessary for constructing the monodromy actions needed to
generate the fractional branes. The toric fan for the moduli space of complexified Kahler forms
was depicted in Fig. 3. The four maximal cones C1 , . . . ,C4 correspond to the four distinguished
phase points. The four edges correspond to curves in the moduli space. As discussed in Sec. II D
the curves in question are weighted projective lines L1=P1�1,2�, L2=P1�1,3�, L3=P1�2,5�, and
L4=P1�3,5� and are in fact all isomorphic to P1. The discriminant �0 intersects the four lines, and
we analyzed the order of every intersection. All this is summarized in Fig. 4.

When talking about monodromy there are two cases to be considered. One can loop around a
divisor, i.e., real codimension 2 objects, or one can loop around a point inside a complex curve. Of
course the two notions are not unrelated. Our interest will be in the second type of monodromy:
looping around a point inside a P1.

What we would like to write down is the monodromy inside L3 or L4 around the Z5 point.
Since there is no direct approach to doing this, we follow an indirect way: “go around.” Both L1

and L3 are spheres, with three marked points, and we can compute the corresponding monodro-
mies. Our approach is to go from the smooth point to the Z5 point by first “moving” inside L1 and
then L3. An equally valid path is through L2 and L4, but we are not going to deal with this.

We start with L1, which has three distinguished points: the smooth point, P0=L1��0, and the
Z2 point. Monodromy around the smooth point inside L1 is a large radius monodromy, and �5�
together with Proposition 3.3 tells us that it is precisely LD2

.
What about the monodromy around P0=L1��0? P0 is a conifold-type point, but the inter-

section is tangential at this point. We know that at this point every D5-brane wrapping the fibers
of the shrinking cycle D5 should go massless. The mass depends on the central charge, which in
turn is only a function of the K-theory class. Using the K-theory analysis of Ref. 16 one can
indeed verify the masslessness of the fiber-wrapping D5-branes.

In other words, there are infinitely many branes going massless at this point, and Conjecture
3.4 does not apply! At this point we could use Conjecture 4 from Ref. 27 developed for general
degenerations, but we find it easier to proceed by an indirect method, which borrows from the
techniques that gave supporting evidence for Conjecture 4 in Ref. 27.

Looking at Fig. 4, it is clear that there should be a relation between the following three
monodromies: monodromy around P0 inside L1, monodromy around �0, and finally, monodromy
around L1.

We can determine this relationship using knot theory. We remind the reader some facts about
the topology of plane curve singularities. Let the curve C be given by the vanishing locus of the
irreducible polynomial f . We assume that the origin is an isolated singularity of C. This informa-
tion is distilled by the notation “�C ,0� : f =0.” It is customary to take a small 3-sphere S�

3 of radius
� around the origin and look at the intersection L�C ,0�ªC�S�

3. L�C ,0� is in fact a knot and is
called the link of the singularity.

For K1 and K2 two disjoint knots in S3 their linking number lk�K1 ,K2� is defined as follows:
choose a 2-chain S in S3 such that �S=K1 �this is possible since H1�S3�=0�. lk�K1 ,K2� is then
given by the intersection number S ·K2.11

It is probably not surprising that the linking number of two algebraic knots can be computed
purely algebraically. For convenience we reproduce Proposition II.20.12 of Ref. 29.

Proposition 3.7: Let �Ci , P0� : f i=0 be two distinct irreducible plane curve singularities. The
linking number of their knots equals their order of intersection:

lk�L�C1,P0�,L�C2,P0�� = C1·P0
· C2, �35�

where C1·0C2 is the local intersection number of C1 and C2 .

11We are being intentionally loose about the orientation, since this will not affect our subsequent computations.
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We can apply readily the proposition to our case for �0 and L1. For us P0=L1��0. We
already know that �0·P0

L1=2. Both L�L1 , P0�=L1�S�
3 and L��0 , P0�=�0�S�

3 are unknotted
circles,12 and the link is represented in Fig. 5.

We can use the Wirtinger representation to compute a presentation for the fundamental group
of the complement of the link.13 Fix a basepoint above the sheet of paper, just before the eyes of
the reader. Each arrow in Fig. 5 represents a loop with that basepoint going under the given arc,
and therefore representing an element of �1. The four crossing relations from top to bottom are14

ba = a2b = a1a2 = aa1 = ba . �36�

This is three independent relations among the four loops b ,a ,a1 ,a2. We can solve for a1 and
a2 :a1=a−1ba and a2=bab−1 and also get one relation,

baba = abab . �37�

Thus the fundamental group of the complement of the two knots is the group on two generators
�a ,b� subject to the single relation �37�:

�1�S3 − �L1 � L2�� = �a,b�baba = abab� . �38�

Now remember that we are after the loop that encircles P0 inside L1. But this is the counter-
clockwise path L1�S�

3 from Fig. 5 and is homotopic to aa2=abab−1. Using �37� this also equals
b−1aba. But a is a loop around �0 and by Conjecture 3.4 the associated monodromy is T j�OD5

.

Similarly b is a loop around L1, and Eq. �6� tells us that it is LD1
. It thus follows that the

monodromy around P0 inside L1 is

MP0
= LD1

−1 � T j�OD5
� LD1

� T j�OD5
. �39�

Putting the pieces together we have the monodromy around the Z2 point inside L1:

MZ2
= LD1

−1 � T j�OD5
� LD1

� T j�OD5
� LD2

. �40�

We can simplify this expression by observing that

LD1

−1 � T j�OD5
� LD1

 T j�OD5
�−f�

and have

MZ2
= T j�OD5

�−f� � T j�OD5
� LD2

. �41�

A much simpler computation shows that the monodromy around the Z3 point inside L2 is

12For the general result see, for example, Proposition 4.2.21 in Ref. 29.
13For a nice reference see Ref. 30.
14Our order convention is that xy represents the path x followed by the path y.

