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Abstract

Applying a theorem of Howard to a formula recently proved by Brassesco and
Méndez, we derive new simple explicit formulas for the coefficients of the asymptotic
expansion of the sequence of factorials.

1 Introduction

It is well known that the factorial of a positive integer n has the asymptotic expansion

n! ~n"e "V2mn Z a—i, (1)
n

k>0

known as Stirling’s formula (see, e.g., [1, 3, 4]). The coefficients a;, in this series are usually
called the Stirling coefficients [1, 6] (Sloane’s A001163 and A001164) and can be computed
from the sequence b defined by the recurrence relation

k—1
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since ay = (2k 4+ 1)Nbog41 [3, 4]. Here (2k + 1) = (2k+1)-(2k —1)---5-3- 1 is the double
factorial. It was pointed out by Paris and Kaminski [6] that “There is no known closed-form
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representation for the Stirling coefficients”. However there is a closed-form expression that
involves combinatorial quantities due to Comtet [5]:

2k .

s ds (2k + 27, )
— —1)y = =) 3
" j;( P 9
where ds (p, ¢) is the number of permutations of p with ¢ permutation cycles all of which are
> 3 (Sloane’s A050211). Brassesco and Méndez [7] proved in a recent paper that
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where S3 (p, ¢) denotes the 3-associated Stirling numbers of the second kind (Sloane’s A059022).
We show that the Stirling coefficients a; can be expressed in terms of the conventional Stir-
ling numbers of the second kind (Sloane’s A008277). A corollary of this result is an explicit,
exact expression for the Stirling coefficients.

2 The formulas for coefficients

One of our main results is the following:

Theorem 1. The Stirling coefficients have a representation of the form

S (P () S

J=0

where S (p,q) denotes the Stirling numbers of the second kind.
From the explicit formula
1 . 1[4 P
S == (-1 (¢ =17,
q! [
1=0
we immediately obtain our second main result.

Corollary 2. The Stirling coefficients have an exact representation of the form

(6)

1=0
To prove Theorem 1 we need some concepts. Let » > 0 and a, # 0, let F(x) =

> isr a;xz? /4! be a formal power series. The potential polynomials F'? in the variable z are
defined by the exponential generating function

(“;"Eg!)z —y R 7)

n>0
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For r > 1, the exponential Bell polynomials B, ; (0,...,0,ay, ay4+1,...) in an infinite number
of variables a,, a1, ... can be defined by

(F(2))' =Y B (0,...,0,a,,ar41,...) . (8)

The following theorem is due to Howard [2].
Theorem 3. If F9 s defined by (7) and B, is defined by (8), then
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Now we prove Theorem 1.

Proof of Theorem 1. Brassesco and Méndez showed that if
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where 9% f denotes the kth derivative of a function f. Define the polynomials G in the
variable z by the following exponential generating function:
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Inserting z = 225 into this expression gives
2k+1 35] 1 72 % T —p—1 7%%
G (L \E (et VTR e
Z (269”—:10—1) ( x? ) (=) (13)

7>0
On the other hand we have by series expansion
2k+1 M :Bj
=Y ( ) 0% (14)
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Equating the coefficients in (13) and (14) gives

¥ (G5 (0) = ) — g,

J J
Now by comparing this with (11) yields
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Putting r = 2 an a, = a,41 = ... = 1 into the formal power series F () = .. a;2//j!
gives F'(x) = e¢* —x — 1. And therefore the generated potential polynomials are
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According to Howard’s theorem we find
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Now we derive an expression for the exponential Bell polynomials B, ; (0,1,1,...) in terms
of the Stirling numbers of the second kind:
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Hence
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Thus we obtain
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Substituting z = k + 1/2 and n = 2k into this expression yields
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hence by (15) we finally have
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This completes the proof of the theorem. m
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