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Abstract

Expected Shortfall (ES) in several variants has been proposed as remedy for the defi-

ciencies of Value-at-Risk (VaR) which in general is not a coherent risk measure. In fact,

most definitions of ES lead to the same results when applied to continuous loss distributions.

Differences may appear when the underlying loss distributions have discontinuities. In this

case even the coherence property of ES can get lost unless one took care of the details in

its definition. We compare some of the definitions of Expected Shortfall, pointing out that

there is one which is robust in the sense of yielding a coherent risk measure regardless of

the underlying distributions. Moreover, this Expected Shortfall can be estimated effectively

even in cases where the usual estimators for VaR fail.

Key words: Expected Shortfall; Risk measure; worst conditional expectation; tail con-

ditional expectation; value-at-risk (VaR); conditional value-at-risk (CVaR); tail mean; co-

herence; quantile; sub-additivity.

1 Introduction

Value-at-Risk (VaR) as a risk measure is heavily criticized for not being sub-additive (see [7]

for an overview of the criticism). This means that the risk of a portfolio can be larger than the

sum of the stand-alone risks of its components when measured by VaR (cf. [2], [3], [15], or [1]).

Hence, managing risk by VaR may fail to stimulate diversification. Moreover, VaR does not take

into account the severity of an incurred damage event.

As a response to these deficiencies the notion of coherent risk measures was introduced in [2],

[3], and [5]. An important example for a risk measure of this kind is the worst conditional

expectation (WCE) (cf. Definition 5.2 in [3]). This notion is closely related to the tail conditional

expectation (TCE) from Definition 5.1 in [3], but in general does not coincide with it (see section

5 below). Unfortunately, a somewhat misleading formulation in [2] suggests this coincidence to
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be true. Meanwhile, several authors (e.g. [17], [13], or [1]) proposed modifications to TCE, this

way increasing confusion since the relation of these modifications to TCE and WCE remained

obscure to a certain degree.

The identification of TCE and WCE is to a certain degree a temptation though the authors of

[3] actually did their best to warn the reader. WCE is in fact coherent but very useful only in

a theoretical setting since it requires the knowledge of the whole underlying probability space

while TCE lends itself naturally to practical applications but it is not coherent (see Example 5.4

below). The goal to construct a risk measure which is both coherent and easy to compute and

to estimate was however achieved in [1]. The definition of Expected Shortfall (ES) at a specified

level α in [1] (Definition 2.6 below) is the literal mathematical transcription of the concept

“average loss in the worst 100α% cases”. We rely on this definition of Expected Shortfall in the

present paper, despite the fact that in the literature this term was already used sometimes in

another meaning.

With the paper at hand we strive primarily for making transparent the relations between the

notions developed in [5], [3], [13], and [1]. We present four characterizations of Expected shortfall:

as integral of all the quantiles below the corresponding level (eq. (3.3)), as limit in a tail strong

law of large numbers (Proposition 4.1), as minimum of a certain functional introduced in [13]

(Corollary 4.3 below), and as maximum of WCEs when the underlying probability space varies

(Corollary 6.3). This way, we will show that the ES definition in [1] is complementary and even

in some aspects superior to the other notions. Moreover, in a certain sense any law invariant

coherent risk measure has a representation with ES as the main building block (see [11]).

Some hints on the organization of the paper:

In section 2 we give precise mathematical definitions to the five notions to be discussed. These

are WCE, TCE, CVaR (conditional value-at-risk), ES, and its negative, the so-called α-tail

mean (TM). Section 3 presents useful properties of α-tail mean and ES, namely the integral

representation (3.3), continuity and monotonicity in the level α as well as coherence for ES. In

section 4 we show first that α-tail mean arises naturally as limit of the average of the 100α%

worst cases in a sample. Then we point out that in fact ES and CVaR are two different names

for the same object. Section 5 is devoted to inequalities and examples clarifying the relations

between ES, TCE, and WCE. In Section 6 we deal with the question how to state a general

representation of ES in terms of WCE. Section 7 concludes the paper.

2 Basic definitions

We have to arrange a minimum set of definitions to be consistent with the notions used in [5],

[13], and [1]. Fix for this section some real-valued random variable X on a probability space

(Ω,A,P). X is considered the random profit or loss of some asset or portfolio. For the purpose

of this paper, we are mainly interested in losses, i.e. low values of X . By E[. . . ] we will denote
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expectation with respect to P. Fix also some confidence level α ∈ (0, 1). We will often make use

of the indicator function

1A(a) = 1A =

{
1 , a ∈ A
0 , a 6∈ A .

(2.1)

Definition 2.1 (Quantiles)

x(α) = qα(X) = inf{x ∈ R : P[X ≤ x] ≥ α} is the lower α-quantile of X,

x(α) = qα(X) = inf{x ∈ R : P[X ≤ x] > α} is the upper α-quantile of X.