L1 ∩ S3
ε ∆0 ∩ S3

ε

b a

a2

a1

FIG. 5. The two links: L�L1 , P0�=L1�S�
3 and L��0 , P0�=�0�S�

3.
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MZ3
= Ti�OD4

� LD1
. �42�

Now we can continue our march toward the Z5 point inside L3. Once again there are three
distinguished points: the Z5 point, L3��0, and the Z2 point. By the same token as before,
monodromy around L3��0 is Ti�OD4

. Of course we want the monodromy around the Z5 point, so

we need the monodromy around this Z2 point, which a priori has nothing to do with the previous
Z2 monodromy inside L1. But the monodromy around the Z2 point is more subtle. Figure 4 in fact
is quite misleading, since in reality the spheres L1 and L3 intersect transversely in 4-space.
Moreover, the intersection point is an orbifold itself: C2 /Z2. To see what happens, we need to work
out the local fundamental group of the complement of L1 and L3.15

Since the intersection point is a C2 /Z2 orbifold, we surround it by the lens space L=S3 /Z2

instead of the usual sphere S3. L1 and L3 are both smooth curves and therefore intersect L in
unknotted circles. This way we reduced the problem of computing �1�C2 /Z2− �L1�L3�� to com-
puting =�1�L− �L1�L3��. To evaluate this consider the covering map q :S3→L, with free Z2

action, induced by the Z2 action on C2. The intersection of both L1 and L3 with L lift under q−1 to
unknotted circles in S3. These circles are linked once and thus �1�S3− �q−1�L1��q−1�L3���=Z
� Z.16 The generators are the loops around q−1�L1� and q−1�L3�; we call them g1 and g2.

Since q is a normal cover we have a short exact sequence of Abelian groups,

0 → Z � Z →  → Z2 → 0. �43�

We can easily show that =Z � Z as well by choosing a convenient fundamental domain, and two
generators for  : l1 encircles L1, while l2 goes from a basepoint to its antipodal. This second
generator is a closed curve in L=S3 /Z2 because of the quotienting, but it does not lift to S3.
Nevertheless, 2l2 does lift to S3, and q−1�2l2�=g1+g2. In terms of the two bases �g1 ,g2� and �l1 , l2�
we have the nontrivial map in �43�:

Z � Z →
�1 −1

0 2
	
Z � Z . �44�

Now we can continue our monodromy calculation. We claim that the loop around L1�L3

inside L1 is homotopic to the loop around L1�L3 inside L3. This statement is not to be taken
literally though. Neither L1 nor L3 are part of the moduli space, so we are not looping inside them.
What we have are loops that are infinitesimally close to such loops but lie outside L1 or L3. This
distinction is usually irrelevant, but for us the singularity brings it to the forefront. What we need
to do is to deform the loop inside L1 around L1�L3 so that it does not intersect L1 or L3, and
similarly for the loop inside L3 around L1�L3. The reader can convince himself that the generic
deformations are indeed both homotopic to l2.

Therefore the monodromy inside L3 around the Z5 point is given by

MZ5
= Ti�OD4

� MZ2
= Ti�OD4

� T j�OD5
�−f� � T j�OD5

� LD2
. �45�

D. Quantum symmetries

It is an interesting question to ask how the Z2 �Z3� quantum symmetry of the partially resolved
Z2 �Z3� orbifold is realized in the derived category setup. Accordingly, we would like to compute
the action of �MZ2

�2 on a generic object. Unfortunately this seems too hard at this moment.17

Nevertheless, we can compute the Chern character of �MZ2
�2 acting on a generic K-theory class

x�K�X�.

15This situation is similar to the one analyzed in Ref. 31.
16An equivalent way of seeing this is to note that C2− �L1�L3� is homotopic to C�	C�, and that S1	S1 is a deformation
retract of C�	C�.
17The analogous statement for C2 /Z3 was proved in Ref. 8 while the compact case has been analyzed in Ref. 32.
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Inspecting the form of MZ2
in Eq. �41� we see that in order to compute ch��MZ2

�2x� some
general properties might be of use. Taking the Chern character of both sides in Eq. �34� one
obtains28,31

ch�TA�B�� = ch�B� − �A,B�ch�A� , �46�

where �A ,B� is an Euler characteristic:

�A,B� = �
i

�− 1�idim ExtD�X�
i �A,B� . �47�

The Grothendieck–Riemann–Roch theorem gives a useful way to compute this:

�A,B� = �
X

ch�A∨�ch�B�td�X� . �48�

Using �46� and �48� one can show that for any K-theory class x,

ch��MZ2
�2x� = eD1 ch�x� �49�

and

ch��MZ3
�3x� = eD2 ch�x� . �50�

This suggests that both �MZ2
�2 and �MZ3

�3 act like large radius monodromies. The result is sur-
prising at first, but a similar fact has been observed before,31,8 and it is consistent with the general
statement that monodromy at an orbifold point has to be associated with B-field components other
than the blow-up mode of the orbifold. For more on this we refer to Refs. 31 and 8.

A similarly statement is true at the Z5 orbifold point:

ch��MZ5
�5x� = ch�x� . �51�

We note that ch��MZ2
�x� does not have a simple expression, and similarly for ch��MZ3

�x� and
ch��MZ3

�2x�, and for the lower powers of MZ5
.

IV. THE C3 /Z5 FRACTIONAL BRANES

In this section we use the Z5 monodromy action found in the previous section to generate a
collection of fractional branes and study some of their properties. As a starting point we need to
know one of the fractional branes. We assume that the D5-brane wrapping the exceptional divisor
D5 is one of the fractional branes. This is a natural assumption as long as we do not make any
claims about the rest of the fractional branes. It is reasonable to expect that by various monodromy
transformations any one of the fractional branes can be brought to this form. Instead of guessing
the other two fractional branes, we look at the orbit of this D5-brane under the Z5 monodromy
action. In the quiver language the fractional branes are the simple representations of the quiver and
are mapped into each other under the Z5 quantum symmetry. Therefore, the fractional branes will
necessarily form a length 5 orbit of the Z5 monodromy, which is an incarnation of the Z5 quantum
symmetry.

A. Generating fractional branes

We start by recalling Eq. �45�, which gives us the form of the Z5 monodromy MZ5
. By the

assumption made above the first fractional brane is j�OD5
. The others are MZ5

k �j�OD5
� for k

=1, . . . ,4. We start out by computing MZ5
�j�OD5

�.

