Journal of Integer Sequences, Vol. 13 (2010), Article 10.6.6

On the Coefficients of the Asymptotic Expansion of n !

Gergő Nemes
Loránd Eötvös University
H-1117 Budapest
Pázmány Péter sétány $1 / \mathrm{C}$
Hungary
nemesgery@gmail.com

Abstract

Applying a theorem of Howard to a formula recently proved by Brassesco and Méndez, we derive new simple explicit formulas for the coefficients of the asymptotic expansion of the sequence of factorials.

1 Introduction

It is well known that the factorial of a positive integer n has the asymptotic expansion

$$
\begin{equation*}
n!\sim n^{n} e^{-n} \sqrt{2 \pi n} \sum_{k \geq 0} \frac{a_{k}}{n^{k}}, \tag{1}
\end{equation*}
$$

known as Stirling's formula (see, e.g., $[1,3,4]$). The coefficients a_{k} in this series are usually called the Stirling coefficients $[1,6]$ (Sloane's A001163 and A001164) and can be computed from the sequence b_{k} defined by the recurrence relation

$$
\begin{equation*}
b_{k}=\frac{1}{k+1}\left(b_{k-1}-\sum_{j=2}^{k-1} j b_{j} b_{k-j+1}\right), b_{0}=b_{1}=1, \tag{2}
\end{equation*}
$$

since $a_{k}=(2 k+1)!!b_{2 k+1}[3,4]$. Here $(2 k+1)!!=(2 k+1) \cdot(2 k-1) \cdots 5 \cdot 3 \cdot 1$ is the double factorial. It was pointed out by Paris and Kaminski [6] that "There is no known closed-form
representation for the Stirling coefficients". However there is a closed-form expression that involves combinatorial quantities due to Comtet [5]:

$$
\begin{equation*}
a_{k}=\sum_{j=0}^{2 k}(-1)^{j} \frac{d_{3}(2 k+2 j, j)}{2^{k+j}(k+j)!}, \tag{3}
\end{equation*}
$$

where $d_{3}(p, q)$ is the number of permutations of p with q permutation cycles all of which are ≥ 3 (Sloane's A050211). Brassesco and Méndez [7] proved in a recent paper that

$$
\begin{equation*}
a_{k}=\sum_{j=0}^{2 k}(-1)^{j} \frac{S_{3}(2 k+2 j, j)}{2^{k+j}(k+j)!} \tag{4}
\end{equation*}
$$

where $S_{3}(p, q)$ denotes the 3 -associated Stirling numbers of the second kind (Sloane's A059022). We show that the Stirling coefficients a_{k} can be expressed in terms of the conventional Stirling numbers of the second kind (Sloane's A008277). A corollary of this result is an explicit, exact expression for the Stirling coefficients.

2 The formulas for coefficients

One of our main results is the following:
Theorem 1. The Stirling coefficients have a representation of the form

$$
\begin{equation*}
a_{k}=\frac{(2 k)!}{2^{k} k!} \sum_{i=0}^{2 k}\binom{k+i-1 / 2}{i}\binom{3 k+1 / 2}{2 k-i} 2^{i} \sum_{j=0}^{i}\binom{i}{j}(-1)^{j} j!\frac{S(2 k+i+j, j)}{(2 k+i+j)!} \tag{5}
\end{equation*}
$$

where $S(p, q)$ denotes the Stirling numbers of the second kind.
From the explicit formula

$$
S(p, q)=\frac{1}{q!} \sum_{l=0}^{q}(-1)^{l}\binom{q}{l}(q-l)^{p}
$$

we immediately obtain our second main result.
Corollary 2. The Stirling coefficients have an exact representation of the form
$a_{k}=\frac{(2 k)!}{2^{k} k!} \sum_{i=0}^{2 k}\binom{k+i-1 / 2}{i}\binom{3 k+1 / 2}{2 k-i} 2^{i} \sum_{j=0}^{i}\binom{i}{j} \frac{(-1)^{j}}{(2 k+i+j)!} \sum_{l=0}^{j}(-1)^{l}\binom{j}{l}(j-l)^{2 k+i+j}$.

