$$
\begin{aligned}
{\left[\left|a_{p_{i}}\right|\right.} & \left.-\alpha^{q_{i}}\right]-\left[\frac{k^{p_{i}}}{1-k}+\left|\epsilon_{p_{i}}\right|\left|a_{p_{i}}\right|+\epsilon_{p_{i}}^{\prime} \frac{\beta^{p_{i}+1}}{1-\beta}\right] \\
& =\left|a_{p_{i}}\right|\left(1-\left|\epsilon_{p_{i}}\right|\right)-\alpha^{q_{i}}-\frac{k^{p_{i}}}{1-k}-\epsilon_{p_{i}}^{\prime} \frac{\beta^{p_{i}+1}}{1-\beta} \\
& >\beta^{p_{i}}\left(1-\left|\epsilon_{p_{i}}\right|\right)-\alpha^{q_{i}}-\frac{k^{p_{i}}}{1-k}-\epsilon_{p_{i}}^{\prime} \frac{\beta^{p_{i}+1}}{1-\beta} \\
& =\beta^{p_{i}}\left(1-\left|\epsilon_{p_{i}}\right|-\frac{\alpha^{q_{i}}}{\beta^{p_{i}}}-\frac{k^{p_{i}}}{\beta^{p_{i}}(1-k)}-\epsilon_{p_{i}}^{\prime} \frac{\beta}{1-\beta}\right) .
\end{aligned}
$$

Now for i sufficiently large all the terms within the last parentheses except the first are as small as we please. Hence for sufficiently large i the difference in question is positive. From this contradiction the theorem follows.

In conclusion, we may note as a simple corollary of the above theorem that if $\varlimsup_{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1$, then $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=1$ if and only if there exists a sequence of real numbers λ_{n} such that $\lim _{n \rightarrow \infty} \lambda_{n}=1$ and $\varlimsup_{n \rightarrow \infty}| | a_{n+1}\left|-\lambda_{n}\right| a_{n}| |^{1 / n}<1$.

The University of Michigan

ON THE COEFFICIENTS OF A TYPICALLYREAL FUNCTION*

BY M. S. ROBERTSON \dagger

1. Introduction. It is well known \ddagger that if

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

is regular for $|z| \leqq 1$, and if E is defined by the formula

$$
\begin{equation*}
E \equiv \underset{\left|z_{1}\right|=\left|z_{2}\right|=1}{\operatorname{maximum}}\left|R f\left(z_{1}\right)-R f\left(z_{2}\right)\right|, \tag{2}
\end{equation*}
$$

* Presented to the Society, February 23, 1935.
\dagger National Research Fellow.
\ddagger See E. Landau, Archiv der Mathematik und Physik, (3), vol. 11 (1906), pp. 31-36.
or, in other words, if E is the oscillation of the real part of $f(z)$ for all points z_{1} and z_{2} on the unit circle, then

$$
\begin{equation*}
\left|a_{1}\right|=\left|f^{\prime}(0)\right| \leqq \frac{2}{\pi} E \tag{3}
\end{equation*}
$$

In this paper an analogous result and extensions are obtained for all the coefficients of any function $f(z)$ regular and typicallyreal for $|z|<1$.

Definition. A function $f(z), f(0)=0, f^{\prime}(0) \neq 0$, regular for $|z|<R$, is said to be typically-real with respect to the circle $|z|=R$, if within this circle $f(z)$ is real for, and only for, the points on the real axis.*

It may be noticed, as W. Rogosinski has pointed out, that the class of functions regular and univalent in the circle $|z|=R$ and real on the real axis form a subclass of the class of functions typically-real with respect to this circle.
2. A Stieltjes Integral Representation for Typically-Real Functions. Let

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \text { real }\right) \tag{4}
\end{equation*}
$$

be regular and typically-real for $|z|<1$. Then it is known \dagger that $f(z)$ can be represented in the form

$$
\begin{equation*}
f(z)=\frac{z g(z)}{1-z^{2}} \tag{5}
\end{equation*}
$$

where $g(z)$ is regular for $|z|<1, g(0)=1, \mathcal{R} g(z)>0$ for $|z|<1$. Further, by the formula of G. Herglotz, \ddagger we may write

$$
\begin{align*}
g(z) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1+e^{-i \theta_{z}}}{1-e^{-i \theta_{z}}} d \alpha(\theta) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-z^{2}-2 i z \sin \theta}{1-2 z \cos \theta+z^{2}} d \alpha(\theta), \tag{6}
\end{align*}
$$