We use the x-notation if the dependence on X is evident, otherwise the q-notion. 2

Note that x(α) = sup{x ∈ R : P[X ≤ x] ≤ α}. From {x ∈ R : P[X ≤ x] > α} ⊂ {x ∈ R :

P[X ≤ x] ≥ α} it is clear that x(α) ≤ x(α). Moreover, it is easy to see that

x(α) = x(α) if and only if P[X ≤ x] = α for at most one x ,(2.2)

and in case x(α) < x(α)

{x ∈ R : α = P[X ≤ x]} =

{
[x(α), x

(α)) , P[X = x(α)] > 0

[x(α), x
(α)] , P[X = x(α)] = 0 .

(2.3)

(2.2) and (2.3) explain why it is difficult to say that there is an obvious definition for value-at-

risk (VaR). We join here [5] taking as VaRα the smallest value such that the probability of the

absolute loss being at most this value is at least 1−α. As this is not really comprehensible when

said with words here is the formal definition:

Definition 2.2 (Value-at-risk)

VaRα = VaRα(X) = −x(α) = q1−α(−X) is the value-at-risk at level α of X. 2

The definition of tail conditional expectation (TCE) given in [3], Definition 5.1, depends on

the choice of quantile taken for VaR (and of some discount factor we neglect here for reasons

of simplicity). But as there is a choice for VaR there is also a choice for TCE. That is why

we consider a lower and an upper TCE. Denote the positive part of a number x by x+ ={
x , x > 0

0 , x ≤ 0 ,
and its negative part by x− = (−x)+.

Definition 2.3 (Tail conditional expectations)

Assume E[X−] <∞. Then TCEα = TCEα(X) = −E[X |X ≤ x(α)] is the lower tail conditional

expectation at level α of X.

TCEα = TCEα(X) = −E[X |X ≤ x(α)] is the upper tail conditional expectation at level α of

X. 2
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TCEα is (up to a discount factor) the tail conditional expectation from Definition 5.1 in [3].

“Lower” and “upper” here corresponds to the quantiles used for the definitions, but not to the

proportion of the quantities. In fact,

TCEα ≥ TCEα(2.4)

is obvious.

As Delbaen says in the proof of Theorem 6.10 in [5], TCEα in general does not define a sub-

additive risk measure (see Example 5.4 below). For this reason, in [3], Definition 5.2, the worst

conditional expectation (WCE) was introduced. Here is the definition (up to a discount factor)

in our terms:

Definition 2.4 (Worst conditional expectation)

Assume E[X−] < ∞. Then WCEα = WCEα(X) = − inf{E[X |A] : A ∈ A,P[A] > α} is the

worst conditional expectation at level α of X. 2

Observe that under the assumption E[X−] < ∞ the value of WCEα is always finite since

then limt→∞ P[X ≤ x(α) + t] = 1 implies that there is some event A = {X ≤ x(α) + t} with

P[A] > α and E[ |X | 1A] < ∞. We will see in section 5 that Definition 2.4 has to be treated

with care nevertheless because the notion WCEα(X) hides the fact that it depends not only on

the distribution of X but also on the structure of the underlying probability space. From the

definition it is clear that for any random variables X and Y on the same probability space

WCEα(X + Y ) ≤ WCEα(X) + WCEα(Y ) ,

i.e. WCE is sub-additive. Moreover, Proposition 5.1 in [3] says WCEα ≥ TCEα. Hence WCEα is

a majorant to TCEα ≥ VaRα. It is in fact the smallest coherent risk measure dominating VaRα

and only depending on X through its distribution if the underlying probability space is “rich”

enough (see Theorem 6.10 in [5] for details).

This is a nice result, but to a certain degree unsatisfactory since the infimum does not seem too

handy. This observation might have been the reason for introducing the conditional value-at-risk

(CVaR) in [17] (see also the references therein) and [13]. CVaR can be used as a base for very

efficient optimization procedures. We quote here, up to the sign of the random variable and the

corresponding change from α to 1− α (cf. Definition 2.2), equation (1.2) from [13].

Definition 2.5 (Conditional value-at-risk)

Assume E[X−] < ∞. Then CVaRα = CVaRα(X) = inf
{

E[(X−s)−]
α − s : s ∈ R

}
is the condi-

tional value-at-risk at level α of X. 2

Note that by Proposition 4.2 and (4.9), CVaR is well-defined. But beware: Pflug states in

equation (1.3) of [13] (translated to our setting, i.e. −X instead of Y and 1 − α instead of α)
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the relation CVaRα(X) = TCEα(X) , without any assumption. Corollary 5.3 in connection with

Corollary 4.3 shows that this is only true if P[X < x(α)] = 0,P[X = x(α)] = 0 or P[X < x(α)] >

0,P[X ≤ x(α)] = α (in particular if the distribution of X is continuous).