To prove Theorem 1 we need some concepts. Let $r \geq 0$ and $a_{r} \neq 0$, let $F(x)=$ $\sum_{j \geq r} a_{j} x^{j} / j$! be a formal power series. The potential polynomials $F_{n}^{(z)}$ in the variable z are defined by the exponential generating function

$$
\begin{equation*}
\left(\frac{a_{r} x^{r} / r!}{F(x)}\right)^{z}=\sum_{n \geq 0} F_{n}^{(z)} \frac{x^{n}}{n!} \tag{7}
\end{equation*}
$$

For $r \geq 1$, the exponential Bell polynomials $B_{n, i}\left(0, \ldots, 0, a_{r}, a_{r+1}, \ldots\right)$ in an infinite number of variables a_{r}, a_{r+1}, \ldots can be defined by

$$
\begin{equation*}
(F(x))^{i}=i!\sum_{n \geq 0} B_{n, i}\left(0, \ldots, 0, a_{r}, a_{r+1}, \ldots\right) \frac{x^{n}}{n!} \tag{8}
\end{equation*}
$$

The following theorem is due to Howard [2].
Theorem 3. If $F_{n}^{(z)}$ is defined by (7) and $B_{n, i}$ is defined by (8), then

$$
\begin{equation*}
F_{n}^{(z)}=\sum_{i=0}^{n}(-1)^{i}\binom{z+i-1}{i}\binom{z+n}{n-i}\left(\frac{r!}{a_{r}}\right)^{i} \frac{n!i!}{(n+r i)!} B_{n+r i, i}\left(0, \ldots, 0, a_{r}, a_{r+1}, \ldots\right) \tag{9}
\end{equation*}
$$

Now we prove Theorem 1.
Proof of Theorem 1. Brassesco and Méndez showed that if

$$
\begin{equation*}
G(x)=2 \frac{e^{x}-x-1}{x^{2}}=2 \sum_{j \geq 0} \frac{x^{j}}{(j+2)!}, \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{k}=\frac{1}{2^{k} k!} \partial^{2 k}\left(G^{-\frac{2 k+1}{2}}\right)(0) \tag{11}
\end{equation*}
$$

where $\partial^{k} f$ denotes the k th derivative of a function f. Define the polynomials $G_{n}^{(z)}$ in the variable z by the following exponential generating function:

$$
\begin{equation*}
\left(\frac{1}{2} \frac{x^{2}}{e^{x}-x-1}\right)^{z}=\sum_{j \geq 0} G_{j}^{(z)} \frac{x^{j}}{j!} \tag{12}
\end{equation*}
$$

Inserting $z=\frac{2 k+1}{2}$ into this expression gives

$$
\begin{equation*}
\sum_{j \geq 0} G_{j}^{\left(\frac{2 k+1}{2}\right)} \frac{x^{j}}{j!}=\left(\frac{1}{2} \frac{x^{2}}{e^{x}-x-1}\right)^{\frac{2 k+1}{2}}=\left(2 \frac{e^{x}-x-1}{x^{2}}\right)^{-\frac{2 k+1}{2}}=G^{-\frac{2 k+1}{2}}(x) \tag{13}
\end{equation*}
$$

On the other hand we have by series expansion

$$
\begin{equation*}
G^{-\frac{2 k+1}{2}}(x)=\sum_{j \geq 0} \partial^{j}\left(G^{-\frac{2 k+1}{2}}\right)(0) \frac{x^{j}}{j!} . \tag{14}
\end{equation*}
$$

Equating the coefficients in (13) and (14) gives

$$
\partial^{j}\left(G^{-\frac{2 k+1}{2}}\right)(0)=G_{j}^{\left(\frac{2 k+1}{2}\right)}=G_{j}^{\left(k+\frac{1}{2}\right)}
$$

Now by comparing this with (11) yields

$$
\begin{equation*}
a_{k}=\frac{1}{2^{k} k!} G_{2 k}^{\left(k+\frac{1}{2}\right)} \tag{15}
\end{equation*}
$$

Putting $r=2$ an $a_{r}=a_{r+1}=\ldots=1$ into the formal power series $F(x)=\sum_{j \geq r} a_{j} x^{j} / j$! gives $F(x)=e^{x}-x-1$. And therefore the generated potential polynomials are

$$
\left(\frac{x^{2} / 2!}{e^{x}-x-1}\right)^{z}=\left(\frac{1}{2} \frac{x^{2}}{e^{x}-x-1}\right)^{z}=\sum_{j \geq 0} G_{j}^{(z)} \frac{x^{j}}{j!}
$$

According to Howard's theorem we find

$$
\begin{equation*}
G_{n}^{(z)}=\sum_{i=0}^{n}(-1)^{i}\binom{z+i-1}{i}\binom{z+n}{n-i} 2^{i} \frac{n!i!}{(n+2 i)!} B_{n+2 i, i}(0,1,1, \ldots) \tag{16}
\end{equation*}
$$