[^0]where $\alpha(\theta)$ is an odd non-decreasing function of θ in the interval $(-\pi, \pi)$, and where $f(z)$ is real on the real axis, as is also $g(z)$. Hence
\[

$$
\begin{align*}
f(z) & =\frac{1}{\pi} \int_{0}^{\pi} \frac{z d \alpha(\theta)}{1-2 z \cos \theta+z^{2}} \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left(\sum_{n=1}^{\infty} \frac{\sin n \theta}{\sin \theta} z^{n}\right) d \alpha(\theta) . \tag{7}
\end{align*}
$$
\]

L. Fejér has observed* that

$$
\begin{equation*}
F(z)=\int_{0}^{z} \frac{f(z)}{z} d z=z+\sum_{2}^{\infty} \frac{a_{n}}{n} z^{n} \tag{8}
\end{equation*}
$$

is univalent and convex in the direction of the imaginary axis for $|z|<1$, that is, no straight line parallel to the imaginary axis can cut the image of the circle $|z|=r$ (for every r in the interval. $0<r<1$) mapped by the function $F(z)$ in more than two points. It follows from (7) and (8) by integration that

$$
\begin{equation*}
F(z)=\frac{1}{2 \pi i} \int_{0}^{\pi} \log \left\{\frac{1-z e^{-i \theta}}{1-z e^{i \theta}}\right\} \frac{d \alpha(\theta)}{\sin \theta} \tag{9}
\end{equation*}
$$

3. The Coefficients of a Typically-Real Function. From (9), since $F(r)$ is real, we have

$$
\begin{equation*}
F(r)=\frac{1}{\pi} \int_{0}^{\pi} \arg \left(1-r e^{-i \theta}\right) \frac{d \alpha(\theta)}{\sin \theta} \tag{10}
\end{equation*}
$$

Since the integrand is an increasing function of r for every θ, we have

$$
\begin{align*}
F(1) \equiv \lim _{r \rightarrow 1} F(r) & =\frac{1}{\pi} \int_{0}^{\pi} \lim _{r \rightarrow 1} \arg \left(1-r e^{-i \theta}\right) \frac{d \alpha(\theta)}{\sin \theta} \tag{11}\\
& =\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\pi-\theta}{\sin \theta} d \alpha(\theta)
\end{align*}
$$

Similarly we also have

$$
\begin{equation*}
F(-1) \equiv \lim _{r \rightarrow 1} F(-r)=\frac{-1}{2 \pi} \int_{0}^{\pi} \frac{\theta}{\sin \theta} d \alpha(\theta) \tag{12}
\end{equation*}
$$

[^1]These limits are finite or infinite according as the integrals exist or do not exist. Hence if we define

$$
\begin{equation*}
E(r) \equiv F(r)-F(-r)=\int_{-r}^{r} \frac{f(t)}{t} d t=\int_{-1}^{+1} \frac{f(r t)}{t} d t \tag{13}
\end{equation*}
$$

then

$$
\begin{equation*}
E \equiv \lim _{r \rightarrow 1} E(r)=\frac{1}{2} \int_{0}^{\pi} \frac{d \alpha(\theta)}{\sin \theta} \tag{14}
\end{equation*}
$$

and is finite whenever this integral exists. However, since $F(z)$ is convex in the direction of the imaginary axis, and since $E(r)$ is the length of the segment of the real axis intercepted by the contour into which $|z|=r$ is mapped by $F(z)$, we have

$$
\begin{equation*}
\left|R F\left(z_{1}\right)-R F\left(z_{2}\right)\right| \leqq F(r)-F(-r)=E(r) \tag{15}
\end{equation*}
$$

for all z_{1} and z_{2} on $|z|=r$. Thus $E(r)$ denotes the oscillation of the real part of $F(z)$ on $|z|=r$.

From (4) and (7) we have, by comparing coefficients on both sides of the equation (7),

$$
\begin{align*}
a_{n} & =\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin n \theta}{\sin \theta} d \alpha(\theta) \tag{16}\\
\left|a_{n}\right| & \leqq \frac{1}{\pi} \int_{0}^{\pi}\left|\frac{\sin n \theta}{\sin \theta}\right| d \alpha(\theta) \leqq \frac{1}{\pi} \int_{0}^{\pi} \frac{d \alpha(\theta)}{\sin \theta} \tag{17}
\end{align*}
$$

Whenever E is finite we have, by (14) and (17),

$$
\begin{align*}
\left|a_{n}\right| & \leqq \frac{2}{\pi} E, \quad \text { for all } n \tag{18}\\
\frac{1}{n+1} \sum_{k=1}^{n}\left|a_{k}\right| & \leqq \frac{1}{\pi} \int_{0}^{\pi} M_{n}(\theta) \frac{d \alpha(\theta)}{\sin \theta} \tag{19}
\end{align*}
$$

where

$$
M_{n}(\theta) \equiv \frac{1}{n+1} \sum_{k=1}^{n}|\sin n \theta|
$$

However, as T. Gronwall has shown,*

[^2]\[

$$
\begin{equation*}
M_{n}(\theta)<\sin z_{0}=0.72457 \cdots \tag{20}
\end{equation*}
$$

