On the coefficients of some classes of starlike functions

by Ryszard Mazur (Kielce)

Abstract. Let Ω be the class of functions ω , $\omega(0) = 0$, $|\omega(z)| < 1$, holomorphic in the unit disc K; let a and b be arbitrary fixed numbers, $-1 \le b < a \le 1$, $\omega(a, b)$ — the class of functions P, P(0) = 1, holomorphic in K, such that $P \in \omega(a, b)$ iff $P(z) = (1 + a\omega(z))(1 + b\omega(z))^{-1}$ for some function $\omega \in \Omega$ and every z in K. Let $S^*(a, b)$ denote the class of functions f, f(0) = 0, f'(0) = 1, holomorphic in K, such that $f \in S^*(a, b)$ iff $zf'(z)(f(z))^{-1} = P(z)$ for some $P \in \omega(a, b)$; $\Sigma^*(a, b)$ — the class of meromorphic functions of the form $F(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ and satisfying the condition: $zF'(z)(F(z))^{-1} = P(z)$, $P \in \omega(a, b)$.

The author obtains sharp estimates of the coefficients of functions of the families $S^*(a, b)$ and $\Sigma^*(a, b)$.

1. Introduction. Let Ω be the family of all functions of the form

(1.1)
$$\omega(z) = c_1 z + c_2 z^2 + \dots$$

which are holomorphic in the unit disc $K = \{z : |z| < 1\}$ and satisfy the condition $|\omega(z)| < 1$ for $z \in K$.

Janowski introduced (cf. [2]) a class $\omega(a, b)$ of holomorphic functions

(1.2)
$$P(z) = 1 + p_1 z + p_2 z^2 + \dots$$

in the unit disc; by definition, p is in $\omega(a, b)$ if and only if

(1.3)
$$P(z) = \frac{1 + a\omega(z)}{1 + b\omega(z)}, \quad z \in K,$$

for some function $\omega \in \Omega$; a, b are arbitrarily fixed numbers that satisfy the condition $-1 \le b < a \le 1$. It is easy to notice that $\omega(a, b) \subset \omega$ and $\omega(1, -1) \equiv \omega$, where ω is the well-known family of functions of Carathéodory type.

Let us denote by $S^*(a, b)$ (cf. [2]) the class of functions

(1.4)
$$f(z) = z + a_2 z^2 + \dots$$

holomorphic in K, defined by the condition: f is in $S^*(a, b)$ if and only if

44 R. Mazur

there exists a function $P \in \omega(a, b)$ such that

(1.5)
$$\frac{zf'(z)}{f(z)} = P(z), \quad z \in K.$$

Since $\omega(a, b) \subset \omega$ and $\omega(1, -1) \equiv \omega$, we have $S^*(a, b) \subset S^*$ and $S^*(1, -1) \equiv S^*$, where S^* is the well-known class of starlike functions. Moreover, let $\Sigma^*(a, b)$ denote the family of meromorphic functions

(1.6)
$$F(z) = \frac{1}{z} + a_0 + a_1 z + a_2 z^2 + \dots$$

in the unit disc such that

(1.7)
$$\frac{-zF'(z)}{F(z)} = P(z), \quad z \in K,$$

for some function P in $\omega(a, b)$.

It is not difficult to see that $\Sigma^*(a, b) \subset \Sigma^*$ and $\Sigma^*(1, -1) \equiv \Sigma^*$, where Σ^* is the class of starlike meromorphic functions.

In this paper we give estimates of the coefficients of the families $S^*(a, b)$ and $\Sigma^*(a, b)$.

Our results contain those of Clunie [1], Janowski [3], Kaczmarski [4], Plaskota [5], Pomerenke [6], Robertson [7], and Wieczorek [8], as particular cases.

2. Estimates of the coefficients of functions of class $S^*(a, b)$. We shall prove the following result.

Theorem 1. If $f \in S^*(a, b)$ and $-1 \le b < a \le 1$, then

(2.1)
$$|a_n| \leq \frac{1}{(n-1)!} \prod_{k=1}^{n-1} |a-kb|$$
 for $n=2, 3, ..., p$

and

(2.2)
$$|a_n| \leq \frac{1}{(n-1)(p-2)!} \prod_{k=1}^{p-1} |a-kb| \quad \text{for} \quad n=p+1, \ldots,$$

where $p \in \left\langle \frac{1+a}{1+b}, \frac{2+a+b}{1+b} \right\rangle$ is a natural number. If b = -1, then

(2.3)
$$|a_n| \leq \frac{1}{(n-1)!} \prod_{k=1}^{n-1} (a+k) \quad \text{for} \quad n=2, 3, \ldots$$

The bounds (2.1) and (2.3) are attained by the function

(2.4)
$$f(z) = \begin{cases} z(1+\varepsilon bz)^{(a-b)/b} & \text{for } b \neq 0, \\ z \exp(a\varepsilon z) & \text{for } b = 0, \end{cases} |\varepsilon| = 1.$$

Proof. If $f \in S^*(a, b)$, then

(2.5)
$$\frac{zf'(z)}{f(z)} = \frac{1+a\omega(z)}{1+b\omega(z)}, \quad z \in K,$$

for some function $\omega \in \Omega$.

