
ED 249 919

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

PUB: DATE

;CONTRACT

Writ

PUS TYPE

.

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

IR 011 338

Pea, Roy D.; Kurland, D. Midian

On the Cognitive Effects of Learning Computer

Programming: A Critical Look. Technical Report No
9.

'MA
Street Coll. of Education, New York, NY. Center

or .Children and Technology. r

National Inst. of Education (ED); Washington, DC.;
Spencer Foundation, Chicago, ill.
Jan 84
400-83-0016

48p.; For related documents, see IR 011 340, IR 011
353, and IR 011 359.'

Information Analyses (070) -- Viewpoints (120)

1001 Plus Postage. PC Not Available from EDRS.

Cognitive Ability; *COgnitift Processes; *Computer
Assisted Instruction; Literature Reviews;
*Programers; *Programing; *Skill Development

ABSTRACT

This paper provides an historical and empirical
critique of the claim that learning to program will promote the
development of general higher mental functions. A developmental
perspective on,learning to program is provided which incorporates
cognitive science studies of mental activities involved in
programming, AncUlighlights the importance of programming contexts,
instructional contexts, and a student's relevant background knowledge
and reasoning skills for the task of learning to ibiogram. The

following topics are discussed: claims for cognitive effects of

learning to program; the develoemental role of contexts in learning
to, program; the programming environment; the instructional
environment; what constitutes skilled" programming; levels of
programming skill, development; cognitive constraints on.learning to
program; and evidence for cognitive effects of programming. Types of
transfer outcomes expected from each of the different levels of
programming skill development are described, and a concluding
statement and a 14-page list of references are included.
(Author/THC)

Reproductions supplied by EDRS are the best that can be made
from the original document.

atompiummorroteniumoss
-111/4710NAL INSTITUTE Of IDUCATKIN

-EDUCATIONAL RESOURCES INFORMATION

CENTER IERICIifhis document has been reProduced M
teceivsd from the potion or corperketicts - ;

Cr 04101nAtilva it.
..

t 1 *nor ewe's have Men mode to 11111NOve :

:1"111 reproduction quality.

Crik
: e Points ol vieve or opetions stated in this dug:)',

110I nueswile nemsent OMAN NIE ,

' iiosonot potco.,,, . :_ . ,' .
.___.

N I

"PERMISSION TO REPRODUCE THIS
MATERIAL IN MICROFICHE ONLY
HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES

INFORMATION GENTER (ERIC),"

\'{ On the Cognitive Effects of Learning
Computer Programming: A Critical Look

Roy D. Pea and D. Midian Kurland

Teci,nical Report No. 9

January 1984

Or, n the Cognitive Effects of Learning
Computer Programming: A Critical Look

Roy D. Pea and D. Midian Kurland

Technical Report No. 9

January 1984

CENTER FOR CHILDREN AND TECHNOLOGY

Bank Street College of Education

610 West 112th Street

New York, NY 10025

ON THE COGNITIVE EFFECTS OF LEARNING
COMPUTER PROGRAMMING*,**

Roy D. Pea. and D. Midian Kurland

Revolutionary changes are taking place in education, in content as
well as method. Widespread computer access by schools is at the
heart of these changes. Throughout the_.. world, but particularly in
the United States, educators are using computers for learning activi-
ties across the curriculUM and are even designing their own software.
But virtually all educators are as anxious and uncertain about these
changes and the directions to take as 'they are optiniiittic about their
ultimate effects. They ask: "Now that this admittedly pOwerful
symbolic device is in our schools, what should we do with it?"

We believe that educators and social scientists are at a critical water-
shed in American education. Important new opportunities abound for
research and development work that can influence directly the quality
of education. Hard questions are emerging about the design of
educational activities that integrate the computer with other media.
The volatile atmosphere of choices for schools (and parents), as new
hardware and software appear daily, calls for principles and knowl-
edge educators can use, derived from systematic empirical studies in
laboratories and classrooms, of how children learn with these new
information technologies. We also need theoretical debates on the aims
and priorities for education in an information age. We believe that a
developmental approach to the understanding of information technolo-
gies will be required that incorporates the new insights of cognitive
science and will guide both research on and design of computer-based

dmiImlalilmINN.111.01111..

*Revised version to appear in Nev Ideas in Psychology, Elms-
ford, NY: Pergamon Press, May 1983 [revisions made in October
19831.

**We would like to acknowledge with thanks the Spencer Founda-
tion and the National Institute of Education (Contract #400-83-0016)
for supporting the research reported here, and for providing the
opportunity to write this essay. The opinions expressed do nat
necessarily reflect the position or policy of these institutions and no
official endorsement should be inferred. John Broughton, Jan Haw-
kins, Karen Sheingold, Ben Shneiderman, and a group of anonymous
reviewers provided very useful critical discussions of the data and
issues covered in this report.

.

learning environments. This developmental cognitive science disci-
pline would merge theory and practice to dovetail the symbolic powers
of human thinking with those of the computer in the service of human
development.

As described in this essay, our goals are considerably more modest
but, nonetheless, a timely subtask of the larger enterprise. Our aim
is to examine two widespread beliefs about the mental activities en-
gaged by programming a computer and their expected cognitive and
educational benefits. The two beliefs are polar opposites and neither
is acceptable. Together, they express the predominant tendencies in
thinking about learning to program today.

The first belief is linked to an atomistic, behaviorist tradition that
views learning narrowly. This is the traditional and deeply engrained
idea that learning is simply an accumulation of relatively autonomous
facts. In this .view, what one le-rns when learning to program is the
vocabulary of commands (priori' _yes) and syntactic rules for con-
structing acceptable arrangements of commands. This belief underlies
most programming instruction. Its other facet is that what one learns
when learning programming is just a programming language.

The contrasting belief, in part a reaction to the first belief, is that
through learning to program; children are learning much more than
programming "facts." It is being claimed' 'that children will acquire
higher cognitive skills such as planning abilities, problem-solving
heuristics, and reflectiveness on the revisionary character of the
problem-solving process itself. This belief, although new in its
application to this domain, is an old idea in a new costume. It is
based on a common, albeit extreme, assumption about learning- -that
spontaneous experience with a powerful symbolic system will have
beneficial cognitive consequences, especially for higher order cogni-
tive skills. Similar arguments have been offered in centuries past for
mathematics, logic, writing systems, and Latin (see Bruner, 1966;
Cole & Griffin, 1980; Goody, 1977; Olson, 1976; Ong, 1982; Vygot-
sky, 1978).

M

The intuitively plausible claims for the cognitive benefits of pro-
gramming have broadened in scope and in public attention. Al-
though, as yet, there is no, evidence to support these claims, their
presumed validity is affecting important decisions in public education
and leading to high expectations for outcomes of programming in the
school and home. In the current climate of uncritical optimism about
the potential cognitive benefits of learning to program, we run the
risk of having the naive "technoromantic" ideas become entrenched in
the school curriculum by affirmation rather than by empirical verifi-
cation through a cyclic process of research and development. At the

2

5

e.

pre-high school level, programming is being taught primarily because
of its assumed impact on higher cognitive skills, not because profi-
ciency in programming is itself an educational goal. This assumption
takes on added significance since several million precollege-age chil-
dren in the United States are already receiving instruction in com-
puter programming each year, and France has recently made program-
ming compulsory in .their precollege curriculum, on a par with mathe-
matics and native language studies.

With the rapid rise in the teaching of programming, it has become
critical for decision ,makers in education to understand how program-
ming is learned, what the cognitive outcomes may be of learning to
program, what levels of programming skill may be required to obtain
different types of outcomes, and what the relationships are between
the cognitive constraints on learning to program and its cognitive
consequences. Research directly addressing these questions is in
its infancy.

Throughout our paper, we will highlight major issues and fundamental
complexities for researchers in designing studies responsive to these
critical questions. We discuss these issues in terms of a hybrid
developmental framework that incorporates cognitive science and
developmental psychology, and review relevant research in cognitive
science and its cognate disciplines. This synthesis recognizes the
inadequacies of either an extreme knowledge-building account of
learning to program, or the naive technoromanticism that postulates
spontaneous higher order cognitive skills asoutcomes of programming
experiences. Although claims about the spontaneous cognitive impact
of programming have an intuitive appeal, we show them to be miti-
gated by consideration of factors involved in learning and develop-
ment. We also demonstrate how, in practice, the fact-learning ap-
proach to programming often leads to incomplete programming skills.
Cognitive studies of what expert programmers know, the level of the
student's programming skills, the goals and purposes of those learn-
ing to program, and the general difficulty of transferring powerful
ideas across domains of knowledg.. all contribute to our rejection of
these two views. Programming, in the classroom ma fundamentally
alter the ways in which learning and cognitive development proceed.
But we must examine whether such bold claims find, or are likely to
find, empirical sUpport.

Throughout our analysis of these issues, we have felt that a develop-
mental perspective that incorporates the seminal work in the last
decade of the interdisciplinary field of cognitive science will illuminate
our understanding of the potentialities of information technologies for
advancing human cognition. Fundamental contributions to thinking
about and concretely establishing the educational roles of information

6
3

technologies could be gained from the synthesis of these two impor-
tant theoretical traditions.

Developmental theorists such as Piaget and Inhelder (1969), Werner
(1957), ant Vygotsky (1978) have provided accounts of developmental
processes with profound implications for the role of technologies in
education. kIn all these views, cognitive development consists not of
an accumulation of facts, but of a series of progressive reorganiza-
tions of knowledge driven by the child's active engagement with
physical and social environments. In these views, learning (i.e., the
accumulation of new knowledge) is important for driving the develop-
mental process but, at the same time, is mediated by the current
developmental capabilities of the learner.

During the last decade, researchers in the constituent disciplines of
cognitive science--cognitive psychology, computer science, linguistics,
anthropology, and philosophy - -have begun intensive collaborative
research projects (e.g., Gentner & Stevens, 1983; Greeno, Glaser &
Newell, 1983; Norman, 1981). The combination of careful analysis of
cognitive processes and the techniques of computer simulation has led
to important new insights into the nature of mental representations,
problem-solving processes, self-knowledge, and cognitive change.
Cognitive science has revealed the enormous importance of extensive,
highly structured domain-specific knowledge and the difficulty of
developing, general-purpose, problem-solving strategies, that crosscut
different knowledge domains. In addition, within particular domains,
cognitive science research has been able to specify in great detail the
naive "mental models" held by novices, such as Aristotelian beliefs
about objects in motion, which are often very resistant to change
through spontaneous world experience (Gentner & Stevens, 1983).

Cognitive science shares with the older tradition of developmental
psychology a concern with how new learning must be integrated with
prior knowledge, but it transcends earlier work in analyzing problem
solving and learning processes for specific knowledge domains, and
finds little role for general structural principles invoking "stages."

For a student interacting with a programming environment, for ex-
ample, a developmental perspective would indicate the importance of
studying how these students' current knowledge of the computer
aystem is organized, how they regulate and monitor their interactions
with it, and how their knowledge and executive routines affect the
ease or pace of acquisition of abilities to use new programming con-
structs. It would also investigate the students' exploration of the
system, and the ways in which they are able to assimilate it into their
current level of understanding and to appropriate it in terms of their
own purposes, including play and competition. Learning to use the

4 7

programming language may require successive developmental reorgani-
zations not only of the students' naive understanding of the language
being learned, but of the computer system as a whole. Complex
cognitive changes are unlikely to occur through either spontaneous
exploration or explicit instruction alone, since students must be
engaged in the task in order to interpret the new concepts. This
perspective suggests that, rather than engaging in the current
argument over global questions such as which computer language is
best for children, we would do better to ask how we can organize
learning experiences so that in the course of learning to program,
students are confronted with new ideas and have opportunities to
build them into their own understanding of the computer system and
computational concepts.

In complementary terms, cognitive science raises such important
questions ass How can common systematic misconceptions in particular
domains of knowledge be diagnosed and remediated through either
informal or formal learning activities? For example, what does a
student specifically need to know in order to comprehend and use
expert strategies in designing a computer program? What component
mental processes are engaged in programming activities?