The last definition we need is that of α-tail mean from [1]. In order to make it comparable to

the risk measures defined so far, we define it in two variants: the tail mean which is likely to

be negative but appears in a statistical context (cf. Proposition 4.1 below), and the Expected

Shortfall representing potential loss as in most cases positive number. The advantage of tail mean

is the explicit representation allowing an easy proof of super-additivity (hence sub-additivity for

its negative) independent of the distributions of the underlying random variables (cf. the theorem

in the appendix of [1]). We will see below (Corollary 4.3) that the Expected Shortfall is in fact

identical with CVaR and enjoys properties as coherence and continuity and monotonicity in the

confidence level (section 3). Moreover, it is in a specific sense the largest possible value WCE

can take (Corollary 6.3).

Definition 2.6 (Tail mean and Expected Shortfall)

Assume E[X−] <∞. Then

x̄(α) = TMα(X) = α−1
(
E[X 1{X≤x(α)}] + x(α) (α − P[X ≤ x(α)])

)
is the α-tail mean at level α

of X.

ESα = ESα(X) = −x̄(α) is the Expected Shortfall (ES) at level α of X. 2

Note that by Corollary 4.3 α-tail mean and ESα only depend on the distribution of X and the

level α but not on a particular definition of quantile.

3 Useful properties of tail mean and Expected Shortfall

The most important property of ES (Definition 2.6) might be its coherence.

Proposition 3.1 (Coherence of ES) Let α ∈ (0, 1) be fixed. Consider a set V of real-valued

random variables on some probability space (Ω,A,P) such that E[X−] <∞ for all X ∈ V . Then

ρ : V → R with ρ(X) = ESα(X) for X ∈ V is a coherent risk measure in the sense of Definition

2.1 in [5], i.e. it is

(i) monotonous: X ∈ V, X ≥ 0 ⇒ ρ(X)≤ 0,

(ii) sub-additive: X, Y,X + Y ∈ V ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

(iii) positively homogeneous: X ∈ V, h > 0, hX ∈ V ⇒ ρ(hX) = h ρ(X), and

(iv) translation invariant: X ∈ V, a ∈ R ⇒ ρ(X + a) = ρ(X)− a.
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Proof. See Proposition A.1 in the Appendix for an elementary proof of (ii). To check (i), (iii)

and (iv) is an easy exercise (cf. also Proposition 3.2). 2

In the financial industry there is a growing necessity to deal with random variables with discon-

tinuous distributions. Examples are portfolios of not-traded loans (purely discrete distributions)

or portfolios containing derivatives (mixtures of continuous and discrete distributions). One

problem with tail risk measures like VaR, TCE, and WCE, when applied to discontinuous dis-

tributions, may be their sensitivity to small changes in the confidence level α. In other words,

they are not in general continuous with respect to the confidence level α (see Example 5.4).

In contrast, ESα is continuous with respect to α. Hence, regardless of the underlying distribu-

tions, one can be sure that the risk measured by ESα will not change dramatically when there

is a switch in the confidence level by – say – some base points. We are going to derive this

insensitivity property in Corollary 3.3 below as a consequence of an alternative representation of

tail mean. This integral representation (Proposition 3.2) – which was already given in [4] for the

case of continuous distributions – might be of interest on its own. Another – almost self-evident

– important property of ESα is its monotonicity in α. The smaller the level α the greater is the

risk. We show this formally in Proposition 3.4.

Proposition 3.2 If X is a real-valued random variable on a probability space (Ω,A,P) with

E[X−] <∞ and α ∈ (0, 1) is fixed, then

x̄(α) = α−1

∫ α

0
x(u) d u ,

with x̄(α) and x(u) as in Definitions 2.1 and 2.6, respectively.

Proof. By switching to another probability space if necessary, we can assume that there is a

real random variable U on (Ω,A,P) that is uniformly distributed on (0, 1), i.e. P[U ≤ u] = u,

u ∈ (0, 1). It is well-known that then the random variable Z = x(U) has the same distribution

as X .

Since u 7→ x(u) is non-decreasing we have

{U ≤ α} ⊂ {Z ≤ x(α)} and(3.1)

{U > α} ∩ {Z ≤ x(α)} ⊂ {Z = x(α)} .(3.2)

By (3.1) and (3.2) we obtain

∫ α

0
x(u) d u = E[Z 1{U≤α}]

= E[Z 1{Z≤x(α)}]− E[Z 1{U>α}∩{Z≤x(α)}]

= E[X 1{X≤x(α)}] + x(α)

(
α− P[X ≤ x(α)]

)
.

Dividing by α now yields the assertion. 2
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Note that by definition of Expected Shortfall, Proposition 3.2 implies the representation

ESα(X) = −α−1

∫ α

0
qu(X) d u .(3.3)

Eq. (3.3) shows that ES is the coherent risk measure used in [11] as main building block for the

representation of law invariant coherent risk measures.

