
On the Code Reverse Engineering Problem
Mathieu Cluzeau∗, Jean-Pierre Tillich∗

∗ INRIA, B.P. 105, 78153 Le Chesnay Cedex - France,
Email :{mathieu.cluzeau,jean-pierre.tillich}@inria.fr

Abstract— This article deals with the problem of quantifying
how many noisy codewords have to be eavesdropped in order
to reverse engineer a code. The main result of this paper is a
lower bound on this quantity and the proof that this number is
logarithmic in the length for LDPC codes.

I. INTRODUCTION

The problem we address here is to be understood in the
more general context of reverse-engineering a communication
system. The general problem is, for an observer (or a spy),
to recover the transmitted information from the knowledge of
the observed stream. But he does not know anything about
the characteristics of the different elements except the noisy
channel, and so his first goal is to determine which elements
have been used in the communication system. This problem
arises for instance in a military context ; reverse engineering
of the error correction component has been studied in [8], [1],
[2] whereas reverse engineering of the scrambler has been
considered in [3].

Here, we are interested in reverse engineering the error-
correcting code C which has been used for communication.
We call this the CRE problem (which stands for “Code
Reverse Engineering”). We make the assumption that the
observer knows that C has been chosen among a family E
of codes of a given length n. Throughout the paper we will
assume that C has been chosen uniformly at random among
E and that M codewords X1, . . . , XM have also been chosen
uniformly at random in C independently from each other
and transmitted over the communication channel. We assume
that the communication channel is a discrete memoryless
channel. We denote by Y 1, . . . , YM the received words and
set X

def=(Xi)1≤i≤M and Y
def=(Y i)1≤i≤M . We assume that the

observer has observed all these noisy codewords Y i’s and wish
to find which code has been chosen in E . We also assume that
all codes in E have the same length n and rate R.

We denote for a couple of discrete random variable X and Y
their respective (binary) entropies by H(X) and H(Y), their
mutual information by I(X;Y) and the conditional entropy
of X given Y by H(X|Y).

II. A CAPACITY FORMULA FOR THE CRE PROBLEM

A. A Capacity Problem

As explained in the introduction, one of the fundamental
issues which has to be addressed when trying to solve the CRE
problem is to estimate the number of intercepted messages
which is required to be able to find with good probability the
code used during transmission. The answer of this question

will be seen to heavily depend on two parameters of the code
family E being used for transmission:
(i) its size |E|,
(ii) a quantity related to its average error-correcting properties
γ(E).

We define this quantity here by

γ(E) = I(X;Y |C) (1)

where C is chosen in E as explained above, X is chosen
uniformly at random in C and Y is the received word after
sending X through the discrete memoryless channel under
consideration. This quantity lies between nR and 0 and is
close to nR when most of the codes in E enable us to recover
X from Y most of the time.

The issue of giving lower and upper bounds on the size of
M which is required for recovering C with good probability
is in essence an estimation of a channel capacity. The channel
that the spy sees can be viewed as follows. The input alphabet
of the channel is E and the output alphabet of the channel is
the set B of all possible output vectors for the Yi’s. In this
case, he also knows that that the repetition code has been
used (C was transmitted M times). The channel is then a
discrete memoryless channel, when an input symbol C is
transmitted (i.e. a code in E) a random word X is chosen
in C and transmitted through the real communication channel
to become an element Y of B. The crucial fact is that for any
y1, . . . , yM ∈ B and any c ∈ E we have

P(Y = (y1, . . . , yM)|C = c) =
M∏
i=1

P(Yi = yi|C = c). (2)

From now on, we will use the following convention:
Notation: X and Y denote random variables as defined above.

Viewing the CRE problem in this way motivates to look
at the mutual information between Y and C. There is a very
simple formula for this quantity involving γ(E), namely

Lemma 1: We have

I(Y ;C) = I(X;Y)− γ(E).
Proof: This is basically a consequence of the fact that

the triple (C,X, Y) forms a Markov chain (the conditional
distribution of Y depends only on X and is conditionally
independent of C). From this, the reverse triple (Y,X,C)
forms a Markov chain too. Let us observe now that I(Y ;C,X)
can be expressed in two different ways

I(Y ;C,X) = I(Y ;C) + I(Y ;X|C)
= I(Y ;X) + I(Y ;C|X).

From the Markov chain property I(Y ;C|X) = 0. We deduce
the following expression for I(Y ;C):

I(Y ;C) = I(Y ;X)− I(Y ;X|C) = I(X;Y)− γ(E).