The synthesis of developmental cognitive science focuses on diagnos-
ing the mental models and mental processes that children as well as
adult novices bring to understanding computer programming, since
these models and processes serve as the basis for understanding
transformations of their systems of knowledge as they learn. Beyond
the typically agenetic cognitive science, a developMetital cognitive
science would asks How are the various component mental processes
involved I:. expert programming constructed and reconfigured
throughout ontogenesis, and accessed and organized during problem-
solving episodes? Through what processes of reorganization does an
existing system of thought become more highly developed? Through
what learning activities in what kinds of environments does the novice
programmer develop into an expert? Developmental cognitive science
asks how the mind an i its ways of knowing are shaped, not only by
biological constraints or physical objects, but by the available cultural
interpretive systems of social and educational interaction. As we
shall see, the currently available research is impoverished in response
to these questions, but current progress in understanding the devel-
opment of mathematical and scientific thinking (reviewed, for example,
in Siegler, 1983) leads us to be optimistic about the prospects for
comparable work on the psychology of programming.

The critique of the literature on learning to program that we present
below has been strongly influenced by this developmental cognitive
science perspective. We do not adopt the usual computer program-

5

ming perspective which assumes that all programming students are
adults or have the same goals as mature learners. Instead, our
perspective is geared to the learning experiences and developmental
transformations of the child or novice adult in interactive environ-
ments. The kinds of preliminary questions we ask from this perspec-
tive in addressing the question--What are the cognitive effects of
learning to program--lead us to draw on studies from diverse fields
that we see as relevant to a developmental cognitive science of pro-
gramming. We have categorized them according to the following
topics: What are the developmental roles of contexts in learning to

)program? What is skilled programming? What are the levels of pro-
gr5mming skill development? What are the cognitive constraints on
learning to program? First, however, we will begin by examining the,
bold claims about the effects of learning to program.

Claims for Cognitive Effects of Learning to Program

Current claims for the effects on thinking of learning to program are
best exemplified in the writings of Papert and Feurzeig on the Logo
programming language (e.g., Feurzeig, Horwitz & Nickerson, 1981;
Feurzeig, Papert, Bloom, Grant & Solomon, 1969; Goldstein & Papert,
1977; Papert, 1972a, 1972b, 1980; Papert, Watt, DiSessa & Weir,
1979), although such claims are not unique to Logo (see Minsky,
1970).

Early claims. Two key catalysts underlie beliefs that programming
will discipline thinking. The first is from artificial intelligence,
where constructing programs that model the complexities of human
cognition is viewed as a way of understanding that behavior. It is
contended that you learn more about your own thinking when you
teach the computer to do something. Papert (1972a) draws the anal-
ogy that, because of the necessarily explicit nature of programming,
students will learn about problem-solving processes as they articulate
the assumptions and specify the steps of their problem-solving ap-
proach. he second influence is the widespread assimilation of con-
structivist epistemologies of learning, most familiar through Piaget's
work. Papert (1972a, 1980) has been an outspoken advocate of the
Piagetian account of knowledge acquisition through self-guided prob-
lem-solving experiences, and has extensively influenced conceptions of
the benefits of learning programming through "a process that takes
place without deliberate or organized teaching" (1980, p. 8).

Ross and Howe (1981) have summarized Feurzeig et al.'s (1969) four
claims for the expected cognitive benefits of learning programming.
Initially, most outcomes were postulated for the development of mathe-
matical thought:

6
9

ti

(1) that programming provides some justification for, and
illustration of, formal mathematical rigour; (2) that pro-
gramming encourages children to study mathematics through
exploratory activity; (3) that programming gives key in-
sight into certain mathematical concepts; and (4) that
programming provides a context for problem solving, and a
language with which the pupil may describe his own problem
solving. (p. 143)

Papert (1972b) argued for claims (2) through (4), noting that writing
programs of Logo turtle geometry is a

new piece of mathematics with the property that it allows
clear discussion and simple models of heuristics I such as
debugging] that are foggy and confusing for beginners
when presented in the context of more traditional elemen-
tary mathematics lour emphasis].

He provides anecdotes of children "spontaneously discovering" phe-
nomena such as the effects that varying numerical inputs to a pro-
icedure,for drawing a spiral have on the spiral's shape. He concludes
that 'learning to make these "small discoveries" puts the child "closer
to mathematics" than faultlessly learning new math concepts.

Recent claims. We find expanded claims for the cognitive benefits of
programming in a new generation of theoretical writings. In Mind-
storms, Papert (1980) discusses the pedagogy surrounding Logo, and
argues that cognitive benefits will emerge from taking "powerful
ideas" inherent in programming (such as recursion and variables) in
"mind-size bites" (e.g., procedures). One of his more dramatic
claims is that if children had the extensively different experiences in
thinking about mathematics that -Logo allows, he sees "no reason to
doubt that this difference could account for a gap of five years or
more between the ages at which conservation of number and combina-
torial abilities are acquired" (p. 175). Here, Papert is referring to
extensively replicated findings of a large age gap between the early
conservation of number (near age 7) and later combinatorial abilities
(e.g., constructing all possible pairings of a set of different colored
beads, near age 12).

Feurzeig et al. (1981) provide the most extensive set of cognitive
outcomes expected from learning to program. They argue that

the teaching of the set of concepts related to programming
can be used to provide a natural foundation for the teach-
ing of mathematics, and indeed for the notions and art of
logical and rigorous thinking in general.

10

Learning to program is expected to bring about seven fundamental
changes in thought:

1. rigorous thinking, precise expression, recognized need to
make assumptions explicit (since computers run specific algorithms);

2. understanding of general concepts such as formal procedure,
variable, function, and transformation (since these are used in pro-
gramming);

3. greater facility with the art of "heuristics," explicit ap-
proaches to problems useful for solving problems in jinx domain, such
as planning, finding a related problem, solving the problem by de-
composing it into parts, etc. (since "programming provides highly
motivated models. for the principle heuristic concepts") ;

4. the general idea that "debugging" of errors is a "construc-
tive and plannable activity" applicable to any kind of problem solving
(since it is so integral to the interactive nature of the task of getting
programs to run as intended);

5. the general idea that one can invent steal procedures such
as building blocks for gradually constructing solutions to large prob-
lems (since programs composed. of procedures are encouraged in
programming);

6. generally enhanced "self-coniciousness and literacy about the
process of solving problems" (due to practice of

of
the

process.. of problem .solvingl programming by means of the language,
of programming concepts);

7. enhanced recognition that for domains beyond programming
there is rarely a single "best" way to do something, but rather
different ways that have comparative costs and benefits with respect
to:specific goals (learning: the distinction between "process" and
"product," as in Werner, 1937) .

The question of whether or not programming promotes the develop-
ment of higher cognitive skills raises two central issues in devel-
opmental cognitive science. First, is it reasonable to expect transfer
across knowledge domains? Even adult thinkers are notorious for
their difficulty in spontaneously recognizing connections between
"problem isomorphs"problems of identical logical structure but
different surface form (Dick & Holyoak, 1980; Hayes & Simon, 1977;
Simon & Hayes, 1976)and in applying strategies for problem solution
developed in one context to new problem forms. With problems of
"near" transfer so acute, the possibility of spontaneous transfer must

8 11

be viewed cautiously. In later discussions, we provicir a tentative
developmental model for thinking about relations between different
types of transfer beyond programming and different levels of pro-
gramming skill.

The second and related question is whether intellectual activity is
guided by general domain-independent problem-solving skills or by a
conjunction of idiosyncratic domain-dependent problem-solving skills
(Goldstein & Papert, 1977; Newell, 1980; Simon, 1980). An extensive
literature on metamemory development indicates that the tasks used to
measure the functioning of abstract thinking are inextricably linked to
the specific problems used to assess metacognition (e.g., Brown,
1983a). As Ross and Howe (1981) note, "in most problem-solving
tasks, it is impossible to apply the supposed context-free skills
without initially having essentially domain-specific knowledge." Within
domains, however, better performances by learners are commonly
accompanied by reflection on the control of their own mental activities
(Brown, Bransford & Ferrara, 1983).

The Developmental Role of Contexts in Learning to Program

For a developmentalist, there is a major problem pervading each of
these characterizations of the effects on higher thinking skills ex-
pected from learning to program. Programming serves as a "black
box," an unanalyzed activity whose effects are presumed to irradiate
those who are exposed to it. But questions about the development of
programming skills require a breakdown of the skills into component
abilities, and studies of how specific aspects of programming skill are
acquired. They require especially serious consideration of the devel-
opmental roles played by the contexts interpenetrating the black box:
the programming environment, the instructional environment, and the
relevant understanding and, performance of the learner.

The question of the role of contexts in learning to program is complex
because programming is not a unitary skill. Like reading, it is
comprised of a large number of abilities that interrelate with the
organization of the learner's knowledge base, memory and processing
capacities, repertoire of comprehension strategies, and general prob-
lem-solving abilities such as comprehension monitoring, inferencing,
and hypothesis generation. This lesson has been etched in high relief
by intensive efforts to develop artificial intelligence systems that
"understand" natural language text (e.g., Schank, 1982; Schank &
Abelson, 1977). Skilled reading also requires wide experience with
different genres (e.g., narrative, essays, poetry, debate) and with
different goals of reading (e.g., reading for gist, content, style).
Just as reading is often equated with skill in decoding, so learning to
program in schools is often equated with learning the vocabulary and

9

12

syntax of a programming language. But skilled programming, like
reading, is complex and context-dependent, so we must begin to
unpack the contexts in which programming is carried out and learned.

Environments in which children learn to read are usually overlooked
because adequate environments (i.e., plenty of books, good lighting,
picture dictionaries, good readers to help with hard words, vocabu-
lary cards, phonics charts) are taken for granted. By contrast,
good programming environments are not generally available to schools.
Determining how children develop programming skills will not be
possible without due consideration of the programming environment in
which learning and development takes place, and of how learning
activities are organized.

Programming Environment

The distinction between a programming language and a programming
environment is crucial. A programming language is a set of commands
and rules that instruct the computer to perform specified operations.
The programming environment is the larger collection of software
(operating systems and programming tools) and hardware (memory,
disk storage, hard copy capability) available to the programmer. It
can include an editor program to facilitate program writing, code
revising, and copying useful lines of code from one program to an-
other; debugging aids; elaborate trace 'routines for following the
program's flow of control; automatic documenters; cross-reference
utilities for keeping track of variables; and subroutine libraries.

Good programming environments (e.g., those most extensively devel-
oped for working on large computers in Lisp and PL/I) make the
coding aspect of programming far more efficient, allowing the pro-
gratnmer to concentrate on higher level issues of program design,
efficiency, and elegance. In contrast, the programming environments
provided for today's school microcomputers are so impoverished (typi-
cally consisting of only a crude editor and limited trace functions)
that entering the code for a program and getting it to execute cor-
rectly is the central problem.

Finally, despite vigorous arguments about the educkional superiority
of different programming languages, there are no data on whether
different languages lead to significant differences in what children
need to know prior to programming, or what cognitive benefits they
derive from it. Although such differences among languages may
exist, they do not affect our point since they can be radically manip-
ulated by restructuring the programming environment. Attention is
best directed to general issues about programming rather than to
those that are programming language specific.

10

:*4 A

13

Instructional Environment

While features of the programming environment are important for
learning to program, how successfully a child will master programming
also depends on the instructional environment and the way in which
resources such as computer access time and file storage are allocated.
Each of these points concerns the context of cognitive activities,
which we know from cognitive science and developmental psychology
to be critical to the level of performance achieved in cognitive tasks
(for reviews, see Brown et al., 1983; LCHC, 1982).

Deciding how to introduce programming and assist students in learn-
ing to proam is hampered today by the paucity of pedagogical
theory. That current fact-learning approaches to programming in-
struction are. inadequate has become apparent from studies of the
kinds of conceptual errors made by novice programmers instructed in
that way. For example, novice adult programmers reveal deep misun-
derstandings of programming concepts, and of how different lines of
programming code relate to one another in program organization
(Sonar & Soloway,- 1982; Jeffries, 1982; Sheil, 1980, 1981a; Soloway,
Sonar & Ehrlich, 1983; Soloway, Ehrlich, Sonar & Greenspan, 1982).
As is to be expected from what they are taught, they know the
vocabulary and syntax of their programming .langUage. Their misun-
derstandings are much deeper (Jeffries, 1982), such as assuming that
all variables are global (when some may be specific to one proce-
dure), and expecting that observing one pass ,thrOugh a loop allows
them to predict what will happen on all subsequent passes (although
the outputs of programming statements Which test for certain condi-
tions may change what will happen during any specific loop). Re-
search by Mayer (1976) , Miller (1974), and Sime, Arblaster and Green
(1977) has revealed that adult novice programmers' ,generally have a.
difficult time with the flow of control concepts expressed by condi-
tionals (for a review of these findings, see duBoulay, O'Shea & Monk,
1981). These conceptual difficulties, even among professional pro-
grammers, have been lamented by such programming polymaths and
visionaries. as Minsky (1970) and Floyd (1979) as due to problems with
how programming is taught. Too much focus is placed on low-level
form such as grammar, semantic rules, and some preestablifed
algorithms for solving classes of problems, while the pragmatics of
program design are left for students to discover for themselves.
Interestingly, these complaints about writing programs are similar to
those voiced about how writing in general is taught (e.g., Scarda-
malia & Bereiter, 1983).