Corollary 3.3 If X is a real-valued random variable with E[X−] < ∞, then the mappings

α 7→ x̄α and α 7→ ESα are continuous on (0, 1).

Proof. Immediate from Proposition 3.2 and (3.3). 2

For some of the results below and in particular the subsequent proposition on monotonicity of

the tail mean and ES, a further representation for x(α) is useful (cf. Appendix in [1]). Let for

x ∈ R

1
(α)
{X≤x} =





1{X≤x} , if P[X = x] = 0

1{X≤x} + α−P[X≤x]
P[X=x] 1{X=x} , if P[X = x] > 0 .

(3.4)

Then a short calculation shows

1
(α)
{X≤x(α)} ∈ [0, 1] ,(3.5)

E
[
1

(α)
{X≤x(α)}

]
= α , and(3.6)

α−1E
[
X 1

(α)
{X≤x(α)}

]
= x(α) .(3.7)

Proposition 3.4 If X is a real-valued random variable with E[X−] <∞, then for any α ∈ (0, 1)

and any ε > 0 with α + ε < 1 we have the following inequalities:

x(α+ε) ≥ x(α) and

ESα+ε(X) ≤ ESα(X) .

Proof. We adopt the representation (3.7). This yields

x(α+ε) − x(α) = E
[
X
(

(α+ ε)−11
(α+ε)
{X≤x(α+ε)} − α

−11
(α)
{X≤x(α)}

)]

= (α(α+ ε))−1E
[
X
(
α 1

(α+ε)
{X≤x(α+ε)} − (α + ε) 1

(α)
{X≤x(α)}

)]

≥ (α(α+ ε))−1E
[
x(α)

(
α 1

(α+ε)
{X≤x(α+ε)} − (α+ ε) 1

(α)
{X≤x(α)}

)]

=
x(α)

α(α + ε)

(
αE

[
1

(α+ε)
{X≤x(α+ε)}

]
− (α+ ε) E

[
1

(α)
{X≤x(α)}

])

=
x(α)

α(α + ε)
(α (α+ ε)− (α+ ε)α)

= 0 .
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The inequality is due to the fact that by (3.5)

α 1
(α+ε)
{X≤x(α+ε)} − (α+ ε) 1

(α)
{X≤x(α)}

{
≤ 0 , if X < x(α)

≥ 0 , if X > x(α) .
2

4 Motivation for tail mean and Expected Shortfall

Assume that we want to estimate the lower α-quantile x(α) of some random variable X . Let

some sample (X1, . . . , Xn), drawn from independent copies of X , be given. Denote by X1:n ≤
. . . ≤ Xn:n the components of the ordered n-tuple (X1, . . . , Xn). Denote by bxc the integer part

of the number x ∈ R, hence

bxc = max{n ∈ Z : n ≤ x} .

Then the order statistic Xbnαc:n appears as natural estimator for x(α). Nevertheless, it is well

known that in case of a non-unique quantile (i.e. x(α) < x(α)) the quantity Xbnαc:n does not

converge to x(α). This follows for instance from Theorem 1 in [8] which says that

1 = P[Xbnαc:n ≤ x(α) infinitely often] = P[Xbnαc:n ≥ x(α) infinitely often] .

Surprisingly, we get a well-determined limit when we replace the single order statistic by an

average over the left tail of the sample. Recall the definition (2.1) of an indicator function.

Proposition 4.1 Let α ∈ (0, 1) be fixed, X a real random variable with E[X−] < ∞ and

(X1, X2, . . .) an independent sequence of random variables with the same distribution as X.

Then with probability 1

lim
n→∞

bnαc∑
i=1

Xi:n

bnαc = x̄(α) .(4.1)

If X is integrable, then the convergence in (4.1) holds in L1, too.

Proof. Due to Proposition 3.2, the “with probability 1” part of Proposition 4.1 is essentially

a special case of Theorem 3.1 in [18] with 0 = t0 < α = t1 < t2 = 1, J(t) = 1(0,α](t),

JN (t) = 1
(0,
bNαc+1

N
]
(t), g(t) = F−1(t), and p1 = p2 = ∞. Concerning the L1-convergence note

that
∣∣
bnαc∑

i=1

Xi:n

∣∣ ≤
n∑

i=1

|Xi|.