1. Computing MZ5
„j�OD5

…

The first step is quite trivial:
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j�OD5
→
LD2

j�OD5
�s + 3f� . �52�

We act on this with TOD5
�see footnote18� and use the fact that Rj� is a triangulated functor to

obtain

j�OD5
�s + 3f� →

TOD5

C�j�OD5

�5 → j�OD5
�s + 3f�� . �53�

The intermediate steps above involved using the spectral sequence �A1�, but we will always
suppress the details. In fact almost every step in this section involves one or more spectral
sequences.

Applying T j�OD5
�−f� to this gives something interesting:

C = C�j�OD5
�− f��3�1� → C�j�OD5

�5 → j�OD5
�s + 3f��� . �54�

We call this last complex C. It is easy to show that

ch�C� = − ch�j�OD5
�− s�� . �55�

Moreover, by naive counting C is a line bundle on D5. Therefore, it is natural to suspect the
following.

Lemma 4.1: C j�OD5
�−s��1�.

Proof: Since the functor Rj� preserves triangles, and the morphisms in C come from HomD5

0

�rather than higher Hom on D5=F3, which would be transformed by the spectral sequence into
HomX

0�,19 we have that

C = C�j�OD5
�− f��3�1� → C�j�OD5

�5 → j�OD5
�s + 3f���

 j�C�OD5
�− f��3�1� → C�OD5

�5 → OD5
�s + 3f��� . �56�

Therefore C= j�C5, where

C5 = C�OD5
�− f��3�1� → C�OD5

�5 → OD5
�s + 3f��� . �57�

Using the long exact sequences associated with cones, one can show that

HomD5

k �C5,OD5
�− s��1�� = �C for k = 0

0 otherwise.
� �58�

Therefore there is a map f :C5→OD5
�−s��1� in D�D5�. We will show that C�f�=0 in D�D5�, and

therefore f is a quasi-isomorphism.
To show that C�f�=0 in D�D5� it is sufficient to prove that

HomD5

k �Ei,C�f�� = 0 �59�

for a complete exceptional collection Ei on D5=F3. This is a spanning class in Bridgeland’s
sense.33 A convenient choice is the strong exceptional collection

O,O�f�, O�s + 3f�, O�s + 4f� �60�

on F3.34,35 Using this collection, it is a tedious but straightforward exercise to prove �59�. �

18To simplify the notation we denote Ti�ODk
by TDk

.

19This follows from the spectral sequence computation.
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The final step of computing MZ5
�j�OD5

� involves using the spectral sequence �A3� and results
in

j�OD5
�− s��1� →

TOD4

C�i�OD4
→ j�OD5

�− s��1�� = k�OD4+D5
�1� . �61�

The last equality follows from the exact triangle

j�OD5
�− s� → k�OD4+D5

→ i�OD4
→ j�OD5

�− s��1� , �62�

where k :D4+D5�X is the embedding map. The triangle stems from the short exact sequence20

0 → OC�− D� → OC+D → OD → 0. �63�

Thus the second fractional brane is k�OD4+D5
�1� and is a D5-brane that wraps both exceptional

divisors, D4 and D5. Equation �62� also shows that the D5-brane k�OD4+D5
wraps the intersection

of D4 and D5 only once.

2. Computing „MZ5
…

2
„j�OD5

…

To determine the third fractional brane we apply the Z5 monodromy again. Now the starting
point is the second fractional brane k�OD4+D5

�1� from the previous section. Since all the operations
that we perform are functors between triangulated categories, they all commute with the �1� shift
functor, and therefore

MZ5
�k�OD4+D5

�1�� = MZ5
�k�OD4+D5

��1� . �64�

So it suffices to compute MZ5
�k�OD4+D5

�. First of all

k�OD4+D5
→
LD2

k�OD4+D5
�D2� . �65�

For the next step we need RHomX�j�OD5
,k�OD4+D5

�D2��. We will determine this in two
different ways. The first method will use the cohomology long exact sequence associated with an
exact triangle. The second method will use the spectral sequence �A4�. Although the first method
is a priori more straightforward, the spectral sequence is much more efficient. The fact that the
two methods give the same result provides a consistency check for our calculations.

The exact triangle �62� implies that

j�OD5
�3f� → k�OD4+D5

�D2� → i�OD4
→ j�OD5

�3f��1� �66�

is an exact triangle as well. Applying the covariant functor ExtX
i �j�OD5

,−� to the exact triangle
�66� gives the long exact sequence

ExtX
i �j�OD5

, j�OD5
�3f�� → ExtX

i �j�OD5
,k�OD4+D5

�D2�� → ExtX
i �j�OD5

,i�OD4
� . �67�

The spectral sequence �A3� tells us that ExtX
i �j�OD5

, i�OD4
�=�i,1C2, while using the spectral se-

quence �A1� gives

20Intuitively this formula is easy to understand. The inclusion map of D into C+D allows us to restrict functions from C+D
to D. This is the map OC+D→OD. The kernel of this map consists of those functions on C that vanish at the intersection
point with D :OC�−D�. For a rigorous proof see Ref. 36.
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ExtX
i �j�OD5

, j�OD5
�3f�� = �C4 for i = 0

C2 for i = 2

0 otherwise.
� �68�

Using these two facts, the long exact sequence �67� tells us that ExtX
i �j�OD5

,k�OD4+D5
�D2��

=�i,0C4.
The same result can be obtained much quicker if we apply the spectral sequence �A4� to our

case. By Serre duality

ExtX
i �j�OD5

,k�OD4+D5
�D2�� = ExtX

3−i�k�OD4+D5
�D2�, j�OD5

� �69�

The spectral sequence �A4� then reads

�70�

and therefore ExtX
i �j�OD5

,k�OD4+D5
�D2��=�i,0C4, as we saw before.

Therefore we established that

k�OD4+D5
�D2� →

TOD5

C�j�OD5

�4 → k�OD4+D5
�D2�� . �71�

Applying T j�OD5
�−f� to this gives

k�OD4+D5
�D2� →

TOD5
�−f�

C�j�OD5
�− f��3�1� → C�j�OD5

�4 → k�OD4+D5
�D2��� . �72�

The way it stands, this expression is not too revealing, but fortunately we can simplify it
dramatically using a deep property of triangulated categories, known as the octahedral axiom.