We have observed that the conceptual problems of children learning to
program are similar to those of adult novices. For example, in our
research with 8- to 12-year-old Logo programmers (Kurland & Pea,

1.4

11

1983), we find (through their think-aloud protocols and manual simu-
lation of programs) that children frequently %dopt a systematic but
misguided conception of how control is passed between Logo proce-
dures. Many children believe that placing the name of the executing
procedure within that procedure causes execution to loop back
through the procedure, when in fact control is passed to a copy of
the executing procedure. This procedure is then executed and, when
that process is complete, control is passed back to the procedure that
last called it. Children adopted mental models of flow of control
wnich worked for simple cases, such as programs consisting of only
one procedure or tail recursive procedures, but which proved inade-
quate when the programming goal required more complex programming
constructions.

In other developmental studies of Logo programming skills (Pea,
1983), even the 25% of .the children (8- and 9-year-olds; 11- and
12-year-olds) who were extremely interested in learning programming
wrote programs that reached but a moderate level of sophistication
after. approximately 50 hours of on-line programming experience
during the year. Children's grasp of fundamental programming
concepts, such as variables, tests, and recursion, and specific Logo
primitive commands such' as "REPEAT," was highly context-specific.
For example, a child who had written a procedure using REPEAT
which repeatedly printed her name on the screen did not recognize
the applicability of REPEAT in a program to draw a square. Instead,
the child redundantly wrote the same line-drawing procedure four
times. We expect,that carefully planned sequences of instruction' will
be important to ensure that programming knowledge is not "rigid"
-(Werner, 1957), or' "welded" (Shif, 1969) to its context of first
learning or predominant use. Such rigidity is a common finding for
early developmental levels in diverse domains (Brown et al., 1983).

In the National Assessment of Educational Progress survey of 2500
13-year-olds and 2500 17-year-olds during the 1977-1978 school year
(NA EP, 1980), even among the small percentage who claimed to be
able to program, "performance on flowchart reading exercises and
simple BASIC programs revealed very poor understanding of algorith-
mic processes involving conditional branching" (cited by Anderson,
1982, p. 14).

Educators often assume that adult programmers are not beleaguered
by conceptual problems in their programming, but we have seen that
they are. Once we recognize that programming by "intellectually
mature" adults is not characterized by error-free, routine perform-
ances, we might better understand the difficulties encountered by
children who devote only a small percentage of their school time to
learning to program.

12
15

46

F17

These findings lead us to two central questions about programming
instruction, defined broadly to include the direct teaching provided
by .educators as well as the individual advice, modelling, and use of
metaphors with whiCh they support instruction and learning,- How
much and. what types of inistruction should be offered? How much.
direct. ,instruction is best for children to learn programming is a
controversial .question-. (e.g.., Howe, 1981; Papert, 1980). At one
extreine., schools teach programming as they do any other subject,
with. fact Sheets.. and tests; at the other,. they :provide minimal in-
struction, encouraging children to explore possibilities, experiment,
and create their own problems to solve. This second approach,
popularized. by Papert (.198Q), argues that little overt instruction is
necessary' if the .programming language is sufficiently engaging and
simple to use, while at. the same time powerful. enough, for children to
do projects they find meaningful. Though this.. discovery-learning
perspective is" not universally shared, even by. Logo devotees (Howe,
1981), it has had a pervaiive influence on the use of Logo by
schools.

What type of instruction should be offered and, in the course of
programming skill development, when specific concepts, methods, and
advice should be introduced are also critical questions. Cogritive
science studies implicate two central factors. One is the current
mental model or system of knowledge that the student has available at
the time of instruction. A second is the goal-relevance of the prob-
lem-solving activity required by the student.. On the first point,
there are no careful studies of the success of different instructional
acts as a function of a student's level of understanding for program-
ming akin to those carried out by Siegler (1983) .for such concepts as
time, speed, and velocity. At a more general level, Mayer (1979,
1981) has shown that a concrete conceptual model of a programming
system aids college students in learning BASIC by acting as an
advance organizer of the details of the language.. With the conceptual
model, learners were able to assimilate the details of the programming
language to the model rather than needing to induce the model from
the details.

On the second point, we would ask how compatible the teacher's
instructional goals are with the children's goals and purposes in
learning programming. Recent developmental cognitive science and
cross-cultural studies of cognition (e.g., Brown, 1982; Laboratory of
Comparative Human Cognition, 1983) have shown that assessing task
performance within a goal structure familiar to the person is neces-
sary for determining the highest developmental level of an individual's
performance. The goals of the programming activity need to be
contexted for the child in terms of other meaningful and goal-directed
activities, connecting to everyday world affairs, to other aspects of

16

13

the curriculum, or to both. Papert (1980) has described this as
"syntonic" learning. For example, in , our studies, Logo classroom
children found two contexts especially motivating; creating video-
games and simulating conversations. The most intensive and 'advanc-
ed programming efforts were in the service of goals such as these,
thus reaffirming Dewey's (1900) point that new skills should serve as
more adequate means for achieving desired ends. A similar emphasis
underlies the successful use of electronic message and 7,ublishing
systems in classrooms ,(e.g., Black, Levin, Mehan & Quinn, 1982;
Laboratory of Comparative Human Cognition, 1982). Embedding
computer programming activities of increasing cognitive complexity in
children's goal structures may promote learning to program and
support the transfer of what is llarned in programMing to problem-
solving activities in other domains.1

Our point throughout this section has been that programming is not
taught by computers of programming languages but by teachers, with
the aid of, the supports of a programming environment. How effec-
tively children of different ages and with different background knowl-
edge learn programming will be contingent on the capabilities of their
teachers, the appropriateness of their learning activities to their
current level of understanding in programming, and the features
available in their programming environment. Studies to date have not
incorporated these considerations recogvized by a developmental
cognitive science perspective as central.

What is Skilled Programming?

How to define and assess the constellation of skills that comprise
programming has long been a major problem for industry (Pea &

Kurland, 1983b), and is becoming so for schools. We define program-
ming as the set of activities involved in developing a reusable product
consisting of a' series of written instructions that make a computer
accomplish some task. But in order to move from definition to in-
struction, one must begin to unpack "programming skill," in contrast
to the black-box approach to programming prevalent in schools.
Promising moves in this direction have already been provided by
careful analyses of what expert programmers do, and what types and
organizations of knowledge they must draw on when they program.
This research strategy, characteristic of cognitive science, has re-
vealed significant general features of expert problem-solving skills for
diverse domains, such as algebra (Lewis, 1981), chess (Chase &

Simon, 1973), geometry (Anderson, Greeno, Kline & Neves, 1981),
physics (Chi, Feltovich & Glaser, 1981;. Larkin, McDermott, Simon &

Simon, 1980), physical reasoning (deKleer & Brown, 1981), and
writing (Bereiter & Scardamalia, 1982), and it is providing new
insights into the components of programming skill.

What does a programmer do? Programming, for either novices or
experts, involves a set of activities which constitutes phases of the
problemrsrlring process (e.g., Newell & Simon, 1972; POlya, 1957).
TheSef act 'Meg, which may be invoked at any time and recursively
during the development' of a .program, are: (1) understanding the
programMing problem; (2) designing or planning a programming
solution; ,(3) writing the' programming 'cede that implements the plan;
and ,.(4) compreheneion of the written program and program debug-
ging:. An extensive review of these cognitive subtasks of program-
Ming may be found in Pea and Kurland (1983b).

Whit. must an expert programmer know? Findings on the knowledge
.schemas, :memory organizations, and debugging strategies which
expert 'programmers possess are of particular interest. Recent
stUdies of Programmers' characterize high-level programming skill as a
giant astemblage of highly .specific, low-level knowledge fragments.
(Atwood & Ramsey, 1978; 'Brooks, 1977). .The deSign of functional
"programmer'S apprentices" such as Barstow's (1979) Knoviledge Based
Program: Construction,. and Rich and Shrobe's "Lisp programmer's
apprentice" (Rich & Shrobe, 1978; Shrobe, Waters & Sussman, 1979;
WaterS, 1982), and the 'MEND Programming Tutor (Soloway, Rubin,
WoOlf; Bonar & Johnson, 1982) has involved compiling.a "plan library"
of the basic programming schemas, or recurrent fUnctiOnal chunks of
programiting,, code that programmers, are alleged to use. 'Observations
of programmers support these introspective analyses of chunks of
prOgramming knowledge. Eisenstadt, 'Laubsch and Kahney .0981)
found that most novice, student Programs were constructed from a
small sit of program.schematt, and when Jeffries (1982) compared 'the
debugging strategies of ,novice .prograMmers and graduate computer
science studentS,, she found that experts .saw whale blocks .of. code as
instantiations of well -known problems such as calculating change.
Soloway and colleagues (Sonar, 1982; Ehrlich & Soloway, 1983; John-
son, Draper & Soloway, 1983; Soloway & Ehrlich, 1982; Soloway,
Ehrlich, Bonar & Greenspan, 1982; also see Kahney & Eisenstadt,
1982) postulate a model in which programmers use recurrent plans as
chunks in program composition, and identified such plans it programs
written by Pascal novices (e.g., the "counter variable plan"). But
for developmental cognitive science, we will need studies Of how
students mentally construct such plan schemas from- programming
instruction, experience, and prior knowledge.

A related aspect of programming skill is the set of rules that experts
use to solve programming problems, but again wif. lack genetic
studies. In an analysis of a programmer's think-aloud work on 23
different problems, Brooks (1977) demonstrated that approximately 104
rules were necessary to generate the protocol behavior. Similarly,
Green and Barstow (1978) note that over a hundred rules for mechan-

15

18

ically generating .simple sorting and searching algorithms (e.g. ,
Quicksort) are familiar' to most programmers.

A third aspect of programming skill is the 'ability .to build detailed
mental models of what the computer will do when a program runs. An
expert programmer can build dynamic mental representations, or
"runnable mental models" (Collins & Gentner, 1981) and simulate
computer operationg in response to specific problem inputs. The
complexities of such dynamic mental model's are revealed vhen skilled
programmers gather evidence for program bugs and simulate the
progratt's actions by hand (Jeffries;, 1982). Not all program under-
standing' is mediated by hand. siniulation; experts engage in 'global
searches for program. organizational structure, guided by adequate
program documentation, a strategy akin to *bat expert readers do
(Brown,, ,1983b; Brown & Smiley, 1978; spito, Bruce & Brewer, 1980).,
How individuals develop such rich procedtiral understanding is curH:
rently unknown.

Expert programmers not only have available, more knowledge ,schemas
ii

strategies, and rules applicable to 'solving, programming problems,. but
they perceive and remember larger chUnks, of information than ,do
novices. . The classic Chase .and. Simon.' (1973) finding, of short7term
titatory span 'advantagei for chess experts over'noVicesE for meaning
iful chessboard 'configurations but not for ,random 'Configurations has

:replicated for programming (cultist.. shepo4rd Borst &
LoVe 1979; McKeithen,' Reitman, Rueter '& , Hirtle., 1981;. IstOrcio
Kerst, in press; ShepPaid, CUrtis,, 1979; Shneider-
man , '1977) . For example, MCISeitlieri experts
clustered keyword commands- according to meaning (e.g.., those func-
tioning in loop statements), 'whereas novices Clustered according to a
variety of surface ordinary language associations (such as ortho-
graphit similarity and ..wOrd length), intermediates falling between the
two. Similarly, Adelson (1981) found 'that recall clusters for experts
were functionally or deeply based;. those of novices Were based on
surface. features of programming code. This is a Major developmental
transformation, but we do not understand how it occurs. DiPersio,
Isbister and Shneiderman (1980) extended this research by demon-
strating that performance by college students on a program memoriza-
tion /reconstruction task provides a useful predictor of programming
test performances.

ti

It is also a widely replicated finding that expert programmers debug
programs in different ways than do novices (Atwood & Ramsey, 1978;

Gould, ,1975; Gould & Drongowski, 1974; Youngs, 1974). Jeffries
(1982) found that program debugging involves comprehension proc-
esses analogous to those for reading ordinary language prose. Ex-
perts read programs for flow of control (execution), rather than

vA

line by line (as text), But how do programmers shift from surface to
deep readings of programs as they develop debugging skills?