By the strong law of large numbers n−1
∑n

i=1 |Xi| converges in L1. This implies uniform inte-

grability for n−1
∑n

i=1 |Xi| and for n−1
∣∣∑bnαc

i=1 Xi:n

∣∣. Together with the already proven almost

sure convergence this implies the assertion. 2

8



To see how a direct proof of the almost sure convergence in Proposition 4.1 would work consider

the following heuristic computation. Observe first that

bnαc∑
i=1

Xi:n

bnαc =
1

bnαc

(
n∑

i=1

Xi:n 1{Xi:n≤Xbnαc:n} +

n∑

i=1

Xi:n

(
1{1,... ,bnαc}(i)− 1{Xi:n≤Xbnαc:n}

))

=
1

bnαc

(
n∑

i=1

Xi 1{Xi≤Xbnαc:n} + Xbnαc:n

n∑

i=1

(
1{1,... ,bnαc}(i)− 1{Xi:n≤Xbnαc:n}

))

=
1

bnαc

(
n∑

i=1

Xi 1{Xi≤Xbnαc:n} + Xbnαc:n
(
bnαc −

n∑

i=1

1{Xi≤Xbnαc:n}
))

.(4.2)

If we now had

lim
n→∞

Xbnαc:n = x(α) ,(4.3)

with probability 1, in connection with limn→∞ n/bnαc = 1/α it would be plausible to obtain

(4.1). Unfortunately (4.3) is not true in general, but only

lim inf
n→∞

Xbnαc:n = x(α) and lim sup
n→∞

Xbnαc:n = x(α) .(4.4)

Nevertheless the proof could be completed on the base of (4.2) by using (4.4) together with the

Glivenko-Cantelli theorem and Corollary 4.3 below.

Proposition 4.1 validates the interpretation given to α–tail mean in [1] as mean of the worst

100α% cases. This concept, which seems very natural from an insurance or risk management

point of view, has so far appeared in the literature by different kinds of conditional expectation

beyond VaR which is a different concept for discrete distributions. “Tail Conditional expecta-

tion”, “worst conditional expectation”, “conditional value at risk” all bear also in their name the

fact that they are conditional expected values of the random variable X (note that concerning

CVaR, by Corollary 4.3 below this is a misinterpretation). For TCEα, for instance, the natural

estimator is not given by the one analyzed in (4.1) or its negative, but rather by

−
∑n

i=1 Xi 1{Xi≤Xbnαc:n}∑n
i=1 1{Xi≤Xbnαc:n}

(4.5)

which however has problems of convergence in case x(α) < x(α).

This is the reason why we avoid the term ”conditional” in our definition of α–tail mean. In fact,

it is not very hard to see (cf. Example 5.4 below) that α–tail mean does not admit a general

representation in terms of a conditional expectation of X given some event A ∈ σ(X) (i.e. some

event only depending on X). Hence it is not possible to give a definition of the type

x̄(α) = E[X |A] for some A ∈ σ(X) ,(4.6)

9



unless the event A is chosen in a σ-algebra A ⊃ σ(X) on an artificial new probability space (see

Corollary 6.2 below).

In order to make visible the coincidence of CVaR and tail mean, the following proposition collects

some facts on quantiles which are well-known in probability theory (cf. Exercise 3 in ch. 1 of [9]

or Problem 25.9 of [10] for the here cited version):

Proposition 4.2 Let X be a real integrable random variable on some probability space (Ω,A,P).

Fix α ∈ (0, 1) and define the function Hα : R→ [0,∞) by

Hα(s) = αE[(X − s)+] + (1− α) E[(X − s)−] .(4.7)

Then the function Hα is convex (and hence continuous) with lim
|s|→∞

Hα(s) = ∞. The set Mα of

minimizers to Hα is a compact interval, namely

Mα = [x(α), x
(α)]

= {s ∈ R : P[X < s] ≤ α ≤ P[X ≤ s]} .(4.8) 2

Note the following equivalent representations for Hα:

Hα(s) = αE[X ] + α

(
E[(X − s)−]

α
− s
)

(4.9)

= αE[X ]− α
(

E[X 1{X≤s}]

α
+ s

α− P[X ≤ s]
α

)
.(4.10)

From Definitions 2.5 and 2.6 for CVaR and ES, respectively, and by (4.10), in connection with

Proposition 4.2, we obtain the following corollary to the proposition.

Corollary 4.3 Let X be a real integrable random variable on some probability space (Ω,A,P)

and α ∈ (0, 1) be fixed. Then

ESα(X) = CVaRα(X)

= −α−1
(
E[X 1{X≤s}] + s (α− P[X ≤ s])

)
, s ∈ [x(α), x

(α)] .(4.11) 2

A further representation of ES or CVaR, respectively, as expectation of a suitably modified tail

distribution is given in the recent research report [14] (cf. Def. 3 therein).

In Definitions 2.5 and 2.6 only E[X−] <∞ is required for X . Indeed, this integrability condition

would suffice to guarantee (4.11). We formulated Corollary 4.3 with full integrability of X

because we wanted to rely on Proposition 4.2 for the proof.