B. A General Lower Bound on the Required Number of
Intercepted Messages

The conditional entropy H(C|Y) can be related to
γ(E),M, n, I(X;Y) and |E| by the following proposition

Proposition 1:

H(C|Y) ≥ log2(|E|)−M (I(X;Y)− γ(E)) .
Proof: Let us first write that

H(C|Y) = H(C)− I(Y ;C) = log2 |E| − I(Y ;C). (3)

>From the independence property (2) we know that
H(Y |C) =

∑M
i=1H(Y i|C). Since I(Y ;C) = H(Y) −

H(Y |C), we obtain

I(Y ;C) = H(Y)−
M∑
i=1

H(Y i|C)

≤
M∑
i=1

H(Y i))−
M∑
i=1

H(Y i|C)

≤
M∑
i=1

I(Y i;C). (4)

From Equations (3) and (4) we deduce the proposition above.

This proposition gives a lower bound on the number of
messages which have to be intercepted in order to have a
vanishing error probability when choosing the most likely C.
Indeed, by denoting this probability by Pe and by using Fano’s
inequality, we obtain

h(Pe) + Pe log2(|E| − 1) ≥ H(C|Y),

where h stands for the binary entropy function, i.e.

h(x)def= − x log2−(1− x) log2(1− x).

We deduce from this that

h(Pe)
log2(|E| − 1)

+ Pe ≥
log2 |E|

log2(|E| − 1)
−M I(X;Y)− γ(E)

log2(|E| − 1)
.

In other words, if we want to recover C from Y with
vanishing error probability when n goes to infinity and if |E|
goes to infinity with it, we need M to be at least of size(
1 + o(1)

)
m(E) where

m(E)def=
log2 |E|

I(X;Y)− γ(E)
.

III. THE CASE OF LINEAR CODES OF A GIVEN LENGTH
AND DIMENSION

Let us consider the case where E is the set of linear codes
over F2 of length n and dimension k. The cardinality |E| is

given by
[
n
k

]
, which is is the number of vector subspaces of

dimension k of a vector space of dimension n over the binary
field. It can be written as[

n
k

]
=
k−1∏
i=0

2n−i − 1
2k−i − 1

.

Let us notice that
[
n
k

]
= 2(n−k)k∏k−1

i=0
1−2i−n

1−2i−k . By using

the fact that 1Q∞
i=1 1−2−i ≤ 4 we finally obtain 2(n−k)k ≤[

n
k

]
≤ 2(n−k)k+2, from which we deduce

log2(|E|) ∼ k(n− k), (5)

as k(n− k) tends to infinity.
Here, we have used the following notation
Notation 1:

f(x) ∼ g(x)

as x goes to infinity, means that

lim
x→∞

f(x)/g(x) = 1.
Concerning the other terms which are involved in the

definition of m(E), let us first observe that the distribution
of X satisfies

P(X = 0) =
1
2k
, P(X = x) =

1− 2−k

2n − 1
for x 6= 0.

If we bring in a random variable U uniformly distributed
on Fn2 and if we let V be its corresponding output for the
communication channel, it is readily checked that as n goes
to infinity

I(X;Y) ∼ I(U ;V).

The term appearing on the right side can be rewritten as

I(U ;V) = nCapU,

where
Definition 1: CapU is the mutual information between a

random variable uniformly distributed on F2 and the corre-
sponding output from the channel.

We finally obtain

I(X;Y) ∼ nCapU (6)

as n tends to infinity.
Turning to the problem of estimating γ(E), it is readily

checked that classical arguments used in the proof of the direct
part of Shannon’s capacity theorem allow to show that for any
ε > 0, most of linear codes of rate strictly below CapU have
probability of error after decoding which is smaller than ε for
n large enough. This can be used to show that H(X|Y,C) =
o(n) for a fixed rate R strictly below CapU. From this we
deduce that under this condition

Lemma 2: Let R < CapU. If E is the family of linear codes
of rate R and length n, then γ(E) ∼ nR, as n goes to infinity.

Putting all these facts together we deduce that
Proposition 2: Let R < CapU. If E is the family of linear

codes of dimension k, length n and rate R, then

m(E) ∼ k 1−R
CapU −R

as n goes to infinity.
Notice that when there are no errors, then our bound claims

that we need at least k intercepted words to reconstruct our
code, which was to be expected.

IV. LDPC CODES

An interesting example which might arise in this setting
is the reverse engineering of LDPC codes. To simplify the
discussion we will assume in the whole section that the chan-
nel is a binary symmetric channel with crossover probability
p and that the parity checks of the LDPC code family have
all constant weight t. As we will see, this already captures
interesting features of the problem and avoids more general
but also much more complicated statements.