In conclusion, we make one important observation, Expert program-
me :s know much more than the facts of programming language seman-
tics and syntax.. However, the rich knowledge schemas, strategies,
rules, and memory organizations that expert programmers reveal are
only rarely directly taught. Many programming students are at a
disadvantage because of their lack of such. understanding. This does
not mean that they could not be taught, but to do so effectively will
require considerable rethinking of the traditional computer science
curriculum. These cognitive qualities appear instead to be a conse-
quence of /an active constructive process of capturing the lessons of
program writing experience for later use.

Levels of Programming Skill Development

To date,. observations of levels of programming skill development (see
Howe, 1980) have been extremely general and more rationally than
empirically derived. Accounts of novice- expert differences in pro-
gramming ability among adults, coupled with observations of children
learning to program, provide a starting point for developing a taxon-
omy, of levels of programming proficiency. This taxonomy can guide
our research by providing a developluental framework within which to
assess a students' programming expertise and make predictions for
types of transfer beyond programming, as a function of a student's
level of expertise.

We believe that at least four distinct levels of programming ability can
be identified that have implications for what types of skills might
transfer as 'the' result of their achievement. 'These levels represent
pure types si-and may not be characteristic of an individual, but cap-
ture some Of the complexities of what it means to develop programming
skills. We view these levels only as guidei toward more adequate
characterizations of the develoPment of programming abilities. Fur-
ther differentiation will inevitably be required, in terms of the cog-
nitive subtasks involved in the levels, and refined sublevels.

Level Is Program user. A student typically learns to execute already
written programs such as games, demonstrations, or computer-assisted
instruction lessons before beginning instruction in how to program.
What is learned here is important (i.e., what specific keys do, how to
boot a disk, how to use screen menus), but does not reveal how the
program works. or that the program controls what happens on the
screen. For many people, this level is sufficient for effective com-
puter use (e.g., for word processing, game playing, electronic mail).
But in order to be more in control of the computer and able to tailor

17

.!rJh'?

its capabilities to one's own goals, some type of programming is
required.

From this level we would expect relatively little transfer beyond
computer use, but some transfer on computer literacy Issues. For
example, given sufficiently wide exposure to different types of pro-
grams., ,a student would be expected to know what computers are
capable of doing, what they cannot do, and fundamental aspects of
how they function in their everyday lives. As users, then, children
might learn when computers are appropriate tools to apply to a prob-
lem..

Level II: Code generator. At thii level the student knows the syntax
and semantics of the more common commands in a language. He or
she .can read someone' else's program and expl&n what each line
accomplishes. The student can locate bugs that prevent commends
from being executed (e.g., syntax errors), can load and save pro-
gram, files to and from an external 'storage deyice, and can write
simple programs of the type he for she has seen previously. When
programming, the student does very. little preplanning and- does not
bother to document his or her programs. There is no effort to
optimise the coding,, use error traps, or make the program usable by
others. A program created at this level might just, print the stu-
dent!s. name repeatedly on the screen or draw the :Same shape again
and again in different colorS. The student operates at the level of
the individual ,command and, does. not use subroutines or procedures
created as part- of other programs. This level of understanding of
the ../programming process is z sufficient for creating short programs.
But 'to create more useful and flexible programs, the student needs to
progress at.least to the next level.

At level II, more specific types of computer literacy related transfer
would be expected. Students should develop better skills for dealing
with the more sophisticated software tools that are rapidly permeating
the business world. Computer-naive users of office information
systems (including calculators) have many problems (e.g., Mann,
1975; Nickerson, 1981b) and construct naive, error-ridden mental
models of how they work (Mayer & Bayman, 1981; Newman & Sproull,
1979; Young, 1981). Knowledge characteristic of this level may be
required to attenuate these problems. Sheil (1980, 1981a,b) provides
compelling arguments that most systems require low-level programming
if the user wishes to take advantage of system options, a basic
competency he has designated as "procedural literacy."

While potential computer literacy transfer from low-level programming
exposure seems a reasonable expectation, what types of cognitive
transfer should occur from this level of programming expertise is

18 21

disputable. Our observations of children programming at th:s level
suggest .that Some appreciation of the distinction between bugs and
errors, degrees of correctness, and the value of decomposing program
goals .into manageable subparts may develop and transfer to other
domains., -tut that a student's attention is typically so riveted to
SimplY getting a .program to work that any appreciation for more
general cognitive strategies is lost.

Level, Program Generator. At this level, . the. student has mas-
tered the. basic commands ,and is beginning to think in, terms of
higher level...units. He or she knows that sequences, of commands
accomplish Program , goals (e.g., locate and verify a keyboard input,
sort a list of names or numbers, or read data into' a program from a
separate text file). The student can read. a program and explain its
purpose, what functions different parts of the program Serve, and
how the different parts are linked together. The student can, locate
bugs that cause the program to misfunction (e.g., a sort routine that
fails to correctly place the last item in a list) or bugs that cause the
program to crash as a' result of unanticipated conditions or inputs
(e.g., a division-by-zero error .ihen the , program is instructed to
find' the Mean of a null list). . The student can lOad, save, and, merge,
files and do simple calls to and from files inside the main program.
The student 'may be,-writing fairly lengthy..programs for personal use,
but the programs tend not to be user - friendly. While the student
sees the need for documentation, -he or .she dOes not plan programs
around the need for 'careful documentation or clear coding so that the
program may be maintained by others. For this. general level, one
can expect to identify many sublevels, of programming. skill.

Within this level of expertise, students shOuld develop some appreci-
ation for the process of &Signing a successful program. Such un-
derstanding has potentially powerful implications for their work in
other domains, particularly if such relationships are explicitly drawn
by the teacher for students, or exemplified in other domains. How-
ever, it _appears from our classroom observations and interviews. with
teachers that for students to spontaneously, transfer computational
concepts or language constructs used in one area of programming to
other programming projects is a major accomplishment. Ideas about
when to use variables or the value of planning, as in designing
program ,,omponents so that they can be reused in the future, and
following systematic conventions (such as beginning all graphics
designs at their lower left corner) to make merging components into
programs easier are all important accomplishments at this level that
should not be taken for granted.

Level IV: Software developer. Finally, at this level the student is
ready to write programs that are not only complex and take full

19

22

advantage of the capabilities of the computer, bUt are intended to be
used by others. The student now has 'a full understanding of all the
features of a language and how the language interacts with the host
computer (e.g., how memory is allocated or how graphic buffers may
be protected from being overwritten). When given programs to read,
the student can scan the. code and simulate mentally what the program
is doing., see how the goals are achieved and how the .programs could
be better written or adapted for other purposes. Programs are now
written with sophisticated error traps and built-in tests to aid in the
debugging process and to ensure that the "program is crash-proof.
Beyond .writing code accomplishing the program's objective, the stu-
dent can optimize coding to increase speed and minimize the memory
required to run a program. To decrease the time needed to write
programs, he or she draws heavily on software libraries and prOgram-
ming utilities. Finally, he or she often crafts a design for the. pro-
gram, before generating the code, documents ., the program fully, and
writes the program in a structured, modular. fashion so that others
can easily read and modify it. Major issues in software engineering
at high sublevels. within this level of expertise are discussed by
Thayer, Pyster and Wood (1981) .

It is at this level of programming sophistication that we would expect
to see the most extensive evidence 'for cognitive transfer. The
student can distance him/herself sufficiently from the low-level coding
aspects of program generation to reflect on the phases and processes...,
of problem solving involved. The issues of, that concern
the student at this levelelegance, optimalization, efficiency, veri-
fication, provability, and stylebegin to transcend low level concerns
with program eitecution, and may lead him or her to consider wider
issues. The need 'at this level to be conscious of the range of in-
tended users of programs forces the student to take the audience
fully into account, a .skill that has wide applicability in many other
domains, such as writing.

Implicit in these distinctions between levels of programmir g skill and
their link to predictions about types of transfer is a theory of pro-
gramming at odds with the naive technoromanticism prevalent in
educational computing. While it is conceivable that even low levels of
programming skill are sufficient to produce measurable cognitive
transfer to nonprogramming domains, we contend that on the limited
evidence available, this would be unlikely. Students who can barely
decode or comprk.hend text are not expected to be proficient writers.
Similarly, we doubt that students with a low-level understanding of
programming and the skills that programming entails will write func-
tional programs or gain insights into other domains on the basis of
their limited programming skill.

20 23

Cognitive Constraints on Learning to Program

Beyond asking what general cognitive characteristics may be prere-
quisite to or substantively influence a child's learning to program,
some ask what "developmental level" children must be "at" in order to
learn from programming experiences. The concept of developmental
level at the abstract theoretical planes of preoperational, concrete
operational, and formal operational intellectual functioning has proved
to be useful for instructional psychology in understanding children's
ability to benefit from certain types of learning experiences (e.g.,
Inhelder, .Sinclair & Bovet, 1974). But the very generality of these
stage- descriptions is not suitably applied to the development of spe-
cific domains of knowledge such as programming skills.

We have two reasons for not pursuing the development of program-
ming skills in terms of Piagetian developmental levels. First, there is
strong evidence that the development and display of the logical abili-
ties defined by Piaget is importantly linked to content domain (Feld-
man, 1980; Gardner, 1983; Piaget, 1972), to the eliciting context
(Laboratory of Comparative Human Cognition, 1983), and to the,
particular experiences of individuals (Price-Williams, Gordon 'ilk
Ramirez, 1969). Since it is not apparent why and how different
materials affect the developmental level of children's performances
within Piagetian experimental tasks, it is not feasible to predict the
relationship between learning to program and performance on the
Piagetian tasks. Our second objection is that learning to program has
neither been subjected to developmental analysis nor characterized in
terms of its 'component skills, although such analyses are necessary
for articulating measures that indicate the availability and develop-
mental status of these skills for particular learners.

While no research has been directly aimed at defining the cognitive
prerequisites for learning .to,lprogram, at least six factors are fre-
quently mentioned: mathematiCal ability, memory capacity, analogical
reasoning skills, conditiOnal reasoning skills, procedural thinking
skills, and temporal reasoning skills. These cognitive abilities, each
of which has a complex f and well-researched developmental history,
are presumed to infliience learning to program and could be promising
directions for future research.

Mathematical -Beyond general intelligence, programming skill
is said to be linked to general mathematical ability. Computers were
first developed to help solve difficult mathematical problems. Al-
though many computer uses today are nonmathematical (e.g., database
management, word processing), the notion persists that in order to
program one must be mathematically sophisticated. Media accounts of
children using computers in schools have perpetuated the belief that

21

24

programming is the province of math whizzes. Although we doubt
that math and programming abilities are related once general intel-
ligence is factored out, math ability cannot be ruled out as a pre-
requisite to the mastery of certain levels of programming skill.

Processing. capacity. Programming is Uten a memory-intensive enter-
prise requiring great concentration and the ability simultaneously to
juggle the values of a number of parameters. Thus, individual
differences in processing capacity are a likely candidate for in-
fluencing who becomes a good programmer. Forward and backward
span tasks, and more recently developed transformational span meas-
ures (see Case & Kurland 1980; Case, Kurland & Goldberg, 1982),
assess how much information one can coordinate at a given moment
and appear to index processes basic to learning. Performance on
such tasks has reliably correlated with general intelligence, 'Piagetian
developmental level, and ability to learn and use problem-solving
strategies (e.g., Hunt, 1978).

Analogical reasoning. A student may have background knowledge and
capacities relevant to programming, yet neither connect them to the
programming domain nor transfer knowledge acquired in programming
to other domains. This access of knowledge is fundamental to learn-
ing and problem solving throughout life (e.g., Brown, 1982). Trans-
fers of knowledge and strategies, both "into" and "out of" learning to
program, may depend on analogical thinking skills. Tasks designed
to measure abilities for engaging in analogical thinking (e.g., Gick &

Holyoak, 1980; Sternberg & Rifkin, 1979) may predict level of pro-
gramming development and transfer outcomes. Mayer (1975, 1981)
argues that students learn programming by comparing the flow of
control intrinsic to computational devices to the physico-mechanical
models that they already possess. Also, duBoulay and O'Shea (1976,
1978) have successfully used extensive analogical modelling to explain
computer functioning to novice 12-year-old programming students.