Now we derive an expression for the exponential Bell polynomials $B_{n, i}(0,1,1, \ldots)$ in terms of the Stirling numbers of the second kind:

$$
\begin{aligned}
i!\sum_{n \geq 0} B_{n, i}(0,1,1, \ldots) \frac{x^{n}}{n!} & =(F(x))^{i}=\left(e^{x}-x-1\right)^{i} \\
& =\left(-x+\sum_{l \geq 1} \frac{x^{l}}{l!}\right)^{i}=\sum_{j=0}^{i}\binom{i}{j}(-1)^{i-j} x^{i-j}\left(\sum_{l \geq 1} \frac{x^{l}}{l!}\right)^{j} \\
& =\sum_{j=0}^{i}\binom{i}{j}(-1)^{i-j} x^{i-j} j!\sum_{n \geq 0} S(n, j) \frac{x^{n}}{n!} \\
& =\sum_{n \geq 0} \sum_{j=0}^{i}\binom{i}{j}(-1)^{i-j} j!S(n, j) \frac{x^{n+i-j}}{n!} \\
& =i!\sum_{n \geq 0}\left\{\frac{n!}{i!} \sum_{j=0}^{i}\binom{i}{j}(-1)^{i-j} j!\frac{S(n-i+j, j)}{(n-i+j)!}\right\} \frac{x^{n}}{n!}
\end{aligned}
$$

Hence

$$
\begin{equation*}
B_{n, i}(0,1,1, \ldots)=\frac{n!}{i!} \sum_{j=0}^{i}\binom{i}{j}(-1)^{i-j} j!\frac{S(n-i+j, j)}{(n-i+j)!} \tag{17}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
G_{n}^{(z)}=\sum_{i=0}^{n}\binom{z+i-1}{i}\binom{z+n}{n-i} 2^{i} n!\sum_{j=0}^{i}\binom{i}{j}(-1)^{j} j!\frac{S(n+i+j, j)}{(n+i+j)!} \tag{18}
\end{equation*}
$$

Substituting $z=k+1 / 2$ and $n=2 k$ into this expression yields

$$
\begin{equation*}
G_{2 k}^{\left(k+\frac{1}{2}\right)}=\sum_{i=0}^{2 k}\binom{k+i-1 / 2}{i}\binom{3 k+1 / 2}{2 k-i} 2^{i}(2 k)!\sum_{j=0}^{i}\binom{i}{j}(-1)^{j} j!\frac{S(2 k+i+j, j)}{(2 k+i+j)!}, \tag{19}
\end{equation*}
$$

hence by (15) we finally have

$$
\begin{equation*}
a_{k}=\frac{(2 k)!}{2^{k} k!} \sum_{i=0}^{2 k}\binom{k+i-1 / 2}{i}\binom{3 k+1 / 2}{2 k-i} 2^{i} \sum_{j=0}^{i}\binom{i}{j}(-1)^{j} j!\frac{S(2 k+i+j, j)}{(2 k+i+j)!} . \tag{20}
\end{equation*}
$$

This completes the proof of the theorem.

3 Acknowledgments

I am grateful to Lajos László, who drew my attention to the paper of Brassesco and Méndez. I also would like to thank the referees for their valuable remarks that help to improve the initial version of this paper.

References

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Mcgraw-Hill Book Company, 1978, 218.
[2] F. T. Howard, A theorem relating potential and Bell polynomials, Discrete Math. 39 (1982), 129-143.
[3] G. Marsaglia and J. C. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly 97 (1990), 826-829.
[4] J. M. Borwein and R. M. Corless, Emerging tools for experimental mathematics, Amer. Math. Monthly 106 (1999), 899-909.
[5] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing Company, 1974, p. 267.
[6] R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, 2001, p. 32.
[7] S. Brassesco and M. A. Méndez, The asymptotic expansion for n ! and Lagrange inversion formula, http://arxiv.org/abs/1002.3894.

2010 Mathematics Subject Classification: Primary 11B65; Secondary 11B73, 41A60.
Keywords: asymptotic expansions, factorial, Stirling coefficients, Stirling's formula, Stirling numbers.
(Concerned with sequences A001163, A001164, A008277, A050211, and A059022.)

Received March 15 2010; revised version received June 17 2010. Published in Journal of Integer Sequences, June 212010.

Return to Journal of Integer Sequences home page.