Note that by a simple calculation one can show that (4.11) is equivalent to

ESα(X) = −α−1
(
E[X 1{X<s}] + s (α− P[X < s])

)
, s ∈ [x(α), x

(α)] .(4.12)

By (4.12) we see that ES coincides with the coherent risk measure considered in Example 4 of

[6] (already mentioned in Example 4.2 of [5]).
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5 Inequalities and counter-examples

In this section we compare the Expected Shortfall with the risk measures TCE and WCE defined

in section 2. Moreover, we present an example showing that VaR and TCE are not sub-additive

in general. By the same example we show that there is not a clear relationship between WCE

and lower TCE. We start with a result in the spirit of the Neyman-Pearson lemma.

Proposition 5.1 Let α ∈ (0, 1) be fixed and X be a real-valued random variable on some proba-

bility space (Ω,A,P). Suppose that there is some function f : R→ R such that E[(f ◦X)−] <∞,

f(x) ≤ f(x(α)) for x < x(α), and f(x) ≥ f(x(α)) for x > x(α). Let A ∈ A be an event with

P[A] ≥ α and E[ |f ◦X | 1A] <∞. Then

(i) TMα(f ◦X) ≤ E[f ◦X |A] ,

(ii) TMα(f ◦X) = E[f ◦X |A] if P[A∩ {X > x(α)}] = 0 and

P[X < x(α)] = 0 or(5.1)

P[X < x(α)] > 0, P[Ω\A ∩ {X < x(α)}] = 0, and P[A] = α ,(5.2)

(iii) if f(x) < f(x(α)) for x < x(α) and f(x) > f(x(α)) for x > x(α), then TMα(f ◦ X) =

E[f ◦X |A] implies P[A ∩ {X > x(α)}] = 0 and either (5.1) or (5.2).

Proof. Note that by assumption

{X ≤ x(α)} ⊂ {f ◦X ≤ f(x(α))} and {X < x(α)} ⊃ {f ◦X < f(x(α))} .

Hence we see from (4.8) that

P[f ◦X ≤ f(x(α))] ≥ α and P[f ◦X < f(x(α))] ≤ α

and therefore

qα(f ◦X) ≤ f(x(α)) ≤ qα(f ◦X) .(5.3)

Moreover, the assumption implies

{f ◦X ≤ f(x(α))}\{X ≤ x(α)} ⊂ {f ◦X = f(x(α))} .(5.4)

11



By Corollary 4.3, (5.3), (5.4), (3.6), and (3.7), we can calculate similarly to the proof of Propo-

sition 3.4

E[f ◦X |A]− TMα(f ◦X) = E
[
f ◦X

(
P [A]−11A − α−11

(α)
{f◦X≤f(x(α))}

)]

= E
[
f ◦X

(
P [A]−11A − α−11

(α)
{X≤x(α)}

)]

= (αP [A])−1

(
f(x(α))E

[
α 1A − P [A] 1

(α)
{X≤x(α)}

]

+ E
[
(f ◦X − f(x(α)))

(
α 1A − P [A] 1

(α)
{X≤x(α)}

)])

= (αP [A])−1E
[
(f ◦X − f(x(α)))

(
α 1A − P [A] 1

(α)
{X≤x(α)}

)]

≥ 0 .(5.5)

Here, we obtain inequality (5.5) from the assumption on f since

α 1A − P[A] 1
(α)
{X≤x(α)}

{
≤ 0 , if X < x(α)

≥ 0 , if X > x(α) .
(5.6)

This proves (i). The sufficiency and necessity respectively of the conditions in (ii) and (iii) for

equality in (5.5) are easily obtained by careful inspection of (5.5). 2

Note that the condition

P[A∩ {X > x(α)}] = 0 and P[Ω\A ∩ {X < x(α)}] = 0 ,(5.7)

appearing in (ii) and (iii) of Proposition 5.1, means up to set differences of probability 0 that

{X < x(α)} ⊂ A ⊂ {X ≤ x(α)} .(5.8)

In particular, (5.7) is implied by (5.8).

The proof of Proposition 5.1 is the hardest work in this section. Equipped with its result we are

in a position to derive without effort a couple of conclusions pointing out the relations between

TCE, WCE and ES. Recall ESα = −TMα.

Corollary 5.2 Let α ∈ (0, 1) and X a real-valued random variable on some probability space

(Ω,A,P) with E[X−] <∞. Then

TCEα(X) ≤ TCEα(X) ≤ ESα(X) , and(5.9)

TCEα(X) ≤ WCEα(X) ≤ ESα(X) .(5.10)

Proof. The first inequality in (5.9) is obvious (formally it follows from Lemma 5.1 in [16]). The

second follows from Proposition 5.1 (i) by setting f(x) = x, A = {X ≤ x(α)}, and observing

12



P[X ≤ x(α)] ≥ α. The first inequality in (5.10) was proven in Proposition 5.1 of [3]. The

second follows again from Proposition 5.1 (i) since all the events in the definition of WCE have

probabilities > α. 2

The following corollary to Proposition 5.1 presents in particular in (i) a first sufficient condition

for WCE and ES to coincide, namely continuity of the distribution of X .