Conditional reasoning. Working with conditional statements is a major
part of programming, since they guide the operation of loops, tests,
input checking, and other programming functions. Thus, it is rea-
sonable to predict that a student who has sufficient understanding of
conditional logic--the various "if...then" control structures and the
predicate logical connectives of negation, conjunction, and disjunc-
tion- -will be a more successful programmer than a student who has
trouble monitoring the flow of control through conditional statements.

Procedural thinking. Several kinds of quasi-procedural, everyday
thought may influence how easily a learner masters the flow of control
procedural metaphor central to understanding programming, including
giving and following complex instructions (as in building a model),

22

25

writing or following recipes, and 4oncocting or carrying out directions
for travel. Presumably, learners more familiar with these linear
procedures, analogous to the flow of control for computer operations
expressed as instructions in a computer program, will more readily
come to grips with the "procedural thinking" touted as a central facet
of programming expertise (Papert, 1980; Sheil, 1980). However, to
date there has been little study of the development of procedural
thinking.

Temporal reasoning. The activity of temporal reasoning is relited to
procedural thinking, but with a distinct emphasis. Creating and
comprehending programs requires an understanding of the temporal
logic of sequential instructions: "it is the intellectual heart of
learning how to program" (Galanter, 1983, p. 150). In teaching
programming, Galanter says:

The central theoretical concept that guided this effort was
that classical forms of spatial-geometric-pictorial thinking
must be augmented, and occasionally replaced, by temporal-
imaginative-memorial logic. The, child must learn to substi-
tute an inner temporal eye for the outer spatial eye.
(p. 163).

Going somewhere in the program next, running one subroutine or
procedure before another, ensuring one counter does not exceed a
certain value until' another operation is performed--these fundamental
operations all require temporal understanding. Yet understanding
temporal terms is a major, developmental achievement, a challenge for
children younger than seven or eight (e.g., Friedman,, 1982; Piaget,
1969). Futurity also presents complex conceptual problems for the
planning activities involved in programming, such as imagining out-
comes of the possible worlds generated by program design options
(Atwood, Jeffries & Poison, 1980), or the "symbolic executions" while
writing programming code (Brooks, 1977).

In sum, the cognitive constraints on developing programming skills
are currently unknown. Although a developmental cognitive science
perspective predicts that a student's attainable level of programming
skill may be constrained by the cognitive abilities required in pro-
gramming, there are no studies that relate level of programming skill
to the abilities we have described. Children may have conceptual and
representational difficulties in constructing dynamic mental models of
ongoing events when the computer is executing program lines that
constrain their level of programming skill. Also, systematic but
naive mental models or intuitive epistemologies of computer procedural
functioning may initially mislead children's understanding of program-
ming, as with adult novices. Since learning to program is difficult

26
23

for many students, there is a serious need for research findings that
will guide decisions about tailoring programming instruction according
to a student's relevant knowledge prior to learning to program.

Exicmsefo2_2-Co Pro rannin

We now return to the claims for the broad cognitive impact of pro-
gramming experience with greater awareness of the complexities of
learning to program and issues of transfer. In sum, there is meager
evidence for these claims.

Dramatic accounts have been offered of how some school-aged chil-
dren's thinking about their own abilities to solve problems is trans-
formed through learning to program (e.g., Papert et al., 1979; Watt,
1982; Weir, 1981; Weir & Watt, 1981). Important social interactional
changes have been demonstrated in classrooms where children are
learning Logo programming (Hawkins, Sheingold, Gearhart & Berger,
1983) and, for some children, programming is an important and deeply
personal intellectual activity. Similarly, many teacher reports focus
on social and motivational rather than cognitive aspects of this expe-
rience (Sheingold, Kane, Endreweit & Billings, 1981; Watt, 1982). It
is not yet clear what the cognitive benefits of programming for such
children may, be in terms of the transfer claims reviewed earlier.

On the cognitive side, Ross and Howe (1981) have reviewed ten years
of relevant research to evaluate Feurzeig et al's (1969) tour general
claims on the cognitive impact of programming. The relevant research
has been with Logo in nonrepresentative private schools. Below, we
summarize Ross and Howe's review and integrate summaries of other
studies relevant to these claims. In terms of our account of levels of
programming skill and the expected transfer outcomes, we must
caution that, so far, studies (including our own) have an important
limitation. 'They have all looked at what we have designated as
high-level or cognitive-transfer outcomes, expected to emerge only at
the higher levels in .our account of programming skill, whereas the
levels of programming attained by the students in these studies were
low because they only did six weeks to a year or so of programming.
In other words, there has been a mismatch of "treatment" and trans-
fer assessments because of a failure to appreciate the different kinds
of transfer to investigate and their likely linkage to different levels
of programming skill. For example, there are no studies that have
assessed the low-level transfer or application of programming concepts
such as "variable" in different types of programming within a lan-
guage (e.g., graphics versus list processing in Logo), or from one
programming language to another, or of computr literacy outcomes.

24 27

First, were are no substantial studies to support the claim that
programming promotes mathematical rigor. In a widely cited study by
Howe, O'Shea and Plane (1979), researchers who were highly trained
programMers spent two years teaching Logo programming to eleven
11-year-old boys of average or below average math ability. They
studied Logo the first year and math with Logo the second year, each
boy working for one hour per week in a programming classroom.
When Logo students were compared with nonprogrammers (who on
pretest had significantly better scores on the Basic Mathematics Test,
but equivalent scores on the Math Attainment Test), they had improv-
ed enough in basic math to eliminate the original performance gap
with the control group, but fen significantly behind on the Math
Attainment Test. Such global math score differences do not support
the rigor claim. The oft -cited finding is that the. Logo group learned
to argue sensibly about mathematical issues and explain mathematical
difficulties clearly, but the finding is based only on differences in
ratings of Logo and control students in teacher queitionnaires (Howe
et al., 1979). The reliability of such ratings is questionable, since
the math teachers should have been blind to which students learned
Logo.

Second, there are no reports. dethonstrating that programming aids
children's mathematical exploration. Rem' by Dwyer (1975) for
children learning BASIC, and Howe et al., Lawler (1980), and
Papert . et al. (1979).. for, those using. Logo, :go document children's
,oal- directed exploration of mathematical concepts such as variable on
computers. Although math exploration and "mathland" play are likely
to support math learning studies have notnote shown any effects of
math exploration during programming outside the programming envi-
ronment.

Third, although Feurzeig at al. (1969) suggest that the twelve 7- to
9-year-old children to whom they taught Logo came to "acquire a
meaningful understanding of concepts like variable, function and
general procedure," they provide no evidence for the claim that
programming helped the children to gain insight into these mathemat-
ical concepts.

Finally, we ask whether programming has been shown to provide a
context and language that promotes problem solving beyond program-
ming. Papert et al. (1979) conducted a Logo project with sixth
graders for six weeks and reported, through anecdotal material, that
children engage in extensive problem-solving and planning activities
in learning programming. Whether or not such activities had cogni-
tive effects beyond programming was not studied. However, Statz
(1973) carried out a study to assess this claim. Logo programming
was taught to sixteen 9- to 11-year-old children for a year. Statz

25

chose four problem-solving tasks with intuitive, ill-specified con-
nections to programming activities as transfer outcome measures. The
experimental group did better on two of these tasks (word puzzle and
a permutation task), but no better on the Tower of Hanoi task or a
horserace problem that Statz jtad designed. She interprets these
findings as mixed support for the claim that learning Logo program-
ming promotes the development of more general problem solving skills.

Soloway, Lochhead and Clement (1982), in reaction to the finding that
many college science students have difficUlty translating simple alge
bra word problems into equations (Clement, Lochhead & Monk, 1979)
found that more students solve such problems correctly when they are
expressed as computer programs rather , than as algebraic equations.
They attribute this advantage to the procedural semantics of equa-
tions in programs that many students lack in the algebraic task.
This effect is much more restricted in scope than the increments in
general problem solving skill predicted by the cognitive transfer
clairds.

An important idea is that not only computer programs but one's own
mental activities can lead to "buggy" performan,ces and misunder-
standings. Tools for diagnosing different types of bugs in such
procedural skills as place-value arithmetic (Brown 6 Burton', 1978;
Brown l VanLehn, 1980; VanLehn, 1981) have resulted from extensive
programming efforts to build "bug diagnostic systems" (Burton,
1981). One may argue that the widespread recognition that system
atic bugs may beset performances in other procedural skills, such as
high schoOl algebra 1Carry, Lewis I Bernard, 1979; Matz, 1981)
reflects a kind of transfer beyond programming. There is no evi-
dence that programming students demonstrate such transfer.

Planning in advance of problem solving, and evaluating and checking
progress in terms of goals, are important aspects of a reflective
attitude to one's own mental activities (Pea, 1982). We have seen
that the development of planning abilities, is one major predicted

Wcognitive benefit of learning to program. We therefore developed a
transfer task for assessing children's planning (Pea & Hawkins,
1983). We reasoued that a microgenetic method (Flavell & Draguns,
195 ?) allowing children to develop multiple plans was comparable to
the rounds of revisions carried out during programming, and would
allow for a detailed study of planning processes. Children planned
aloud while formulating, over several attempts, their shortest-distance
plan for doing a set of familiar classroom chores, using a pointer to
indicate their routes. We gave the task twice, early and late in the
school year, to eight children in each of two Logo classrooms (8- and
9-year-olds; 11- and 12-year-olds), and to a control group of the
same number of same-age children in the same school. There were

29
26

six microcomputers in each classroom, allowing substantial involvement
with programming.

As. in related ..work. on adult's 'plr.nning processes by Goldin and
Hayes-Roth .(19801 also .HaYes-Tt..th, 1980; Hayes-Roth & Hayes-Roth,.
1979)4 our product analyseS' centered on' "plan goodness" in terms of
Metrics of route_efficiency, and our ..process analyses centered on the
types and sequencing of -.planning 'decisions. made. (e.g., higher level
executive and metaplanning decisions such as what strategic. approach
to take to the 'probleni,' versus loiter level decisions of what route to
take..between ,. two chore.act's). Results 'indicated that the Logo :pro-
graMMing experiences had no significant effects. on planning perform-
ances, On any' of the plan ffidency. or planning process measures
.(Pea & Kurland., ..1983a). Replications of this work are currently
under way with children in other schools.

Conclusions

As our society comes to grips with the information revolution, the
ability to deal effectively with computers becnmes an increasingly
important skill. How well our children learn to use computers today
will significantly affect the society of tomorrow. The competent
appliCation .of higher cognitive skills such as Planning and problem-
solving. heuristics in mental' activities, both with and without .com-
puters, is 'a critical aim for education. As one contribution to these
issues, we .have argued for and documented throughout this paper the
need for a new approach to addressing questions about the cognitive
effects of computer , programming. This approach, which we have
characterized as developmental cognitive science, does not adopt the
common perspective that computer programmers are all like adults,
but is geared instead to the learning experiences and developmental
transformations, of the child or novice. The proposed research would
be attentive to the playing out of those processes of learning and
development in the instructional and programming environments in
which the novice gains expertise.

Can children become effective programmers? Does learning to pro-
gram positively influence children's abilities to plan effectively, think
procedurally, or view their flawed problem solutions as "fixable"
rather than "wrong"? We have shown that answers to these questions
depend on how "learning to program" is defined. We have reviewed
cognitive science studies revealing that programming involves a com-
plex set of skills, and have argued that the development of different
levels of programming skill will be highly sensitive to contexts for
learning, including processes of instruction, programming environ-
ment, and the background knowledge the student brings to the task.
We found few studies that could inform this new understanding,

27

30

although many promising research questions have been defined from
this perspective.

We have disinissed 'two prevailing myths about learning to program.
The myth eMbodied in most 'programming instruction--that learning to
program is "learning iacts" of programming language semantics and
syntaxis untenable for two reasons: (1) it leads:--to major con-
cePtual misunderstandingd, even among. adult programmers; and
.(2) what is taught belies what cognitive studies show ;good pro-
graminers *dO' and know. These studies have direct implications for
new content and methods for programming instruction that are under
deVelopmenti in Several, cfuarterS. Studies of, learning to program and
of transfer outcomes are riot yet Available for cases where instruction
has such nontraditional emphases (e.g., on task analysis and prob-
lem-solving methods that take advantage of what we know expert'
programmers do). ,We have also argued againit the second myth --the
spontanem., 'transfer of higher cognitive skills, from learning to pro-
gram to Other domains. Resistance in learning to spontaneous trans-
fer and the :predicted linkages of kinds, of transfer beyond program-
Ming to the learner's level of programming skill were major points of
these critical reviews.