The octahedral axiom: Assume that we are given two distinguished triangles having an
object B in common, �A ,B ,C , i , j ,k� and �B ,D ,E ,u ,v ,w� �these are the solid arrows�:

�73�

This setting gives us automatically two maps: u � i :A→E and j�1� �w :D→C�1�—these are the
dotted lines above. Using the two maps we can construct two distinguished triangles:
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�A ,E ,F1 ,u � i , . . . , . . .� and �C ,F2 ,D , . . . , . . . , j�1� �w�. The octahedral axiom states that F1=F2, and
the newly created two extra faces of the octahedron commute.21

Altogether, four of the faces of the octahedron are distinguished triangles and the other four
faces commute. We can present the upper and lower halves of the octahedron separately:

�74�

We signaled a distinguished triangle with the symbol � and a commuting triangle with �.
Forgetting for a moment about the maps involved, the octahedral axiom can be rewritten as

C�C → C�A → E�� = C�C�C�− 1� → A� → E� . �75�

This comes from the observation that D can be written in two different ways in terms of the other
objects.

Now we can return to the monodromy computation. Using the octahedral axiom �75�, the
complex in �72� becomes

C�C�j�OD5
�− f��3 → j�OD5

�4� → k�OD4+D5
�D2�� . �76�

To proceed we recall from Eq. �66� that

k�OD4+D5
�D2� = C�i�OD4

�− 1� → j�OD5
�3f�� �77�

and use another form of the octahedral axiom �once again D is written in two different ways�:

C�C�A → B� → F� = C�B → C�F�− 1� → A�� . �78�

Using �78� and �77�, Eq. �76� becomes22

C�C�j�OD5
�3f� → C�j�OD5

�− f��3 → j�OD5

�4�� → i�OD4
� . �79�

This expression is in fact much simpler than it looks due to the following.
Lemma 4.2: C=C�j�OD5

�3f�→C�j�OD5
�−f��3→ j�OD5

�4��0.
Proof: The proof is identical in spirit to one from the previous section, and therefore we are

going to be sketchy. The functor j� preserves triangles, and the morphisms in C are Hom0 on
D5=F3, so C= j�C5, where

C5 = C�OD5
�3f� → C�OD5

�− f��3 → OD5

�4�� . �80�

An explicit computation then shows that HomD5

k �Ei ,C5�=0 for the spanning class �60�. �

Using the lemma we have that

21Although this way of stating the octahedral axiom is not the standard one, it is equivalent to the more customary one
�Ref. 37�.
22Here F= i�OD4

, A= j�OD5
�3f�, and B=C�j�OD5

�−f��3→ j�OD5

�4�.
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k�OD4+D5
�D2� →

TOD5
�−f�

j�OD4
. �81�

Therefore the last step of the computation involves TOD4
�i�OD4

�. Here we can use a more general

result.23

Lemma 4.3: If A is an n -spherical object, then TA�A�=A�1−n� .
For n=3 and A= i�OD4

,24 the lemma gives Ti�OD4
�i�OD4

�= i�OD4
�−2�, and thus

MZ5
�k�OD4+D5

�1�� = i�OD4
�− 1� . �82�

This establishes i�OD4
�−1� as the third fractional brane.

3. Computing „MZ5
…

3
„j�OD5

…

The first step is totally trivial since D2 and D4 are disjoint:

i�OD4
→
LD2

i�OD4
. �83�

Now we act on this with TOD5
and use the spectral sequence �A1�:

i�OD4
→

TOD5

C�j�OD5

�2�− 1� → i�OD4
� . �84�

Applying T j�OD5
�−f� gives

C�j�OD5
�− f� → C�j�OD5

�2�− 1� → i�OD4
�� . �85�

We can rewrite this expression using the octahedral axiom �75�:

C�C�j�OD5
�− f� → j�OD5

�2��− 1� → i�OD4
� . �86�

The first cone simplifies if we use the Koszul resolution25 �for the intersection of two fibers on
D5=F3, which is empty, and recall that O�=0�:

0 → OD5
�− 2f� → OD5

�− f��2 → OD5
→ 0. �87�

This shows that

C�j�OD5
�− f� → j�OD5

�2� = OD5
�f� , �88�

and therefore �86� becomes

C�OD5
�f��− 1� → i�OD4

� . �89�

Finally

C�OD5
�f��− 1� → i�OD4

� →
TOD4

C�i�OD4
→ C�OD5

�f��− 1� → i�OD4
��  OD5

�f� . �90�

In other words, the fourth fractional brane, OD5
�f�, is a 5-brane wrapping the F3 with D3-brane

flux turned on.

23For a proof the reader can consult Lemma 4.1 in Ref. 8.
24Proposition 3.15 of Ref. 28 guarantees that i�OD4

is 3-spherical in the sense of Definition 3.5, or one can check this
directly using the spectral sequence �A1�.
25The maps are the correct ones needed for this to work.
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4. Computing „MZ5
…

4
„j�OD5

…

First,

j�OD5
�f�→

LD2

j�OD5
�s + 4f� . �91�

Acting with TOD5
one obtains

j�OD5
�s + 4f� →

TOD5

C�j�OD5

�7 → j�OD5
�s + 4f�� . �92�

Applying T j�OD5
�−f� gives

C = C�j�OD5
�− f��5�1� → C�j�OD5

�7 → j�OD5
�s + 4f��� . �93�

We named this last complex C. It is easy to show that

ch�C� = − ch�j�OD5
�f − s�� . �94�

Moreover, by naive counting C is a line bundle on D5. Therefore, it is natural to suspect the
following.

Lemma 4.4: C j�OD5
�f −s��1�.