From (2.5) it follows that

$$zf'(z)-f(z)=(af(z)-bzf'(z))\omega(z);$$

hence

(2.6)
$$\sum_{k=1}^{\infty} (k-1) a_k z^k = \omega(z) \cdot \sum_{k=1}^{\infty} (a-kb) a_k z^k$$

and it is easy to see that $|a_2| \leq a - b$.

Thus estimate (2.1) holds true for n = 2. Now suppose that $n \ge 2$. Let us write equality (2.6) as follows:

$$\sum_{k=1}^{n} (k-1) a_k z^k + \sum_{k=n+1}^{\infty} d_k z^k = \omega(z) \sum_{k=1}^{n-1} (a-kb) a_k z^k,$$

where the series $\sum_{k=n+1}^{\infty} d_k z^k$ is convergent in the unit disc. By using the method of Clunie's (cf. [1]) we get:

(2.7)
$$\left| \sum_{k=1}^{n} (k-1) a_k z^k + \sum_{k=n+1}^{\infty} d_k z^k \right| < \left| \sum_{k=1}^{n-1} (a-kb) a_k z^k \right|.$$

Hence, putting $z = re^{it}$, 0 < r < 1, $0 \le t < 2\pi$, we have

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| \sum_{k=1}^{n} (k-1) a_{k} r^{k} e^{itk} + \sum_{k=n+1}^{\infty} d_{k} r^{k} e^{itk} \right|^{2} dt \leq \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sum_{k=1}^{n-1} (a-kb) a_{k} r^{k} e^{itk} \right|^{2} dt.$$

Integrating we get

(2.8)
$$\sum_{k=1}^{n} (k-1)^{2} |a_{k}|^{2} r^{2k} + \sum_{k=n+1}^{\infty} |d_{k}|^{2} r^{2k} \leqslant \sum_{k=1}^{n-1} (a-kb)^{2} |a_{k}|^{2} r^{2k}.$$

In particular, from (2.8) follows

(2.9)
$$\sum_{k=1}^{n} (k-1)|a_k|^2 r^{2k} \leqslant \sum_{k=1}^{n-1} (a-kb)^2 |a_k|^2 r^{2k}.$$

Passing in (2.9) to the limit as $r \to 1$ we obtain

$$\sum_{k=1}^{n} (k-1)^{2} |a_{k}|^{2} \leqslant \sum_{k=1}^{n-1} (a-kb)^{2} |a_{k}|^{2}.$$

46 R. Mazur

Thus

$$(n-1)^2 |a_n|^2 \leqslant \sum_{k=1}^{n-1} ((a-kb)^2 - (k-1)^2) |a_k|^2.$$

We easily observe that $(a-(n-1)b)^2-(n-2)^2 \ge 0$ iff $n \le p$ and $-1 < b < a \le 1$; moreover, if b=-1, then $(a+n-1)^2-(n-2)^2 \ge 0$ for n=2,3,... and every $a \in (-1,1)$. Estimates (2.1), (2.2) and (2.3) are obtained by induction. The function f defined by formula (2.4) belongs to the family $S^*(a,b)$. Let a_n^* denote the coefficient at z^n in the power series representing the function (2.4). Then we have

$$a_n^* = \frac{e^{n-1}}{(n-1)!} \prod_{k=1}^{n-1} (a-kb);$$

thus the estimates (2.1) and (2.3) are sharp. Q.E.D.

Theorem 1 implies the following corollaries:

COROLLARY 1. The values of the function $f \in S^*(a, b)$ include the disc

$$|w| < \frac{1}{2+a-b}.$$

In fact, let $f \in S^*(a, b)$ and $f(z) \neq w_0$ for every $z \in K$. Then the function

$$g(z) = \frac{f(z)}{1 - f(z)/w_0} = z + (a_2 + 1/w_0)z^2 + \dots$$

belongs to the family S. Thus $|a_2+1/w_0| \le 2$. Since $|a_2| \le a-b$, then (2.10) follows.

By specifying the values of the parameters appearing in Theorem 1 we obtain some interesting particular cases.

Corollary 2. By putting $a = 1 - 2\alpha$, b = -1 in (2.3) we obtain the result of [7] for starlike functions of order α .

COROLLARY 3. For a=1 and $b=\frac{1}{M}-1$, $M \ge 1$, we obtain the result of Janowski (cf. [3]).

COROLLARY 4. By substituting b = -a, 0 < a < 1, in (2.1), (2.2) and (2.10) we get corresponding results obtained in [8].