When thinking .about ,children learning to program, what skill, levels
can be expected? Reports of children learning to program (Howe,
1981: Levin & .Karise, 1980; 'Papert et al., 1979; Pea et al., 1983),
including the learning disabled, the cerebral palsied, and the autistic
(Watt .& Weir, 1981; 'Weir, 1981) , suggest that Most children can learn
to write ,correct lines of code (level II in our account). This is no
small achievement since writing grammatically correct lines of code is
all that many college students achieve in their first programming
courses (Boner & SOloway, 1982) . This level of programming skill
may depend on the same abilities necessary for learning a first lan-
guage.

However, for programming skills that are an aid in problem solving,
"grammatical" programming alone is inadequate; the student must
know how to organize code and plan schemas in order to accomplish
specific goals. Development to these higher levels, where one be-
comes facile with the pragmatics of programming, may require stra-
tegic and planful approaches to problem solving that are traditionally
considered metacognitive, and more characteristic of adolescents
(Brown et al., 1983) than primary school children. Further, the
experience of the child in an elementary or junior high school pro-
gram who spends from 30 to 50 hours per year in programming is
minuscule when compared with the 5,000 hours which Brooks (1980)
estimates a programmer with only three years of experience has spent
on programming. Since it is unreasonable to expect children to

28 31

.10

become advanced programmers in the few years available to them in
most school programming courses, our educational goals should be
more realistic and achievable. As yet, we do not know what levels of
programming expertise to expect but, in our experience, children who
are programming experts are uncommon. Thus, there are large gaps
between what is meant by learning to program in the computer science

, .

literature, and what learning programming means to educators inter-
ested in introducing children to this domain. These discrepancies
should temper expectations for the spontaneous effects on children's
thinking ,Modes of .their limited programming experiences in school, at
le* for how programming is taught (or not taught) today. Whether
research on learning iii:program with richer learning experiences and

will lead to powerful outcomes remains' to be seen. In
place 'OE"i naive technoromanticism, we have predicted that the level
of programming abilities a student masters will be a predictor of the
kinds of .concepts and skills* he or she will transfer beyond program-
ming. ,'Although findings to date of transfer from learning to program
have not been ,encouraging, these studies err in not 'linking level of
programming skill . to expected outcomes, and the critical studies of

transfer expected from levels and II remain to be carried
out. More importantly, with thinking skills as educational goals, it
may be beeet to provide direct guidance that teaches or models trans-
fer as a general aspect of highly developed thinking processes (Chip-
man., Siegel & Glaser, 1983; Smith & Bruce,,, 1981), Programming may
provide an excellent domain for Such purposes (Nickerson, 1982;
Papert, 1980.

Throughout this paper, we have emphasiZed the need for developmen-
tal reeearch, in this area: empirical studies to refine our character-

,

izations of levels, of programming proficiency; extensive evaluations of
the extent of transfer within and' beyond programming in terms of
different programming and instructional environments; and studies to
help untangle the complex equation, involving cognitive constraints,
programming experience, and programming outcomes. We believe all
these, questions could be addressed by longitudinal studies of the
learning and development process by which ludividual students become
proficient (or not-so-proficient) programM&S, and of the cognitive
consequences of different levels of programming skill. Such studies
would provide more relevant information for guiding the processes of
education than standard correlational studies. A focus on process
and the types of interactions that students with different levels of
skills have with programming and instructional environments is critical
for understanding how development in programming skill 'is related to
other knowledge. We are optimistic that others will join in work on
these questions, for progress must be made toward meeting the
educational needs of a new society increasingly empowered. by infor-
mation technologies.

32 29

4'

Footnotes

f

1
The expectation "that learning the concepts and language that

underlie Programming will ch ange the way-a learner thinks of nonpro-
gramreing problems recalls the strong formulation of the Sapir-Whorf
hypothesis--that available linguistic labels constrain available
thoughts. The strong form of this hypothesis has been extensively
refuted (e.g., Cromer, 1974); only a weak version is consistent with
evidence on lariguage-thought relationships. Available labels in one's
language may facilitate, but are neither. necessary nor sufficient for,
particular forms of thinking or conceptual distinctions. Categories of
thought may provide the foundation for linguistic categories, not only
the reverse. The same point applies to the language of programming.

2
In (artificial) programming languages, just at in natural lan-

guages, one may ,distinguish among three major divisions of semiotics,
or the scientific study of properties' of such signalling systems
(Crystal, 1980). These three divisions, rooted in the philosophical
studies of Peirce, Carnap, and Morris, ares

Semantics,. the study of the relations between linguistiC
.expressions and the .objects in the world -which they, ,!refer
to or describel, ,syntactice, the study,, of. the relation of
these .expressions to each other; and prim the study
of the dependenCe of ..the meaning of these expressions on
their users (including the social situation in which they are
used). (op. p. 316)

Studies of natural language pragmatics have focused on toe

study of the language from thi point of view of the user,
especially of the choices he makes, the constraints he
encounters in using language in social interaction, and the
effects his use of language has on the other participants in
an act of communication. (op. cit., p. 278)

Though there are important disanalogies to natural language, a prag-
matics of programming languages concerns at least the study of
programming language (s) from the point of view of the user, espe-
cially of the (design) choices he or she makes in he organization of
lines of programming code within programs (or software systems); the
constraints he or she encounters (such as the requirements of a
debuggable program that is well-documented for future comprehension
and modification) in using programming language in social contexts;
and the effects his or her use of the programming langupge has on
the other participants (such as the computer, as ideal interpreter, or

. ..

. -.,-Othei humane).- 'in an act" of communication involing the use of the. k k I. , ., ,

... programming language:- ,.,

OperatiOns. that a, need-,..cOMputer. program.' specifies. The. tnee '-for....the.terM
-..,,..!4-..

T:he concept of -:,11.001N..:.:,:of _. control" refers to the- sequence 'of
.

: , einerges;-.,-beeai0e.:. ipt-... all:contra:J:3- linear. ...:,..-In -linear' control, -lines of
"., . :-.,,.....,,,,:

:..programming instructions would be executed In Strict !:,Iinear: order--
first,

. ..:......".,:.:0

..:,. :.iecand, '''..thii4,.: lind.. -0O. .on:'. But in .viitooly au.,piogramaling. .:..r. 1 ' -0 ; , . . , , ,,, ' '.
L . , ' . ; .: '-! ii '..'.

. Y ' ' '4' ; : ..i.

languages, 'H,ya,4014.8 !T.!,',Control.,:structures";.-are,..-Used, `..to. .allow :nonlinear '._
-"-,:,-:-J'-';\control. For example, one may ".CiOTO"' other than the. next -line .in'... . ,

the program :01,13A-Sic ,-.'.ln:-NiihiCli case flow of ,..cOrittOl,:passeti'to--- the :`-7,,,-.:.77.7!.

line':of.prOgramMing,code:: referijd.. to In the,:..-GOTC).:'-,'Statiitient. ..Be-,'

..otige:.11prOgram,S-:-floW of ,control May-'becomplex;-.programmers.:Often. .. . t"'.'6:-':',,

. utilize ."-prOgramMing flowcharts, either to serve as :, a high-levelOlin,.
for "creating' ,,,their,- program, or to document the how of control In

,,,:

.., . l.,

their .prograin.. : . 7 .. -. . - : , ; :: ,,, '.:: .' : .,

6

4,

What Is "quasi-procedural" rather than . "procedural" . about
giving and following task instructions, diectlofls, and -: reCipes.:: is .'' 4 t,..y.:';r,

often ambiguity in the everyday ekampleis, _SuCh:-,that,the -inStructions,,
that, unlike procedural instructions in a computer 'Program. there is

: are 'also not constrained , by strict ,:seituentiolity. ..,;Pne,:maY.:..often ...
choose- to bypass steps in a' recipe. ,Or Set of:instruCtione,. or to , ,>

reorder the steps. : Neither. option is, available.inli the Str,ict procedur=.'

directions, 'and recipes are not alWayS. unequivocal in meaning. They .: ''' '

.,:' '' ;..,.,;

, .

,

ality of programmed Instructions. Yet Omilarities.'.between ;theeVery-,
day cases and programming instructions are ,compelling enough: to
make their designation as quad-procedural Understandable:

1 I

34
31

,o 2
1,

-t.i}1&!t

l')

-

.,

References

Abelson, H., b DiSessa, A. Turtle eoic 1...Atli.. Cambridge, MA: MIT
Press, '1981.

Adelson, B.. Problem solving and the development of ,abstract cate-
gories in programming 'languages. Memory and Cognition, 1981,
9, 422-433,

Anderson; J. Greeno, t. .4,, Kline, Pi J., & .Neves; D. M.
I'

. A qUiti#1611. o f soling skill. In' .1. Andeisan
Cognitl'e skills and ,eir sic 'Weldon. Hillsdale; NJ:

1

A 44e R. E. National computer literacy, 1980; ;:In. R. 3. Seidel,
R. E. Anderson, Hunter, , (Eds.), Computer literati: Issues
and directioe for 1985.
,

NOW Torki: .Academic PresS, 1982.
14

Atwood, ieffriesi R., t-Polson, IS C. Studies 'in plan con- ,
0

struction., Is Analysis an --extended Ovtaccil (Tech. Rep. No.
SA11-80.420-DEN.). Englivioad,Cas'Scieliee Applications, 1980;

z o

A tW90d. PM X. CoknitiVe *truatuies-ifi-oihe Com-
jireheniiion, and.rjmetiiister. ro 'Annals., An investigA4m

computer 'ilebiiskAnst (Tech. Alescarr
,

. /*inf. Itiaearch Inst4tUti ,foitthe
Sciences; 1978.0'

" . .Y ;. 0'. ;. . ; '1

Barstow, Itriiivirediefbased 'firograin Amsterdam:. - -.

19?9

Bell; .1), ProgramMee,stelietiOlt, and..,Pr:OgraMming,:eitrois. Computer
, .

Journal,: 1976, 19,. 13), 20?.20,6.

Bereiter, C.', & .Searmadaliai M. From conversation to composition:
Instruction in a ,developmental process. In R. Glaser (Ed..),
Advances ilistral s chow (Vol. 2). Hillsdale, NJ:
Erlbaum, 1982.

Black, S. D., Levin, J. A., Mehan, H., & Quinn, C. N. a1 and
non-real time interactions Unraveling multiple threads of dis-
course. Discourse Processes, 1983. In press.

Sonar, J. Natural problem solving strategies and programming lan-
guage constructs. '1n s of the Fourth Annual Conference
oftleaSofettssee Society, Ann Arbor, Michigan, August
4-6, 1982.

32 35

,.

ti

/Sonar, J., & Soloway, E. Uncovering principles of novice program-
ming. Yale University Department of Computer Science (Res.
Rep. No. 240, November 1982. (To appear in the Tenth
SIGPLANSIGACT Symposium on the 'Principles of Programming
Languages, Austin, Texas, January 1983)

nrooks, .R. E. Studying programmer behavior experimentally: The
problem's of proper methodology. Communications' of the ACM,-
1980, 23 (4) 207-213.

Brooks, R. E. Towards a' theory of the cognitive processes in com-
puter programming. International ,JOurnal of Man-Machine
Studies, 1977, 9, 737-751.

Brown, A. L. , Learning and development:, The problems of compati-
bility, access, and induCtion. Human DelTILt,_..tmrd, 1982 25,

,Brorn, A. L. Metacognition, executive., control, self-regulation and
otheiY Avon more ,mysterious mechanisms. In 'R. H,. Kluwe & F.
E. Weinert (Ede,0',,MetacOinition2:FOffiratiOn and lerning..,, yeit
Germany: rtualhainrner,' I181(a). ,press. :

BriniAr,,," 4. ,Lia.17iing to

A' ig*CliatikOsita -*Td
;NJ: :Dell, .1983(b).

I Pr,

L liransford, 1?eirara,',:ft. Camplone, J. C.
Learning ,%reineinbering, and 'Understanding In P. H. miutein

Vol. :Cognitive 'bevel-
oppment ey,:'1983.

town 4! mileY, S. S. , The ,,develOpMent of strategies for
studying, texts. Child DeVeloiimentj,,1978, , 49, 1076-1088';

IttLrn. ..how, to ,, read. ;danger &
Res,der ,meets author, brid in ,the
Be; Newark,

Brown, J. S., & Burtrint R. B. Diagnostic models for procedural
bugs in basic mailaematical skills. Cognitive Science, 1978, 2,
155-192. 1

Brown, J. S., & 'VanLehn, K. Repair Theory: A generative theory
-of bugs in procedural skills. Cognitive Science, 1980, 4, 379-
426.