Corollary 5.3 Let α and X be as in Corollary 5.2. Then

(i) P[X ≤ x(α)] = α, P[X < x(α)] > 0 or P[X ≤ x(α), X 6= x(α)] = 0 if and only if

ESα(X) = WCEα(X) = TCEα(X) = TCEα(X) .(5.11)

In particular, (5.11) holds if the distribution of X is continuous, i.e. P[X = x] = 0 for all

x ∈ R.

(ii) P[X ≤ x(α)] = α or P[X < x(α)] = 0 if and only if ESα(X) = TCEα(X).

Proof. Concerning (i) apply Proposition 5.1 (ii) and (iii) with A = {X ≤ x(α)} and Corollary

5.2. In order to obtain (ii) apply Proposition 5.1 (ii) and (iii) with A = {X ≤ x(α)}. 2

Corollary 5.2 leaves open the relation between TCEα(X) and WCEα(X). The implication

P[X ≤ x(α)] > α ⇒ TCEα(X) ≤WCEα(X)(5.12)

is obvious. Corollary 5.3 (ii) shows that

P[X ≤ x(α)] = α ⇒ TCEα(X) ≥WCEα(X) .(5.13)

The following example shows that all the inequalities between TCE, WCE, and ES in (5.9),

(5.10), (5.12), and (5.13) can be strict. Moreover, it shows that none of the quantities −qα,

VaRα, TCEα, or TCEα defines a sub-additive risk measure in general.

Example 5.4

Consider the probability space (Ω,A,P) with Ω = {ω1, ω2, ω3}, A the set of all subsets of Ω and

P specified by

P[{ω1}] = P[{ω2}] = p, P[{ω3}] = 1− 2 p ,

and choose 0 < p < 1
3 . Fix some positive number N and let Xi, i = 1, 2, be two random variables

defined on (Ω,A,P) with values

Xi(ωj) =

{
−N , if i = j

0 , otherwise.

Choose α such that 0 < α < 2 p. Then it is straightforward to obtain Table 1 with the values of

the risk measures interesting to us.
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p < α < 2p p = α p > α

Risk Measure X1,2 X1 +X2 X1,2 X1 +X2 X1,2 X1 + X2

−qα 0 N N N N N

VaRα 0 N 0 N N N

TCEα Np N Np N N N

TCEα Np N N N N N

WCEα N/2 N N/2 N N N

ESα Np/α N N N N N

Table 1: Values of risk measures for Example 5.4.

In case p < α < 2 p we see from Table 1 that

−qα(X1)− qα(X2) < −qα(X1 +X2)

VaRα(X1) + VaRα(X2) < VaRα(X1 +X2)

TCEα(X1) + TCEα(X2) < TCEα(X1 +X2)

TCEα(X1) + TCEα(X2) < TCEα(X1 +X2) .

These inequalities show that none of the notions −qα, VaRα, TCEα, or TCEα can be used to

define a sub-additive risk measure. In case p < α < 2 p we have also

TCEα(X1) < ESα(X1)

TCEα(X1) = TCEα(X1) < WCEα(X1)

WCEα(X1) < ESα(X1) .(5.14)

Hence the second inequalities in (5.9), (5.10), and (5.12) may be strict, as can be the first

inequality in (5.10). In case p = α we have from Table 1 that

TCEα(X1) < TCEα(X1) and

TCEα(X1) > WCEα(X1) .

Thus, also the first inequality in (5.9) and the inequality in (5.13) can be strict. In particular,

we see that there is not any clear relationship between TCEα and WCE. Beside the inequalities,

from the comparison with the results in the region p > α, we get an example for the fact that all

the measures but ES may have discontinuities in α. Moreover, in case p < α we have a stronger

version of (5.14), namely

− inf{E[X1 |A] : A ∈ A,P[A] ≥ α} < ESα(X1) ,

which shows that even if one replaces “>” by “≥” in Definition 2.4, strict inequality may appear

in the relation between WCE and ES. 2

We finally observe that Example 5.4 is not so academic as it may seem at first glance since the

Xi’s may be figured out as two risky bonds of nominal N with non–overlapping default states

ωi of probability p.
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6 Representing ES in terms of WCE

By Example 5.4 we know that WCE and ES may differ in general. Nevertheless, we are going

to show in the last part of the paper that this phenomenon can only occur when the underlying

probability space is too “small” in the sense of not allowing a suitable representation of the

random variable under consideration as function of a continuous random variable. Moreover,

as long as only finitely many random variables are under consideration it is always possible to

switch to a “larger” probability space in order to make WCE and ES coincide. Finally, we state

a general representation of ES in terms of related WCEs.