A. A Single Parity Check Code

A first toy example whose importance will become apparent
in Section V corresponds to the case where E consists of all
codes of a given length n whose parity check matrix consists
of a single parity-check of weight t.

From the definition of our set E , we have |E| =
(
n
t

)
. Let us

compute I(X;Y |C). We have:

I(X;Y |C) = H(X|C)−H(X|Y,C) = (n−1)−H(X|Y,C).

Let us calculate now H(X|Y,C). This last quantity does not
depend on C. Without loss of generality we may assume that
C is the code where the t first positions belong to the parity-
check equation of the code. We assume that X ′ is chosen
uniformly in this code, that Y ′ is its corresponding output from
the channel. We split now the support of our words into two
parts, one part for the support of the parity equation defining
the code and the other part for the rest of the positions. We
let X ′1 and Y ′1 be the first part of X ′ and Y ′ respectively. We
denote by X ′2 and Y ′2 the last part of X ′ and Y ′ respectively.

H(X|Y,C) = H(X ′|Y ′) = H(X ′1|Y ′1) +H(X ′2|Y ′2).

Notice that H(X ′2|Y ′2)=(n−t)h(p). For the first part, we write

H(X ′1|Y ′1) = H(X ′1)−H(Y ′1) +H(Y ′1 |X ′1)
= (t− 1)−H(Y ′1) + th(p).

For computing H(Y ′1), we may observe that, for any y′1 ∈ Ft2,
the value of P(Y ′1 = y′1) only depends on the parity of |y′1|.

Let A0 (resp. A1) denote the event: the parity of |yt| is even
(resp. odd). Then

H(Y ′1) = P(A0) log
(

2t−1

P(A0)

)
+ P(A1) log

(
2t−1

P(A1)

)
= (t− 1) + h (P(A0)) .

Note that P(A0) = 1+(1−2p)t

2 . This quantity will arise often
in what follows and we denote it by

Notation 2:

pt
def=

1 + (1− 2p)t

2
.

Putting all these calculations together, we obtain

H(X|Y,C) = nh(p)− h (pt)
I(X;Y)− I(X;Y |C) = 1 + o(1)− h (pt) .

The reason of the o(1) term comes from the fact that the
distribution of X is not completely uniform: it can be proven
that I(X;Y) = n(1− h(p)) + o(1).

Finally, we have

m(E) =
log2

(
n
t

)
1 + o(1)− h (pt)

,

from which we deduce
Proposition 3: For fixed t:

m(E) ∼ t log2 n

1− h (pt)
,

as n tends to infinity.

B. The Juxtaposition of Single Parity-Check Codes of Size t

We consider now the case where n is a multiple of t and
where E is the set of all codes of length n which are the
juxtaposition of n/t single parity-check codes of size t. These
codes have parity-check matrices with n/t rows with constant
row weight t and column weight 1.

Concerning the cardinality of this ensemble of codes, we
have

|E| = n!
(t!)

n
t (nt)!

.

By using the Stirling formula we obtain for n going to infinity

log2(|E|) =
(
n+ o(n)

)(
log2 n− log2 t−

log2 n

t

)
∼ n(1− 1/t) log2 n.

Let us compute now I(Y ;X|C). We first write

I(Y ;X|C)=H(X|C)−H(X|Y,C)=
(
n− n

t

)
−H(X|Y,C).

As in the previous case, we will decompose X and Y , and
this time we will split the support into n

t parts corresponding
to the decomposition of C into single parity-check codes of
size t.

By performing similar calculations as in the previous sub-
section we obtain

H(X|Y,C) =
n

t
(th(p)− h (pt)) ,

and deduce
Proposition 4: For n going to infinity

m(E) ∼ (t− 1) log2 n

1− h (pt)
. (7)

C. Regular LDPC Codes

In this subsection for the sake of simplicity, we consider
the case of regular LDPC codes: all parity check equations
have weight t and all code positions are involved in exactly s
parity checks. We assume that n is a multiple of t and that the
parity-check matrices of the codes in E are the set of binary
matrices of row weight t and column weight s.

Recall that all these codes can be obtained by specifying
their Tanner graph in the following way. Let rdef= ns

t . This is
the number of rows of the low-density parity check matrices of
the codes in E . We construct the Tanner graph with a bipartite
graph between n variable nodes and r check nodes by:
(i) attaching to each variable node s sockets and to each check
node t sockets,
(ii) choosing a permutation on sn elements which specifies
a matching between the sn sockets attached to the variable
nodes and the same number of sockets attached to the check
nodes ;
(iii) this matching specifies a (multi)graph between the n
variable nodes and the r check nodes.