Burton, R. B. DEBUGGY: Diagnosis of errors in basic mathematics
skills. In D. H. Sleeman & J. S. Brown (Eds.), Intelligent
tutoring systems. London: Academic Press, 1981.

33

Card, S. K. , Moran, T. P. , & Newell, A . Computer text editing: An
information processing analysis of a routine cognitive skill.
Cognitive Psychology-, 1980, 12, 32-74,

Carry, L. R., Lewis, C., & Bernard, J. E. fry3 chology of equation
solving: An information processing study. Austin, TX: Depart-
ment of Curriculum and Instruction. University of Texas at
Austin, 1979.

Case, R., & Kurland, D. M. A new measure for determining chil-
,drenis sUbjective organization of speech. Journal of Experi-
mental Child Psychology, 1980, 30, 206-222.

Case, R., Kurland, D. M., & Goldberg, J. Operational efficiency
and the growth of short-1erm memory span. Journal of Exper-
mental Child Psychology, 1982, 33, 386-7404.

Chase, W. G., & Simon, H. A. Perception in chess. Cognitive
Psychology, 1973, 4, 55-81.

Chi M.), T. H., Feltovich, P. J., & Glaset, R.
,.

Categorization and
reiresentation- of physics , problems by experts and novices.
Cognitive Science, 1981, 5, 121-152'.

Chipmans:S., Siegel, 3., & Glaser, R. (Eds..). 'Thinkin and learn-
in skills Cu rent research and"o Uestions. lilltdale, NJ:
Erl aura, 1983, in

Clement, J., lacichhead, 3., & Monk, G. Translation difficulties in
learning mathematics (Tech. Rep.). Amherst, MA's Cognitive
Development PrOject$ Department of Physics and Astronomy,
University of Massachusetti, 1979.

Cromer, R. F. The development of language and cognition: The
cognition hypothesis. In B. Foss (Ed.), New perspectives in
child development. London, England: Penguin, 1974, pp. 184-
252.

.!I

Crystal, D. A first dictionary of linguistics and phonetics. New

York: Cambridge University Press, 1980.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., &

Love, T. Measuring the psychological complexity of software
maintenance tasks with the Halstead and McCabe metrics. IEEE
Transare Engineering, 1979, SE-5 (2), 96-104.

r.

DeKjeer, J., & Brown, J.
and their acquisition.
and their acquisition.

S. Mental models of physical mechanisms
In J. R. Anderson (Ed.), unitive skills
Hillsdale, NJ: Erlbaum, 1981.

Dewey, J. The school, and society. Chicago: University of Chicago
Press. 1900.

Dijkstra, E. W. Goto statement considered harmful. Communications
'of the ACM 1968, 147-148.

Dijkstra, E. W. . Englewood Cliffs, NJ:
Prentice-Hall, 1976.

S.

DiPersioi T., Isbister, D., &' Shneiderman, B. An using
memorization /reconstruction,. as a measure of prograMmer, ability.
International Journal. of Man-Machine Studies, ,,1980, 13, 339-354.

biSessa, A. 'A. Unlearning Aristotelian physics: A study of know!-
edge-based leainini. Cognitive Science, 1982,\,6, 37-75.

dutoulay,' 1.13. H. Teaching,' teachers:,.mathematics through 'program-
ming. . International -Journal' of ,Mathematical Education. Science
and Tethriology,.,1980, 11 (3). 347-360,.'

ii

duBoulay; J. 13, & O'Shea, I% How to work the Logo maqiine: 'A
primer for 'ELOGO (D.A.I. Occasional PaPer 4). Edinburgh:
Department of Artificial Intelligence, University Of Edinburgh,

0

1976.

duBoulay, J. B. H., & 'O'Shea, T. Seeing the works: A strategy for
teaching interactive programming (D.A.I. Working Paper No.
40). Edinlwrgh: Depirtment of Artificial Intelligence, University
of Edinburgh, 1978..

duBoulay, J. B,. H., O'Shea, T., & Monk, J. The black box inside
the glass box: Presenting computing concepts to novices.
International Journal of Man-Machine Studies, 1981, 14, 237-249.

Dwyer, T. A. Soloworks: Computer based laboratories for high
school mathematics. Science and Mathematics, 1975, 93-99.

Ehrlich, IC. & Soloway, E. An empirical investigation of the tacit
plan knowledge in programming. In J. Thomas & M. Schneider
(Eds.), Human factors in computer systems. Norwood, NJ:
Ablex, 1983.

5;)4
38

.0

35

;,

Eisenstadt, M., & Laubsch, J. H. Towards an automated debugging
assistant for novice programmers. Proceedings of the AISB-80
Conference on Artificial Intelligence, Amsterdam, The Nether-
lands, 1980.

Eisenstadt, M., Laubsch, J. H., & Kahney, J. H. Creating pleasant
prOEatt/Loienvizonments for cognitive science students,. Paper
presented at the meeting of the Cognitive Science Society,
Berkeley, CA, August 1981.

Feurzeig, W., Horwitz, P., & Nickerson, R. S. Microcomputers in
education (Report No. 4798).. Prepared for: Department of
Health, Education, and, Welfare; National Institute of Education;
and Ministry for the Development of Human Intelligence, Republic
of Venezuela. Cambridge, MA: Bolt Beranek and Newman,
October 19,81.

Feurzeig, W., Papert, S., Bloom, M,, Grant,, R., & Solomon, C.
programminglanguages as, a 'conceptual framework for teaching
Mathematics (Report. No. 1899). Cambridge, MA: Bolt Beranek
and-Newman, 1969.

Flavell, , 4 braguns, j.. A' microgenetic -approach to' perception*
and thought,. 12WholOgicalBulletifi, 1957, 54, 197-217.

Floyd, R. Wi ,,,The paradigms of programming. Communications of ti*
ACM, 1979, 22 (8), 455.-460.

Friedman, W. J. (Ei.). The develoymtalparIckgy___)of time. New
York: Academic Press, 1982.

Goldin, S. E., &. Hayes-Roth, B. Individual differences in planning
processes. N-1488-0NR: A Raild Note, June 1980.

Goldstein, I., & Papert, S. Artificial intelligence, language, and the
study of knowledge. Co 1977, 1, 84-123.

Gould, J. D. Some psychological evidence on how people debug
computer programs. International Journal of Man-Machine
Studies, 1975, 7, 151-182.

Gould, J. D., & Drongowski, P. An exploratory investigation of
computer program debugging. Human Factors, 1974, 16, 258-
277.

Green, C. C., & Barstow, D. On program synthesis knowledge.
Artificial Intelligence, 1978, 10 (3), 241-279.

36

39

Harvey, B. Why Logo? Byte, 1982, 7, 163-193.

Hawkins, J., & Fiess, K. Illeeffnin experience on
.children's conceptions of computer functioniu. (Tech. Rep.
No. 19). New Yorks Center for Children & Technology, Bank
Street College, May 1983.

Hawkins, J., Sheingold, K., Gearhart, M., & Berger, C. The impact
of computer activity on the social experience of classrooins.
Journal of Applied Developmental Psychology, 1983, 2. In
press.

Hayes, J. R., & Simon, H. A.
problem isomorphs. In N. J.
G. R. Potts (Eds.), Cognitive
Erlbaum, 1977.

Psychological differences. among
Castellani. Jr., D. B.. 'Pisoni, &

theory. (Vol. 2). Hillsdale, -NJ:

Hayes-Roth, B. Estimation of time requirements during planning:
The interactions between motivation and cognition. N1581-0NR.:
A: Rand Note, November 1980.

.

Hayes-Roth, B.. & Hayes-Roth, F. A cognitive model of planning.
Cognitive Science, 1979, 3, 275-310..

Hoc, J. , M. Role of mental representation in, learning a programming.
language. International Journal of Man-Machine StUdies',' 1977,
'9, 87 -105.

Howe, J. A. M. Developmental stages in learning to program. In
F.. Klix & J. Hoffman (Eds.) , Cognition, and memory: Interdisci-
plinary research of human memory activities. Amsterdam: North-
Holland, 1980.-

Howe, .7. A. M. Learning mathematics through Logo programming
(Research Paper No. 153). Edinburgh: Department of Artificial
Intelligence, University of Edinburgh, 1981.

Howe, J. A. M., O'Shea, T., & Plane, F. Teaching mathematics
through Logo programming: An evaluation study. In R. Lewis &
E. D. Tagg (Eds.), Computer-assisted learning -- scope, progress
and limits. Amsterdam: North-Holland, 1979.

Inhelder, B., & Piaget, J. inigrath of 12. ical thinking from
childhood to adolescence (A. Parsons & S. &Ingram, Trans.).
New Yorks Basic Books, 1958.

37

1

tyr....

Inhelder, B., Sinclair, H., & Bovet, M. Learning and the develop-
ment of cognition. Cambridge, MA: Harvard University Press,
1974.

Jeffries, R. A comparison of the debugging behavior of expert and
novice programmers. Paper presented at the annual meeting of
the American Educational Research Association, New York City,
March 1982.

Johnson, W. L., Draper, S., &
fication scheme must take
ceedings of the Workshop
California, 1983.

Soloway, E. An effective bug classi-
the . programmer into account. Pro -
on High-Level Debugging, Palo Alto,

Kahney, H., & Eisenstadt, M. Programmers' mental models of their
programming tasks: The interaction of real-world knowledge and
programming knowledge. Proceedings of the Fourth Annual
Conference of the Cognitive Science Societ , Ann Arbor, MI,
August. 4-6, 1982.

Kamii, C. Pedagogical principles derived from Piaget's theory: Rele-
Vance for educational practice. In M. Schwebel & J. Raph
(Eds.'), Piaget in the classroom. London: Routledge & Kegan
Paul, 1974.

Kidder, T. The soul of a new machine. Boston: Little, Brown,
1981.

Kurland, D. M., & Pea, R. D. Children's mental models of recursive
Logo programs (Tech. Rep. 10) . New York: Center for Chil-
dren & Technology, Bank Street College, February 1983. Pre-
sented at the 5th Annual Meeting of the Cognitive Science Soci-
ety, Rochester, N.Y., May 1983. (To appear in Proceedings)

Laboratory of Comparative Human Cognition. Culture and cognitive
development. In P. H. Mussen (Ed.), Handbook of child psy-
chology. Vol. 1: History, theory, and methods (4th ed.) . New

York: Wiley, 1983.

Laboratory of Comparative Human Cognition. Microcomputer communi-
cation networks for education. The Quarterly Newsletter of the

boratory of Comparative Human Cognition, April 1982, 4 (2).

Larkin, J. H.', McDermott, J., Simon, D. P. & Simon, H. A. Expert
and novice performance in solv:ng physics problems. Science,
1980, 2c8, 1335-1342.

41

'1:q044,t5!Ig,)0,14;.,

Lawler, R. W. Extendinca powerful idea (Logo Memo No. 58).
Cambridge, MA: MIT Artificial Intelligence Labo-atory, July
1980.

Levin, J. A., & Kareev, Y. Personal computers and education: The
challenge to schools (CHIP Report No. 98). La Jolla, CA:
Center for Human Information Processing, 1980.

Lewis, C. Skill in algebra. In J. R. Anderson (Ed.), Cognitive
skills and their ac tion . Hillsdale, NJ: Erlbaum, 1981.

Lochhead, J. An anarchistic approach to teaching problem solving
methods. Paper presented at the Annual Meeting of the Ameri-
can Educational Research Association, San Francisco, April 1979.

Mann, W. C. Why things are so bad for the computer-naive user.
Information Sciences Institute, March 1975.

Matz, M. Towards a process model of high school algebra errors. In
D. H. Sleeman '& J. S. Brown (Eds.), Intelligent tutoring sys-
tems. London: Academic Press, '.981.

Mayer, R. E. Different problem solving competencies established int
learning computer programming with and withe-it meaningful'
models. Journal of Educational Psychology, 1975, 67, 725-734.

Mayer, R. E. A psychology of learning BASIC. Communications of
the ACM, 1979, 22, 589-593.

Mayer, R. E. The psychology of learning computer programming by
novices. Com utixSurveys, 1981, 13, 121-141.

Mayer, R. E. Some conditions of meaningful learning for computer
programming: Advance organizers and subject control of frame
order. Journal of Educational Psychology, 1976, 68, 143-150.