\]

where z_{0} is the positive root of the equation $\tan \left(z_{0} / 2\right)=z_{0}$. Further,

$$
\begin{align*}
\lim _{n \rightarrow \infty} M_{n}(\theta) & =M(\theta) \leqq \frac{2}{\pi} \tag{21}\\
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|a_{k}\right| & \leqq \frac{1}{\pi} \int_{0}^{\pi} \lim _{n \rightarrow \infty} M_{n}(\theta) \frac{d \alpha(\theta)}{\sin \theta} \\
& \leqq \frac{2}{\pi} \frac{1}{\pi} \int_{0}^{\pi} \frac{d \alpha(\theta)}{\sin \theta} \leqq\left(\frac{2}{\pi}\right)^{2} E \tag{22}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=1}^{n}\left|a_{k}\right|<\left(\frac{2 \sin z_{0}}{\pi}\right) E<\left(\frac{1.45}{\pi}\right) E \tag{23}
\end{equation*}
$$

for all n.
Again, if we denote by Γ_{n} the expression

$$
\begin{equation*}
\Gamma_{n}=\max _{\theta} \sum_{k=1}^{n} \frac{|\sin k \theta|}{k} \tag{24}
\end{equation*}
$$

then we have*

$$
\begin{equation*}
\frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k}<\Gamma_{n}<\frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k}+\frac{2}{\pi} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Gamma_{n}}{\log n}=\frac{2}{\pi} \tag{26}
\end{equation*}
$$

Hence by the method used above in (19) we may show that

$$
\begin{gather*}
\sum_{k=1}^{n} \frac{\left|a_{k}\right|}{k}<\left\{\left(\frac{2}{\pi}\right)^{2}+\left(\frac{2}{\pi}\right)^{2} \sum_{k=1}^{n} \frac{1}{k}\right\} E, \tag{27}\\
\varlimsup_{n \rightarrow \infty} \frac{1}{\log n} \cdot \sum_{k=1}^{n} \frac{\left|a_{k}\right|}{k} \leqq\left(\frac{2}{\pi}\right)^{2} E \tag{28}
\end{gather*}
$$

Let

[^3]\[

$$
\begin{equation*}
A(n, \theta) \equiv \sum_{k=1}^{n} \frac{\sin k \theta}{k} \tag{29}
\end{equation*}
$$

\]

Then the absolute maximum* of $A(n, \theta)$ is $A(n, \pi /(n+1))$. Consequently we obtain by the above method

$$
\begin{equation*}
\left|\sum_{k=1}^{n} \frac{a_{k}}{k}\right| \leqq \frac{2}{\pi} A\left(n, \frac{\pi}{n+1}\right) E . \tag{30}
\end{equation*}
$$

For n odd the factor $2 / \pi$ in (18) cannot be replaced by a smaller one, since for the function $f(z)=z\left(1+z^{2}\right)^{-1}$ we have

$$
\left|a_{2 n-1}\right|=1, \quad a_{2 n}=0, \quad F(z)=\arctan z, \quad E=\frac{\pi}{2}
$$

Hence equality is attained by $z\left(1+z^{2}\right)^{-1}$ for every odd value of n. However, one cannot have equality for all n, even and odd, for a given function of the class under consideration, as this would contradict the inequality (22).
4. A Class of Odd Typically-Real Functions. Let I denote the class of odd functions

$$
\begin{equation*}
f(z)=z+\sum_{n=1}^{\infty} b_{2 n+1} z^{2 n+1} \tag{31}
\end{equation*}
$$

with the properties
(a) $f(z)$ is regular for $|z|<1$,
(b) $f(z)$ is real on the real axis, that is, $b_{2 n+1}$ is real for all n,
(c) $f(z)$ lies inside the j th quadrant whenever z is inside the j th quadrant for $|z|<1,(j=1,2,3,4)$.

The class of odd functions regular and univalent for $|z|<1$ and real on the real axis form a subclass of I.

Theorem. If

$$
f(z)=z+\sum_{n=1}^{\infty} b_{2 n+1} z^{2 n+1}
$$

belongs to class I, then

$$
\left|b_{3}\right| \leqq 1, \quad\left|b_{2 n-1}\right|+\left|b_{2 n+1}\right| \leqq 2, \quad \sum_{k=1}^{n} \frac{b_{2 k+1}}{k} \geqq-2
$$

[^4]Proof. Let $f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$.

$$
\begin{align*}
& b_{2 n+1} r^{2 n+1}=\frac{1}{\pi} \int_{-\pi}^{\pi} v(r, \theta) \sin (2 n+1) \theta d \theta \tag{32}\\
& b_{2 n+1} r^{2 n+1}=\frac{1}{\pi} \int_{-\pi}^{\pi} u(r, \theta) \cos (2 n+1) \theta d \theta \tag{33}
\end{align*}
$$