Proof: The proof is by now standard: The crucial point is once again the fact that every map
in C is a Hom0 on D5=F3, and thus C= j�C5, where

C5 = C�OD5
�− f��5�1� → C�OD5

�7 → OD5
�s + 4f��� . �95�

Using the long exact sequences associated with the cones one shows that

HomD5

k �C5,OD5
�f − s��1�� = �C for k = 0

0 otherwise.
� �96�

Therefore there is a map f :C5→OD5
�−s��1� in D�D5�, and it turns out that C�f� is orthogonal to

the spanning class �60�, and we can conclude like in Lemma 4.1. �

Using the lemma the final step of MZ5
�j�OD5

�f�� is

TOD4
�j�OD5

�f − s��1�� = C�i�OD4

�2 → j�OD5
�f − s��1�� . �97�

This is another 5-brane wrapping both D4 and D5. One expects these branes in order to be able to
describe the decays of all the C3 /Z3 fractional branes �which can be chosen to be ��P2

k �k��k��k=0
2 �.

B. The quiver

Let us summarize the lengthy computation of this section. We have shown the following
mappings under the action of MZ5

:

j�OD5
� k�OD4+D5

�1�, j�OD4+D5
� i�OD4

�− 2� ,

�98�
i�OD4

� j�OD5
�f�, j�OD5

�f� � C�i�OD4

�2 → j�OD5
�f − s��1�� .

Shifting appropriately, the following list of five objects forms an orbit of the Z5 orbifold quantum
symmetry:
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j�OD5
�1�, k�OD4+D5

�2�, i�OD4
, j�OD5

�f�, C�i�OD4

�2 → j�OD5
�f − s��1�� . �99�

Therefore we have potential sets of fractional branes. Let us call them �Fi�i=1
5 . All of them are

automatically 3-spherical since they were obtained by autoequivalence, and the initial one, j�OD5
,

is 3-spherical.
The first thing we need to check is whether their charges, measured by the K-theory, add up

to that of the D3-brane. One easily computes the Chern characters, and has that

�
i=1

5

ch�Fi� = ch�Opt� . �100�

Next we compute the Ext1-quiver of the collection �99�. Using the spectral sequences from the
Appendix we obtain the well-known C3 /Z5-quiver, depicted in Fig. 6.

Moreover, the Ext0 and Ext3 between different branes are all zero. Therefore the potentially
tachyonic strings are missing. For every Ext1 there will be an Ext2 by Serre duality, and the Ext2

will give the correct superpotential.
Finally we need to check that the central charge, and hence the mass, of the Fi is a fifth of the

D3-brane central charge at the Z5 point in moduli space. This can be done using the expression for
the central charges in terms of the periods given in Ref. 16. This works because the central charges
are determined by the large volume asymptotics, which depend only on the Chern character of the
brane.

C. Connection with the McKay correspondence

The classical version of the McKay correspondence38 relates the representations of a finite
subgroup � of SL�2,C� to the cohomology of the minimal resolution of the Kleinian singularity
C2 /�.

A solid understanding of the McKay correspondence culminated with the work of Bridgeland
et al. �Bridgeland–King–Reid �BKR��,4 who showed that in dimensions 2 and 3 the McKay
correspondence is an equivalence of two very different derived categories.26 Let us review their
construction applied to C3 /Z5. As we will see, the McKay correspondence provides a set of
fractional branes, which is different from what we obtained by monodromy.

First we have the covering map q :C3→C3 /Z5 and the map p̃ :X→C3 /Z5 corresponding to the
resolution of singularities. Using these two maps we can consider the fiber product Y of C3 and X
over C3 /Z5:

26The BKR proof generalizes to higher dimensions provided there exists a crepant resolution �Ref. 4�.

•

•

•

• •

OD4

OD5 [1]

OD5(f) OD4+D5[2]

Cone (i∗O⊕2
D4

→
j∗OD5(f − s)[1])

FIG. 6. The C3 /Z5-quiver.
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Y →
q2 C3

q1↓ ↓q

X →
p̃

C3/Z5

. �101�

Let CohZ5�C3� be the category of Z5-equivariant coherent sheaves on C3. BKR show that the
functor


 = Rq2� � q1
�:D�X� → D�CohZ5�C3�� �102�

is an equivalence of categories. This statement implies the classical McKay correspondence.
There is another equivalence at hand, although this one is more mundane: the one-to-one

correspondence between the representations of the C3 /Z5 McKay quiver and the category of
Z5-equivariant coherent sheaves on C3 �for a review see Ref. 7�. In the language of quiver repre-
sentations the fractional branes are the simple objects, i.e., with no subobjects; the representations
with all but one node assigned the trivial vector space, and all arrows are assigned the 0 mor-
phisms. We can compose this equivalence with 
 from �102� and ask for the inverse images of the
simples in D�X�. This provides a set of fractional branes. Unfortunately this question has not been
answered yet in the literature. So far the answer is known only for Cn /Zn �for n=3 see, e.g., Ref.
7� and C2 /�.39

If we simplify the question and ask only about K-theoretic inverse images, then one can use
the technology of Ito and Nakajima.40 This process was carried out in Ref. 16 with the following
answer:

j�OD5
�− s� + i�OD4

,− j�OD5
�− s − f� − i�V,i�OD4

�− 1�,− j�OD5
�− s�, j�OD5

�− s − f� ,

�103�

where V is a rank 2 bundle on P2, with ch V=2−H−H2 /2, H being the hyperplane class on P2.
This collection is to be contrasted with the one obtained in Sec. IV, more precisely �99�. Next

we elucidate their connection using Seiberg duality.

1. Seiberg duality

The original Seiberg duality41 is a low-energy equivalence between N=1 supersymmetric
gauge theories: an SU�Nc� theory with Nf fundamental flavors and no superpotential and an
SU�Nf −Nc� theory with Nf fundamental magnetic flavors with a superpotential containing mesons.
The duality says that both flow to the same theory in the infrared. We will use the
Berenstein–Douglas42 extension of Seiberg duality, which has a natural stratification. In its sim-
plest form it amounts to a base change for the branes. Since the new basis usually involves
antibranes in the language of the old basis, this change is most naturally done in the derived
category of coherent sheaves rather than sheaves alone. Therefore in this form Seiberg duality is
an autoequivalence of the derived category of coherent sheaves, which by Orlov’s theorem �Theo-
rem 3.1� is a FM functor.

The most general form of Seiberg duality arises when the t -structure of the derived category
is changed. This is usually achieved by the use of tilting complexes.42 What makes this possible is
the underlying fact that there are different Abelian categories with equivalent derived categories.