Mayer, R. E., & Bayman, P. Psychology of calculator languages: A
framework for describing differences in users' knowledge.
Communications of the ACM, August 1981, 24 (8), 511-520.

McKeithen, K. B., Reitman, J. S., Rueter, H. H. , & Hirtle, S. C.
Knowledge organization and skill differences in computer pro-
grammers. Cognitive Psychology, 1981, 13, 307-325.

Miller, G. A., & Johnson-Laird, P. N. Language and per eption.
Cambridge, MA: Harvard University Press, 1976.

42 39

Miller, L. A. Programming by non-programmers. International
Journal of Man-Machine Studies, 1974, 6, 237-260.

Milner, S. The effects of computer programming on performance in
mathematics. ERIC Report No. ED076391, 1973.

Minsky, M. Form and content in computer science. Communications
of the ACM, 1970, 17 (2), 197-215.

Moher, T., & Schneider, G. M. Methodology and experimental re-
search in software engineering. International Journal of Man-
Machine Studies, 1982, 16, 65-87.

Monk, G. S. Constructive calculus. Seattle: University of Washing-
ton, 1978.

Moran, T. P. The command language grammar: A representation for
the user interface of interactive computer systems. International
Journal of Man-Machine Studies, 1981, 15, 3-50.

National Assessment of Educational Progress (1980) . Procedural
handbook: 1977-78 mathematics assessment. Education Commis-
sion of the States, Denver, Colorado.

National Institute of Education. Demands and cognitive consequences
of computer learning. Request for proposal NIE-R-82-0011, July
1482.

Newell, A. One final word. In D. T. Tuma & F. Reif (Eds.),
Problem solving and education. New York: Halsted Press, 1980.

Newman, W. M., & Sproull, R. F. Principles of Interactive Computer
Graphics (2nd ed.). New York: McGraw-Hill, 197V.

Nickerson, R. S. Thoughts on teaching thinking. Educational
LJadership, October 1981(a).

Nickerson, R. S. Why interactive computer systems are sometimes
not used by people who might benefit from them. International
Journal of Man-Machine Studies, 1981(b), 14, 469-481.

Nisbett, R. E. , & Ross, L. uman ii_ifetrld short-
of social judgment. Englewood Cliffs, NJ: Prentice-Hall,

1980.

Norcio, A. F., & Kerst, S. M. Human memory organization for
computer programs. Human Factors. In press.

40 43

Papert, S. Mindstorme. New York: Basic Books, 1980.

Papert, S. Teaching children thinking. Programmed Learning and
Educational Technology, 1972(a), 9, 245-255.

Papert, S. Teaching children to be mathematicians versus teaching
about mathematics. International Journal for Mathematical Educa-
tion, Science and Technology, 1972(b), 3, 249-262.

Papert, S., Watt, D., diSessa, A., & Weir, S. An assessment and
documentation of a children's computer laboratory. Final Report
of the Brookline Logo Project, Blsook line, Massachusetts, 1979.

Pea, R. D. Programming and problem solving: Children's experience
with Logo. Paper presented at a symposium, "Chameleon in the
classrooms Developing roles for computers," annual meetings of
the American Educational Research Association, Montreal,
Canada, April 1983. (Also Technical Report No. 12, Center for
Children and Technology, Bank Street College of Education)

Pea, R. D. What is planning development the development of? In
D. Forbes & M. , Greenberg (Eds.), New directions in child
development: Children's planning strategies (Vol. 18). San
Francisco: Jossey-Bass, December 1982.

Pea, R. D., & Hawkins, J. A microgenetic study of planning proc-
esses in a chore-scheduling task. In S. L. Friedman, E. K.
Scholnick, & R. R. Cocking (Eds.), Blueprints for thinking:
The development cognitive planningr skills. New
York: Cambridge University Press, 1983. In press..

Pea, R. D., Hawkins, J., & Sheingold, K. Developmental studies on
learning Logo 'computer programming. Paper presented at the
annual meetings of the Society for Research in Child Develop-
ment, Detroit, April 1983. (Also Technical Report No. 17,
Center for Children and Technology, Bank Street College of
Education).

Pea, R. D., & Kurland, D. M. Log ro ratgweini aiLaltdevelo -
.:mitoL.21111Inin skills (Tech. Rep. No. 16). New York: Center
for Children and Technology, Bank Street College, April
1983(a).

Pea, R. D., & Kurland, D. M.

York: Center for Children
April 1983(b).

4n the cognitive prerequisites of
learning computer program qng (Tech. Rep. No. 18). New

and Technology, Bank Street College,

41

Piaget, J. The child's conception of time (A.J. Pomerans, trans.) .

New York: Ballantine, 1969.

Piaget, J. Intellectual evolution from adolescence to adulthood.
Human Development, 1972, 15, 1-12.

Price-Williams, D., Gordon, W., & Ramirez, M. Skill and conserva-
tion: A study of pottery-making children. Developmental Psy-
chology, 1969, 1, 769.

Reitman, J. S., & Rueter, H. R. Organization revealed by recall
orders and confirmed by pauses. unitive P,s cly.....221m, 1980,
12.

Resnick, L. B. Task analysis in instruction design: Some cases from
mathematics. In D. Klahr (Ed.), Cognition instrtisgs.
Hillsdale, NJ: Erlbauth 1976, pp. 51 -80.'

Rich, C., & Shrobe, H. E. Initial report on a Lisp programmer's ap-
prentice. IEEE Transactions on Software Engineering, 1978,
SE-4, 456-467.

Ross, P., it Howe, J. Teaching mathematics through programming:
Ten year on. In R. Lewis & D. Tagg (Eds.), Computers in
education. Amsterdam: North-Holland, 1981.

Rumelhart, D. E. Schemita: The building blocks of cognition. In
R. J. Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical
issues hi reading comprehension: Perspectives from cognitive
pis chologx,' linguistics, artificial intelligence, and edtcation.
Hillsdale, NJ: Erlbaum, 1980.

Sackman, H. Man- computer problem solving. Princeton, NJ: Auer-
bach, 1970.

Schank, R. Dynamic Memory.
Press, 1982.

New York: Cambridge University

Schank, .&

Hillsdale,
EPr.

lbaSucm, 1977.
Scripts, under-

Seidel, R. J., Anderson, R. E., & Hunter
Issues and directions for 1985. New

1982.

B. Computer literacy:
York: Academic Press,

Shell, B. A. Coping with complexity. Cognitive and Instructional
Sciences Series, April 1981(a), CIS-15.

42 45

Sheil, B. A. The psychological study of programming. Computing
Surveys, March 1981(b), 13 (1).

Sheil, B. A. Teaching procedural literacy. Proceedings of ACM
Annual Conference, 1980, pp. 125 -126,

Sheingold, K., Kane, J., Endreweit, M., & Billings, K. Study of
issues related 'to the implementation of computer technology in
schools. Final Report, National thstitute of Education, 1981.
(Also Technical Report No. 2, Center for Children and Technol-
ogy, Bank Street College of Education)

Sheppard, S. B., Curtis, B., Millman, P., & Love, T. Modern
coding practices and programmer performance. IEEE Computer,
1979, 5 (2), 41-49.

Shif, Z. I.
In M.
Soviet

Development of children in schools for mentally retarded.
Cale & I. Maltzman (Eds.) , A handbook orar
psychology. New York: Basic Books, 1969.

Shneiderman, B. Measuring computer program 'quality and compre-
hension. International Journal of Man-Machine Studies, 1977, 9,
465-478.

Shneiderman, B., & Mayer, R. Syntactic/semantic interactions in
programmer behavior: A model mad experimental results. Inter--
national Journal of Cuter and Information Sciences, 1979, 7,

219-239.

Shrobe, H. E., Waters, R., & Sussman, G. A hypothetical monologue
illustratin the knowled e of underl in ro ram anal sis (Memo
No. 507). Cambridge, MA: MIT Artificial Intelligence Labora-
tory, 1979.

Shweder, R. A. Likeness and likelihood in everyday thought: Magi-
cal thinking and everyday Judgments about personality. Current
Anthropology, 1977, 18, 637-658.

Sime, M. E., Arblaster, A. T., & Green, T. R. G. Reducing pro-
gramming errors in nested conditionals by prescribing a writing
procedure. International Journal of Man-Machine Studies, 1977,
9, 119-126.

Simon, H. A. Problem solving and education. In D. T. Tuma &
F. Reif (Eds.), Problem solving and education: Issues in teach-
ing and research. New York: Halsted Press, 1980.

Simon, H. A., & Hayes, J. R. The understanding process: Problem
isomorphs. Cognitive , 1976, 8, 165-190.

Smith, E. E., & Bruce, B. 'C. An outline of a conceptual framework
for the teaching of thinking skills (Report No. 4844). Prepared
for National Institute of Education. Cambridge, MA: Bolt Bera-
nek and Newman, 1981.

Sole .say, E., Bonar, J., & Ehrlich, K. Cognitive strategies and
looping constructs: An empirical study. Communications of the
AM, 1983. In press.

Soloway, E., & Ehrlich, K. Tacit programming knowledge. Proceed-
in s of the. Fourth Annual Conference of the Co nitive Science
Society, Ann Arbor, Michigan, August 4-6, 1982.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. What do
novices 'know about programming? In B. Shneiderman &

A. Badre (Eds.) , Directions in human - commuter interactions.
Hillsdale, NJ: Ablex, 1982.

Soloway, E., Lochhead, J., & Clement, J. Does computer program-
ming enhance problem solving abilityt Some positive evidence on
algebra word problems. In R. *Seidel, R. Anderson, & B.
Hunter (Eds.), am literacy: Issues and directions for
1985. New Yorks Academic Press, 1982.

Soloway, E., Rubin, E., Woolf, B., Bonar, J., & Johnson, W., L.
MENO-III An AI-based programming tutor. Yale University,
Department of Computer Science (Res. Rep. No. 258, December
1982.

Spiro, R. J., Bruce, B. C., & Brewer, W. F. (Eds.), Theoretical
issues in reading comprehension. Hillsdale, NJ: Erlbaum, 1980.

Statz, J. Problem solving and Logo. Final report of Syracuse Uni-
versity Logo Project, Syracuse University, New York, 1973.

Sternberg, R. J., & Rifkin, B. The development' of analogical rea-
soning processes. Journal of Experimental Child Psychology,
1979, 2 ?, 195-232.

Thayer, R. H., Pyster, A. B., & Wood, R. C. Major issues in
software engineering project management. IEEE Transactions on
Software ineerin , 1981, SE - ?, 333-342.

Tobias, S. Overcoming math anxiety. New York: Norton, 1978.

44 47

Tama, D. T., & Reif, F. (Eds.). Problem solving and education:
Issues in teaching and research. New York: Halsted Press,
1980.

Tveisky, D., & Kahneman, D. Science, 1980, 211.

VanLehn, K. Bugs are not enough; Empikrical, studies of bugs,
impasses and repairs in procedutal skills. Xerox Cognitive and
Instructional Sciences Series, March 1981, CIS-11.

Ward, W. C., & Jenkins, H. M. The display of information ,and the
judgment of contingency. Canadian Journal of Psychology, 1965,
19, 231-241.

.Waters, R. ,The programmer's apprentice: Knowledge based .pro-
gram editing. IEEE Transactions on Software Enlineering, 1982,
SE-8 (1).

Watt, D. Logo in the schools.. Rita August 1982 7 (8), 116-134.

Weir,' S. Logo as an Anfoimat(ion prosthetic for.vhandicapped.
(Working paper ,,NO. WP-9).i- Cambridge, MA: ':MIT, Division for
Studies and Research in 'EdtOation, May -1981.

Weir, S., b Watt, D. Logo: Al computer environment for learning7
disabled students. The''Corpputer Teacher, 1981, 8 (5) 11-17.

Weizenbaum, J. CoMputer power and ,human reason: From judgment
to calculation. San Francisco: Freeman, 1976.

Werner, H. The concept of development from a comparative" and
organismic point of view. In D. R. Harris ,(Ed.), The concept
or f development. Minnesota: University of Minnesota Press, 1957.

Werner, H. Process and achievement. Harvard Educational Review,
1937, 7, 353-368.

Young, R. M. The machine inside the machine: Users' models of
pocket calculators. International Journal of Man-Machine
Studies, 1981, 15, 51-85.

Youngs, E. A. Human errors in programming. International Journal
of Man-Machine Studies, 1974, 6, 361-376.

48 45