On account of hypotheses (b) and (c) of the definition of class I we may write

$$
\begin{align*}
& b_{2 n+1} r^{2 n+1}=\frac{4}{\pi} \int_{0}^{\pi / 2} v(r, \theta) \sin (2 n+1) \theta d \theta \tag{34}\\
& b_{2 n+1} r^{2 n+1}=\frac{4}{\pi} \int_{0}^{\pi / 2} u(r, \theta) \cos (2 n+1) \theta d \theta \tag{35}
\end{align*}
$$

where $v(r, \theta)>0, u(r, \theta)>0$ for $0<\theta<\pi / 2, r<1$. From (34) we have

$$
\begin{equation*}
b_{2 n+1} r^{2 n+1}-b_{2 n-1} r^{2 n-1}=\frac{8}{\pi} \int_{0}^{\pi / 2} v(r, \theta) \cos 2 n \theta \sin \theta d \theta \tag{36}
\end{equation*}
$$

so that

$$
\begin{aligned}
\left|b_{2 n+1} r^{2 n+1}-b_{2 n-1} r^{2 n-1}\right| & \leqq \frac{8}{\pi} \int_{0}^{\pi / 2}|v(r, \theta) \sin \theta| d \theta \\
& \leqq \frac{8}{\pi} \int_{0}^{\pi / 2} v(r, \theta) \sin \theta d \theta \\
& \leqq 2 r .
\end{aligned}
$$

Letting $r \rightarrow 1$, we have

$$
\begin{equation*}
\left|b_{2 n-1}-b_{2 n+1}\right| \leqq 2 \tag{37}
\end{equation*}
$$

From (35) we have similarly

$$
\begin{align*}
\left|b_{2 n-1} r^{2 n-1}+b_{2 n+1} r^{2 n+1}\right| & \left.\leqq \frac{8}{\pi} \int_{0}^{\pi / 2} \right\rvert\, u(r, \theta) \cos 2 n \theta \cos \theta d \theta \\
& \leqq \frac{8}{\pi} \int_{0}^{\pi / 2} u(r, \theta) \cos \theta d \theta \tag{38}\\
& \leqq 2 r .
\end{align*}
$$

Letting $r \rightarrow 1$ again, we have

$$
\begin{equation*}
\left|b_{2 n-1}+b_{2 n+1}\right| \leqq 2 \tag{39}
\end{equation*}
$$

Combining (37) and (39) we obtain

$$
\begin{equation*}
\left|b_{2 n-1}\right|+\left|b_{2 n+1}\right| \leqq 2, \quad(\text { for all } n) \tag{40}
\end{equation*}
$$

The inequalities (40) were established by a different method for the subclass of I consisting of odd univalent functions real on the real axis by J. Dieudonné.* Further, since we have \dagger

$$
\begin{equation*}
B(n, \theta) \equiv \sum_{k=1}^{n} \frac{\cos k \theta}{k} \geqq-1 \tag{41}
\end{equation*}
$$

for all n, then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left(b_{2 k+1} r^{2 k+1}-b_{2 k-1} r^{2 k-1}\right)}{k} \tag{42}
\end{equation*}
$$

$$
=\frac{8}{\pi} \int_{0}^{\pi / 2} B(n, \theta) v(r, \theta) \sin \theta d \theta \geqq-2 r,
$$

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left(b_{2 k+1}-b_{2 k-1}\right)}{k} \geqq-2 \tag{43}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left(b_{2 k+1}+b_{2 k-1}\right)}{k} \geqq-2 . \tag{44}
\end{equation*}
$$

On adding (43) and (44) we obtain also

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{b_{2 k+1}}{k} \geqq-2 \tag{45}
\end{equation*}
$$

The University of Chicago

* See J. Dieudonné, Annales de l'École Normale, vol. 48 (1931), p. 318.
\dagger See G. Pblya und G. Szegö, loc. cit., p. 79.

[^0]: * See W. Rogosinski, Über positive harmonische Entwicklungen und typischreelle Potenzreihen, Mathematische Zeitschrift, vol. 35 (1932), pp. 93-121.
 \dagger See W. Rogosinski, loc. cit., p. 99.
 \ddagger See G. Herglotz, Leipziger Berichte, 1911, pp. 501-511.

[^1]: * See L. Fejér, Journal of the London Mathematical Society, vol. 8 (1933), p. 61, footnote.

[^2]: * See T. Gronwall, Transactions of this Society, vol. 13 (1912), pp. 445468.

[^3]: * See G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, 1925, pp. 81 and 274.

[^4]: * See G. Pólya and G. Szegö, loc. cit., p. 79.