Thus, in general, the difference between two collections of fractional branes can only be
partially attributed to a choice of basepoint, since tiltings are more general than autoequivalences.
The McKay collection, although not explicitly, but inherently is associated with the vicinity of the
orbifold point. The collection obtained by monodromies explicitly involved the choice of a base-
point for the loops in the moduli space, and this basepoint was in the vicinity of the large volume
point. Therefore it is reasonable to expect that the two collections differ only by a change in
basepoint.
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Indeed, one finds that the two collections �103� and �99� are related by monodromy around a
point in moduli space where the brane wrapping both D4 and D5 is becoming massless, in other
words TOD4+D5

. The intuition for this fact comes from two observations. First, one recognizes that

in K-theory j�OD5
�−s�+ i�OD4

=k�OD4+D5
and second that ch V=ch �P2�1�, where �P2 is the co-

tangent bundle of P2. The authors of Ref. 16 seem to be unaware of these facts.
Since OD4+D5

is 3-spherical,27 Lemma 4.3 tells us that

TOD4+D5
�k�OD4+D5

�2�� = k�OD4+D5
�2 − 2� = k�OD4+D5

. �104�

This establishes a link between the two sets. One can go further and show that ch�TOD4+D5
�Fi�� for

Fi from the collection �99� is precisely the set given in �103�. This is the most one can say at this
point, since the collection �103� is defined only in K-theory.

One can turn the argument around and propose that the above relationship lifts to D�X�; in
other words the McKay collection is given by TOD4+D5

applied to �99�. This is easy to compute,

since all the necessary Hom can be read off from the quiver. Applying TOD4+D5
to �99� yields

i�OD4
�− 1��2�, k�OD4+D5

, j�OD5
�− s��1�, C�k�OD4+D5

�2 → j�OD5
�f��, j�OD5

�− s − f��2� .

�105�

Every step above is straightforward except for the last term, j�OD5
�−s− f��2�, where one needs to

use the octahedral axiom �75�.
It would be interesting to reproduce the collection �105� by a direct computation using 
 from

the McKay correspondence �102�, as done for C3 /Z3 in Ref. 43 and for C2 /Zn in Ref. 39.

V. THE Cn /Zm-QUIVER FROM PARTIAL RESOLUTIONS

The partial resolutions of the Cn /Zm singularity form a partially ordered set. The simplest
partial resolutions involve blowing up only one exceptional divisor. This is particularly easy to do
torically. For C3 /Z5 we sketched the partial resolutions in Fig. 2. In fact there is a one-to-one
correspondence between the different Zm actions on Cn and the different compact divisors in the
resolution of the Cn /Zm singularity. We outline this relationship briefly, as it plays a useful role in
proving the main result of this section.

Since Zm is cyclic, the action is totally specified by how a primitive generator acts on Cn:

�z1, . . . ,zn� � ��n
a1z1, . . . ,�n

anzn�, ��n�n = 1. �106�

We fix the ai to be between 0 and m−1.
From the string theory point of view the most interesting Zm actions are those where Zm is a

subgroup of SL�m ,C�, since these admit crepant resolutions. From now on we make the following
assumption:

m = �
i=1

n

ai. �107�

There is a convenient toric representation for the Cn /Zm variety. As explained in Sec. IIB of
Ref. 21, the toric fan consists of only one cone, generated by the unit vectors of Zn, while the N
lattice of the toric variety is

N = Zn +
1

m
�a1, . . . ,an�Z . �108�

27It was obtained from a 3-spherical object, j�OD5
, by an autoequivalence.
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Let �ei�i=1
n be the unit vectors of Zn. Condition �107� guarantees that the vectors ei and v

= �1 /m��a1 , . . . ,an� all lie on the hyperplane �i=1
n xi=1. It is also clear that v is an affine combina-

tion of the ei. This representation links the different group actions �106� to the various rational
affine combinations of the base vectors ei.

For simplicity we assume that the ai do not have a common divisor. If this were not the case,
then this common divisor d would also divide m=�ai, and the Zd subgroup of Zm would act
trivially, effectively reducing the action to Zm/d. Of course this statement is valid for schemes and
would fail if we viewed Cn /Zm as a smooth Deligne–Mumford stack.

The lattice vector v= �1 /m��a1 , . . . ,an� gives rise to a torus-invariant divisor Dv. As usual, the
divisor itself is a toric variety, and with our assumption on the ai it is the weighted projective space
Pn−1�a1 , . . . ,an�. We sketch the argument.

First one observes that

�
i=1

n

ai�ei − v� = �
i=1

n

aiei − mv = 0. �109�

The N lattice of Dv by definition is NDv
=N /Zv.21 The star of v consists of every cone, and the rays

of Dv are ei−v. Let us denote by ū the class of the image of u�N under the natural projection
N→NDv

. Therefore the relation �109� descends to

�
i=1

n

aiei = 0. �110�

This is the “signature” relation for Pn−1�a1 , . . . ,an�. One still needs to show the minimality of this
relation.

Proof: We assume that there is another relation �i=1
n riei=0. Lifting this to N means �i=1

n riei

=�v for some ��Z. In other words

ri =
�

m
ai for all 1 � i � n . �111�

Now for no k is ak=0 �otherwise we would not have a Zm action on Cn but on a lower dimensional
space�, and thus rk�0, i.e., the length of the relation is minimal. Furthermore, if � /m�1, then
m /� divides ai for all 1� i�n. We already assumed that the ai do not have a common divisor, and
thus � /m�1. Now summing both sides of �111� gives �i=1

n ri=��m, and thus �110� is indeed
minimal. �

The McKay correspondence gives an equivalence between quiver representations and sheaves
on the resolved space, but it glosses over the partial resolutions. One can fill in the gap by
recasting it slightly into the language of stacks. First recall that there is an equivalence of catego-
ries between Cn /G-quiver representations and coherent sheaves on the quotient stack �Cn /G�.
Therefore the McKay correspondence reads as

D��Cn/G��  D�crepant resolution of Cn/G� . �112�

Kawamata generalized the above statement, and for G Abelian he proved that44

D��Cn/G��  D�partial crepant stacky resolution�  D�crepant resolution� , �113�

where in the middle one has to consider the partially resolved space as a stack.
Therefore it makes sense to talk about fractional branes on the partially resolved space and ask

what they are. The strategy of this section is to use an appropriate set of objects on the exceptional
divisor of the resolution to model the fractional branes. This strategy was successfully deployed in
Ref. 14 as well.
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We already saw that the divisor Dv is Pn−1�a1 , . . . ,an�. In the light of Kawamata’s work, we
need to consider the stack Pn−1�a1 , . . . ,an� instead. The reason for this is intuitively clear: in order
for Dv to be able to capture the fact that it provides a partial resolution for the Cn /Zm singularity,
we have to retain more information than its scheme structure.