All parity-check matrices with constant row and column
weight are associated to a graph built in this way. It might
happen that some of these multi-graphs do not specify a Tanner
graph. This comes from the fact that this construction does
not avoid multiple edges. However, it is straightforward to
show that at least a constant fraction of such multi-graphs
are admissible Tanner graphs. A same code is associated to
several Tanner graphs obtained in this way: all r! permutations
of the rows of the parity-check matrix specify the same code.
However, for fixed t and n going to infinity, the proportion
of codes which are attached to more than r! different parity-
check matrices of the aforementioned form goes to 0. This is
related to the fact that as n tends to infinity most of the dual of
these codes contain exactly r codewords of weight t. All this
implies that as n goes to infinity log2(|E|) ∼ log2((sn)!/r!),
and this can be simplified to yield

log2(|E|) ∼
s(t− 1)

t
log2 n. (8)

As before I(X;Y) = n(1−h(p))+o(1), but the calculation
of I(X;Y |C) is much more involved. For instance, the
threshold p0 which is defined as the supremum of the p’s for
which limn→∞

I(X;Y |C)
nR = 1 is not known exactly. R stands

here for the designed rate of the LDPC code family, that is
R

def=1− s/t. Only lower and upper bounds are known for this
quantity [4], [6].

Proposition 5: For p < p0, we have as n tends to infinity

m(E) ∼ s(1− 1/t)
1− h(p)−R

log2 n. (9)

V. AN ALGORITHM FOR DETERMINING C

Here, we will present an algorithm for determining C from
the noisy codewords Y i that have been received by finding
words of weight t in the dual code. We give this algorithm

for a binary symmetric channel1 with crossover probability p.
This algorithm is based on the fact that, if h belongs to the
dual code C⊥ and if y denotes the received codeword then:

P (< h, y >= 0) = pt.

And, of course, this probability is equal to 1
2 if h does not

belongs to C⊥. The algorithm for recovering C consists in
testing all parity-checks of weight t and detecting which ones
belong to the dual code. For deciding that a given parity-check
belongs to C⊥, we perform a statistical test with a threshold.
If the number of Y i’s such that < h, Y i >= 1 is less than
the threshold then we decide that h belongs to the dual code ;
otherwise we decide that h does not belong to the dual code.

Algorithm:
inputs: Y = (Y 1 · · ·YM), a weight t.
output: The dual code of C or a subcode of the dual code.

1. For every h of weight t , compute |hY |
If |hY | ≤ T , then decide that h ∈ C⊥

2. Return all such h’s.

The value of the threshold T is chosen according to t and t
is chosen as small as possible. To analyze how the value of T
affects the number of bad candidates (i.e. the h’s which do not
belong to C⊥) returned by the algorithm let us bound their
expected number EBAD.

EBAD ≤
(
n

t

) T∑
i=0

(
M

i

)
1

2M
≤
(
n

t

)
2
−M

(
1−h(T

M)
)
. (10)

How the input value t is chosen depends on the family E .
We will consider several cases.

A. The Family of Single Parity-Check Codes

For this family given in Subsection IV-A, the value chosen
for t corresponds to the size of the parity-check equation
defining the family. If we want that the probability of accepting
the right parity-check equation goes to 1 with the length n we
may choose T such that

T = M(1− pt) +M2/3.

In this case, choosing M of the same order as m(E), that
is

M =
(t+ ε) log2(n)

1− h (pt)
,

for an arbitrary small value of ε, yields the following upper-
bound on EBAD:

EBAD ≤
(
n

t

)
2−M(1−h(T

M))

≤ nt2−α(t+ε) log2 n

≤ nt(1−α)−αε,

1It can be generalized to other channels but we give it here for this channel
to simplify the discussion.

with α = 1−h(pt−M−1/3)
1−h(pt)

. This shows that as the length goes
to infinity, the probability of having bad candidates goes to
zero. In this case, the lower bound on the number of messages
which follows from the application of Propositions 1 and 3 is
tight.

B. The Family of Regular LDPC Codes

The input value for t in the previous algorithm is chosen
again as the size of the parity-check equations defining the
family. There are r = ns

t dual codewords of weight t that
our algorithm has to detect. T is chosen in such a way that
both the expected number EUND of undetected dual codewords
of weight t and the expected number of wrongly detected
codewords (i.e. EBAD) go to zero as the length n goes to
infinity.

Let us first bring in a few useful quantities: εt
def=pt − 1

2 =
(1− 2p)t/2, λdef= M

log2 n
. We choose T of the form

T = M (1− pt + ε) ,

for some ε which will be specified later on. Let us notice that
by using Chernoff’s inequality we have

EUND ≤ r2−2Mε2 ≤ n1−2ε2λ.