Corollary 5. If $a = 1 - \lambda - \lambda m$, b = -m, then we obtain the result of [5].

COROLLARY 6. By applying Theorem 1 to the case where a=1 and b=-1, we obtain $|a_n| \le n$ for starlike functions of order 0.

3. Estimates for coefficients of functions of class $\Sigma^*(a, b)$. Now we shall find estimates for coefficients of functions belonging to the family $\Sigma^*(a, b)$.

THEOREM 2. If $F \in \Sigma^*(a, b)$, then

(3.1)
$$|a_n| \le \frac{a-b}{n+1}$$
 for $n = 0, 1, 2, ...$

The bound is attained by the function

(3.2)
$$F^*(z) = \begin{cases} \frac{1}{z} (1 + bz^{n+1})^{(b-a)/b(n+1)} & \text{for } b \neq 0, \\ \frac{1}{z} \exp\left(\frac{-a}{n+1}z^{n+1}\right) & \text{for } b = 0. \end{cases}$$

Proof. It follows from the definitions of the families $\Sigma^*(a, b)$ and $\wp(a, b)$ that $F \in \Sigma^*(a, b)$ if and only if

(3.3)
$$-\frac{zF'(z)}{F(z)} = \frac{1+a\omega(z)}{1+b\omega(z)}, \quad z \in K,$$

for some function $\omega \in \Omega$.

From (3.3) and (1.6) we have

(3.4)
$$\sum_{k=0}^{\infty} (k+1) a_k z^{k+1} = -(a-b+\sum_{k=0}^{\infty} (a+kb) a_k z^{k+1}) \omega(z).$$

Hence and from (1.1) we have

$$|a_0| \le a - b, \quad |a_1| \le (a - b)/2.$$

Let $n \ge 2$. By applying the method of Clunie [1] we finally obtain the inequality

$$(3.6) (n+1)^2 |a_n|^2 \le (a-b)^2 + \sum_{k=0}^{n-1} ((a+kb)^2 - (k+1)^2) |a_k|^2.$$

Since $(a + lb)^2 - (l+1)^2 \le 0$ for l = 0, 1, 2, ... and $-1 \le b < a \le 1$, we have (3.7) $(n+1)^2 |a_n|^2 \le (a-b)^2.$

From inequalities (3.5) and (3.7) we conclude that the estimate (3.1) holds true for n = 0, 1, 2, ...

The function F defined by formula (3.2) belongs to the family $\Sigma^*(a, b)$, and if $F^*(z) = (1/z) + a_n^* z^n + \ldots$, then $|a_n^*| = (a-b)/(n+1)$ for $n = 0, 1, 2, \ldots$, then estimate (3.1) is sharp.

COROLLARY 1. If $F \in \Sigma^*(a, b)$, then

(3.8)
$$\sum_{k=0}^{\infty} ((1-b^2)k^2 + 2(1-ab)k + (1-a^2))|a_k|^2 \le (a-b)^2.$$

48 R. Mazur

In fact, by equality (3.4) and the condition $|\omega(z)| < 1$, we have

$$\sum_{k=0}^{\infty} |(k+1) a_k z^{k+1}|^2 < |a-b+\sum_{k=0}^{\infty} (a+kb) a_k z^k|^2;$$

thus

$$\int_{0}^{2\pi} \left| \sum_{k=0}^{\infty} (k+1) a_k r^{k+1} e^{i(k+1)t} \right|^2 dt \leq \int_{0}^{2\pi} \left| a - b + \sum_{k=0}^{\infty} (a+kb) a_k r^k e^{i(k+1)t} \right|^2 dt.$$

Hence, by integrating and passing to the limit as r tends to 1, we obtain (3.8).

COROLLARY 2. By putting $a = 1 - \alpha - \alpha m$, b = -m in (3.1) and (3.8) we get the corresponding result obtained in [4], and by letting b = -a, $0 < a \le 1$, we get the result of [8]; finally, we remark that if b = -1 and $a = 1 - 2\alpha$, then we get the result obtained in [6].

References

- [1] J. Clunie, On meromorphic schlicht, J. London Math. Soc. 34 (1959), p. 215-216.
- [2] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28 (1973), p. 297-326.
- [3] -, Extremal problems for a family of functions with positive real part and for some related families, ibidem 23 (1970), p. 159-177.
- [4] J. Kaczmarski, On the coefficients of some classes of starlike functions, Bull. Acad. Polon. Sci. 17 (1969), p. 495-501.
- [5] W. Plaskota, Limitation des coefficients dans une famille de fonctions holomorphes dans le cercle |z| < 1, Ann. Polon. Math. 24 (1970), p. 65-70.
- [6] Ch. Pomerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), p. 221-235.
- [7] M. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), p. 169-185.
- [8] Z. Wieczorek, On the coefficients of starlike functions of some classes, Comment. Math. 18 (1974), p. 113-119.

Reçu par la Rédaction le 3. 1. 1978