We consider the stack Pn−1�a1 , . . . ,an� from the point of view quotient stacks,35,45 where it was
shown that it has a full and strong exceptional collection of length n:

O,O�1�, . . . ,O�m − 1�, where m = �
i=1

n

ai. �114�

The mutation-theoretic dual of this exceptional collection was thoroughly investigated in Ref.
45.28 In particular, Proposition 2.5.11 of Ref. 45 states that the mutation-theoretic left dual of the
collection O , . . . ,O�m−1� is given by the full exceptional sequence

M�1−m�,M�2−m�, . . . ,M�−1�,M�0�. �115�

In order to explain the previous expression we need to introduce some notation. Let
I� �1,2 , . . . ,n� be a subset and consider the weighted projective stack Pn−1�a1 , . . . ,an�. Then #I
will denote the number of elements in I, while aI=�i�Iai. In this notation, for 0� l�−m, the
complex M�l� is defined as a subcomplex of the Koszul complex K twisted by O�l�,45 with the jth
term given by

M�−l�
j = �

#I=−j,aI�l
O�l − aI� � �

#I=−j
O�l − aI� = K j�l� . �116�

In other words M�l� has nonzero components only in nonpositive degrees. Let us give two
examples.

Example 5.1: For P1�a1 ,a2� , assuming that a1�a2 , the M�l� are29

M�−l� = � O�l� for 0 � l � a1

O�l − a1� → O�l� for a1 � l � a2

O�l − a1� � O�l − a2� → O�l� for a2 � l � a1 + a2.
� �117�

Example 5.2: For P1�1,1 ,3� the M�l� are

M0 = O ,

M−1 = O�2 → O�1� ,

M−2 = O → O�1��2 → O�2� , �118�

M−3 = O�1� → O � O�2��2 → O�3� ,

M−4 = O�1��2
� O�2� → O�1� � O�3��2 → O�4� .

For brevity let us denote the stack Pn−1�a1 , . . . ,an� by Y. Similarly, the partially resolved
quotient stack Bl�Cn /Zm�, with exceptional divisor Dv, is denoted by X. Let

28For the definition and properties of mutations see, e.g., Ref. 34.
29We underlined the zeroth position in a complex.
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i:Y = Pn−1�a1, . . . ,an� � X = Bl�Cn/Zm�

denote the embedding morphism of stacks.
Proposition 5.3: For any n�2 and Zm action on Cn such that the weights �a1 , . . . ,an� do not

have a common divisor and m=�i=1
n ai the pushed-forward complexes

i�M�1−m�,i�M�2−m�, . . . ,i�M�−1�,i�M�0�

provide a model for the Cn /Zm fractional branes.
Proof: The group Zm has m irreducible representations, all of them one dimensional. We label

them by their characters: �i for 0� i�m, where �m=1. In terms of these the Zm action �106� is
�a1 � ¯ � �an. The McKay quiver has its nodes given by the irreps, and the number of arrows
from �i to � j is given by bij in the following formula:

�i
� ��a1 � ¯ � �an� = � j=1

n bij�
j . �119�

Therefore bij = # �k� �1, . . . ,n� �ak= j− i�, i.e., the cardinality of the finite set.
Now we fix a node, say, �i, and we analyze to what nodes do arrows go from this node. This

information for all i is sufficient to draw the quiver. By �119� the arrows go to the nodes �ak+i.
Now 0�ak�m and 0� i�m, and thus 0�ak+ i�2m. In conclusion, there are arrows going from
node �i to node � j if

i � j and j = i + ak for some k or

�120�
i � j and i + ak = j + m for some k .

Taking into account the multiplicities, the number of arrows going from node �i to node � j is

Ni→j = �#�k�ak = j − i� if i � j

#�k�ak = m + j − i� if i � j .
� �121�

As we said, this is sufficient to draw the McKay quiver. Next we show that the same rules are
satisfied by the Ext1-quiver of the proposed fractional branes.

To evaluate the Ext-groups we use the stacky version of the spectral sequence �A1� �see, e.g.,
Ref. 43�. In our case i :Y=Pn−1�a1 , . . . ,an��X=Blk�Cn /Zm�. For E and F two objects in D�Y� the
spectral sequence reads

E2
p,q = ExtY

p �E,F � �qNY/X� ⇒ ExtX
p+q�i�E,i�F� . �122�

Since NY/X=KY has rank 1,30 the spectral sequence degenerates at E2, and we have that

ExtX
1 �i�E,i�F� = ExtY

1 �E,F� � ExtY
0 �E,F � KY� . �123�

Serre duality gives ExtY
0 �E ,F � KY�=ExtY

n−1�F ,E�∨, and therefore

ExtX
1 �i�E,i�F� = ExtY

1 �E,F� � ExtY
n−1�F,E�∨. �124�

The ExtY
i �M�i� ,M�j�� groups are easily computed using Lemma 2.5.12 of Ref. 45:

dim ExtY
k �M�i�,M�j�� = # �J � �1, . . . ,n�� # J = k,aJ = j − i� . �125�

Therefore

dim ExtY
1 �M�i�,M�j�� = # �k � �1, . . . ,n��ak = j − i� �126�

and

30We used the fact that KX is trivial.
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dim ExtY
n−1�M�i�,M�j�� = # �k � �1, . . . ,n��m − ak = j − i� , �127�

Observe that both �126� and �127� vanish if i� j, and thus only one of them contributes to �124�
for any given i and j. Putting the pieces together we have that