On the other hand by using the inequality
(
n
t

)
≤ nt in (10)

we obtain

EBAD ≤ nt2−M
(
1−h(1/2−(εt−ε))

)
≤ nt−λ(1−h(1/2−(εt−ε))).

We are therefore looking for λ and ε which satisfy simul-
taneously

1− 2ε2λ < 0
t− λ(1− h(1/2− (εt − ε))) < 0.

For any 0 < ε < εt, a value of λ above
max

(
1

2ε2 ,
t

1−h(1/2−(εt−ε))

)
does the job. By using the in-

equality 1 − h(1/2 − x) ≥ 2x2

ln 2 we see that a value above
1
2 max

(
1
ε2 ,

t ln 2
(εt−ε)2

)
is acceptable. We minimize this quantity

by choosing ε = εt
√
t ln 2−1
t ln 2−1 , and it can be checked by

straightforward calculations that we can choose M of the
form λ(t) log2 n with λ(t) ∼ t

1−h(pt)
as t tends to infinity.

This is asymptotically the same quantity as in the previous
example. This time, it does not meet the lower bound m(ε) of
Proposition 5. However, it captures the logarithmic behavior
of this quantity and shows:
(i) that a logarithmic number of codewords is necessary and
sufficient for recovering this LDPC code family,
(ii) that this can be achieved efficiently in polynomial time
when t is fixed.

C. The Family of Linear Codes of a Given Rate

In this case, a good choice for t in the previous algo-
rithm corresponds to choose values slightly above the Gilbert-
Varshamov distance d⊥GV = dnh−1 (R)e of the dual code. The

point is that it is the smallest value for which most linear codes
of rate R, have a basis of C⊥ formed only by words of weight
t. This can verified by standard probabilistic calculations.

However in this case, even by keeping only a constant
fraction of dual codewords of weight t by choosing for
instance the threshold T as

T = M(1− pt),

a vanishing expectation EBAD is only attained for M at least
of order

M ∼ nh−1(R)

1− h
(

1−(1−2p)nh−1(R)

2

) .
This quantity has unfortunately an exponential behavior in n:

nh−1(R)

1− h
(

1−(1−2p)nh−1(R)

2

) ∼ 2 ln 2h−1(R)n
(1− 2p)2nh−1(R)

.

The algorithm presented here does not achieve the goal of
recovering the right code with a linear number of codewords.

VI. CONCLUSION

A logarithmic number of codewords is necessary and suf-
ficient to reverse engineer an LDPC code. Moreover this task
can be achieved in polynomial time. However, it is not clear
how we could improve the algorithm presented here to achieve
with polynomial time complexity the reverse engineering of
such a code family by using less codewords. A challenging
task would be for instance to be able to reverse engineer
in polynomial time an LDPC code family with parity-check
equations of weight t by using only (asymptotically in t) of
order t−1

1−h(pt)
codewords instead of t

1−h(pt)
. This would match

the lower bound for reverse engineering the juxtaposition of
single parity-check codes of size t. A possible way to approach
this issue would be to assign probabilities that a parity-check
equation of weight t belongs to the dual of the code together
with Gallager’s decoding algorithm in the spirit of [2]. For
the linear code family it is unclear if the linear lower bound
provided by Proposition 1 is tight or not.

REFERENCES

[1] C. Chabot, “Recognition of a code in a noisy environment,” IEEE
Conference, ISIT’07, pp. 2210–2215, 2007;

[2] M. Cluzeau, “Block code reconstruction using iterative decoding tech-
niques,” IEEE Conference, ISIT’06, pp. 2269–2273, 2006;

[3] M. Cluzeau, “Reconstruction of a linear scrambler,” IEEE Transactions
on Computers, 2007;

[4] R. G. Gallager, “Low Density Parity Check Codes,” MIT Press, 1963;
[5] E.N. Gilbert, “A comparison of signaling alphabets,” Bell Syst. Tech.

J.,vol. 31, pp. 504–522, 1952;
[6] A. Montanari, “Tight bounds for LDPC and LDGM codes under

MAP decoding”, IEEE Transactions on Information Theory, vol. 51,
pp. 3221–3246, 2005;

[7] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, 1948; pt. II, pp. 623–656, 1948.

[8] A. Valembois, “Detection and recognition of a binary linear code,”
Discrete Applied Mathematics, vol. 111(1-2), pp. 199–218,2001;

[9] R.R. Varshamov, “Estimate of the number of signals in error correcting
codes,” Dokl. Acad. Nauk,, vol. 117, pp. 739–741, 1959.