ExtX
1 �i�M�i�,i�M�j�� = �#�k�ak = j − i� if i � j

#�k�m − ak = i − j� if i � j .
� �128�

But this expression agrees with �121�, and hence the two quivers are identical.
To complete the proof, we need to show that the i�M�l� indeed “add up” to the D3-brane. It

suffices to show the following K-theory relation:
Lemma 5.4:

�
l=0

1−m

�M�l�� = �Opt� . �129�

Proof: By definition

�
l=0

m−1

�M�−l�� = �
l=0

m−1

�
j=0

n−1

�− 1� j�M�−l�
−j � = �

l=0

m−1

�
j=0

n−1

�− 1� j �
#I=j,aI�l

�l − aI�H , �130�

where we called �O�1��=H. The last expression is in fact a sum over restricted pairs �l , I�,

�
�l,I�:aI�l

�− 1�#I�l − aI�H . �131�

The idea of the proof is to reorganize the terms of this sum such that one has natural cancellations
and then recognize the remaining terms as having to do with a certain Koszul resolution. To this
aim we first investigate the pairs �l , I� from the above sum.

Since I� �1, . . . ,n� its cardinality is k for some 0�k�n. These subsets fall into two catego-
ries: those that contain the element 1 and those that do not. The first step is to show that the I
containing 1 cancel out many of the terms coming from the subset I− �1�.

Let I contain 1. The sum in �131� runs over pairs �l , I� such that aI� l�m. The contribution
of such a term is �−1�#I�l−aI�H, with 0� l−aI�m−aI, or

�− 1�#I�H for 0 � � � m − aI. �132�

Now consider the subset I�= I− �1�, assuming that 1� I, for which aI� =aI−a1. The range of l
for a pair �l , I�� is aI� � l�m, i.e., aI−a1� l�m. The contributions coming from the �l , I�� is
�−1�#I�

�l−aI��H, with 0� l−aI� �m−aI� =m−aI+a1, or using #I�= # I−1:

− �− 1�#I�H for 0 � � � m − aI + a1. �133�

Comparing �132� and �133� we see that �132� cancels all the terms in �133�, except those in
the range m−aI���m−aI+a1.

Let us rephrase what we obtained. Given a pair �l , I� we have the following:

�1� if 1� I then �l , I� gives no contribution to �131�—since it cancels part of the �l−a1 , I− �1��
contribution;

�2� if 1� I then �l , I� contributes to �131� only if m−a1� l�m—the others are canceled by �l
+a1 , I� �1��.

022304-27 Cn /Zm fractional branes J. Math. Phys. 50, 022304 �2009�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 22 Jan 2014 14:50:56



The second statement is justified so far only if #I�n−1. So what happens for #I=n−1? If
I�= �2, . . . ,n�, then there is no contribution coming from I� �1�= �1, . . . ,n�, since the condition
l�m disallows any pair containing �1, . . . ,n�. On the other hand, aI�=�i=2

n ai=m−a1, and thus the
condition aI�� l�m reads m−a1� l�m, which is what we want.31

Therefore the sum �131� has been reduced to �by the above conclusion the sum is unrestricted�

�
l=m−a1

m−1

�
1�I

�− 1�#I�l − aI�H = � �
l=m−a1

m−1

l	��
1�I

�− 1�#I	H − a1��
1�I

�− 1�#IaI	H . �134�

The first sum is

�
1�I

�− 1�#I = �
i=0

n−1

�− 1�i�n − 1

i
	 = 0. �135�

The second factor comes from the Koszul complex of the point �1,0 , . . . ,0� on Pn−1�a1 , . . . ,an�.
The ideal in question is �x2 , . . . ,xn�, and the jth term of the Koszul complex is K j = �#J=jO�−aJ�,
where now J� �2, . . . ,n�. These J are precisely the I appearing in �134�. Therefore

�
1�I

�− 1�#IaIH = �O�1,0,. . .,0�� , �136�

the K-class of the singular point �1,0 , . . . ,0�. a1 times this is a nonsingular point on the stack
Pn−1�a1 , . . . ,an�, and this proves the lemma. �
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APPENDIX: SOME USEFUL SPECTRAL SEQUENCES

In the bulk of the paper we make extensive use of spectral sequences. We recall three of them
here �for more details see Ref. 8�.

The simplest case concerns a smooth subvariety S of a smooth variety X. Let i :S�X be the
embedding, and NS/X the normal bundle of S in X. Then for two locally free sheaves E and F on
S, we have the first spectral sequence:

E2
p,q = ExtS

p�E,F � �qNS/X� ⇒ ExtX
p+q�i�E,i�F� �A1�

where �q denotes the qth exterior power.
A more general case is when you are given two nested embeddings: j :T�S and i :S�X, a

vector bundle F on T, and a vector bundle E on S. Then we have the spectral sequence

E2
p,q = ExtT

p�E�T,F � �qNS/X�T� ⇒ ExtX
p+q�i�E, j�F� . �A2�

The symbol �T means restriction to T.
The final and most general case deals with two subvarieties T and S of X. Now the embed-

dings are i :S�X and j :T�X. Once again F is a vector bundle on T, and E is a vector bundle on
S. The spectral sequence is

31There is no problem at the other end, where I= �1�, since I�= I− �1�=�, for which the condition aI�� l�m reads 0� l
�m, and no terms are missing for the assumed cancellation.
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E2
p,q = ExtS�T

p �E�S�T,F�S�T � �q−mÑ � �topNS�T/T� ⇒ ExtX
p+q�i�E, j�F� , �A3�

where Ñ=TX �S�T / �TS �S�T � TT �S�T� is a quotient of tangent bundles, while m=rk NS�T/T.
We also recall a spectral sequence derived in Appendix B of Ref. 8. Let X be a smooth

algebraic variety. Consider two divisors C and D on X and the embedding maps i :C+D�X and
j :C�X. The divisor C+D is reducible and singular. For a coherent sheaf F on C, the spectral
sequence with the E2

p,q term,

�A4�

converges to ExtX
p+q�i�OC+D , j�F�.

Although these spectral sequences were derived for sheaves, they extend to the derived cat-
egory. It is also clear that �A1� is a particular case of �A2�, which in turn is a particular case of
�A3�.
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