Proposition 6.1 Let X and Y be a real-valued random variables on a probability space (Ω,A,P)

such that E[Y −] <∞. Fix some α ∈ (0, 1). Assume that Y is given by Y = f ◦X where f satisfies

f(x) ≤ f(x(α)) for x < x(α), and f(x) ≥ f(x(α)) for x > x(α).

(i) If P[X ≤ x(α)] = α then

ESα(Y ) = − inf
A∈A,P[A]≥α

E[Y |A] .

(ii) If the distribution function of X is continuous then also

ESα(Y ) = WCEα(Y ) .

Proof. Concerning (i), by Proposition 5.1 (i) we only have to show

TMα(Y ) = E[Y |X ≤ x(α)] .(6.1)

With the choice A = {X ≤ x(α)} this follows from Proposition 5.1 (ii).

Concerning Proposition 6.1 (ii), by (6.1), we have to show that there is a sequence (An)n∈N in

A with P[An] > α for all n ∈ N such that

lim
n→∞

E[Y |An] = E[Y |X ≤ x(α)] .

By continuity of the distribution of X and integrability of Y − we obtain such a sequence with

the definition An = {X ≤ x(α) + 1/n} . 2

Corollary 6.2 Let (X1, . . . , Xd) be an Rd-valued random vector on a probability space (Ω,A,P)

such that E[X−i ] < ∞, i = 1, . . . , d. Fix α ∈ (0, 1). Then there is a random vector (X ′1, . . . , X
′
d)

on some probability space (Ω′,A′,P′) with the following two properties:

(i) The distributions of (X1, . . . , Xd) and (X ′1, . . . , X
′
d) are equal, i.e.

P[X1 ≤ x1, . . . , Xd ≤ xd] = P′[X ′1 ≤ x1, . . . , X
′
d ≤ xd] for all (x1, . . . , xd) ∈ R .
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(ii) Worst conditional expectation and Expected Shortfall coincide for all i = 1, . . . , d, i.e.

WCEα(X ′i) = ESα(X ′i) , i = 1, . . . , d . 2

Proof. By Sklar’s theorem (cf. Theorem 2.10.9 in [12]) we get the existence of a random vector

(U1, . . . , Ud) where each Ui is uniformly distributed on (0, 1) such that (i) holds with X ′i =

qUi(Xi), i = 1, . . . , d. Since qα is non-decreasing in α the assertion now follows from Proposition

6.1. 2

Corollary 6.2 yields another proof for the sub-additivity of Expected Shortfall: in order to prove

ESα(X)+ESα(Y ) ≥ ESα(X+Y ) apply the corollary to the underlying random vector (X, Y,X+

Y ).

As a final consequence of Corollary 5.2 and Corollary 6.2 we note:

Corollary 6.3 Let X be a real-valued random variable on some probability space (Ω,A,P) with

E[X−] <∞. Fix α ∈ (0, 1). Then

ESα(X) = max
{

WCEα(X ′) : X ′ random variable on (Ω′,A′,P′) with

P′[X ′ ≤ x] = P[X ≤ x] for all x ∈ R
}
,

where the maximum is taken over all random variables X ′ on probability spaces (Ω′,A′,P′) such

that the distributions of X and X ′ are equal. 2

Corollary 6.3 shows that Expected Shortfall in the sense of Definition 2.6 may be considered a

robust version of worst conditional expectation (Definition 2.4), making the latter insensitive to

the underlying probability space.

7 Conclusion

In the paper at hand we have shown that simply taking a conditional expectation of losses

beyond VaR can fail to yield a coherent risk measure when there are discontinuities in the loss

distributions. Already existing definitions for some kind of expected shortfall, redressing this

drawback, as those in [3] or [13], did not provide representations suitable for efficient computation

and estimation in the general case. We have clarified the relations between these definitions and

the explicit one from [1], thereby pointing out that it is the definition which is most appropriate

for practical purposes.
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A Appendix: Subadditivity of Expected Shortfall

We give here for the sake of completeness the proof of subadditivity for expected shortfall which

was originally given in Appendix A of [1].

For the proof it is convenient to adopt the representation of eq. (3.7) for the Tail Mean and

write the Expected Shortfall as

ESα(Y ) = − 1

α
E[X 1

(α)
{X≤x(α)}](A.1)

with the function 1
(α)
{X≤s} defined in (3.4).

Proposition A.1 (Subadditivity of Expected Shortfall) Given two random variables X

and Y with E[X−] <∞ and E[Y −] <∞ the following inequality holds:

ESα(X + Y ) ≤ ESα(X) + ESα(Y )(A.2)

for any α ∈ (0, 1]

Proof. Defining Z = X + Y , we obtain by virtue of (3.6)

α
(
ESα(X) + ESα(Y )− ESα(Z)

)
=(A.3)

= E
[
Z 1

(α)
{Z≤z(α)} −X 1

(α)
{X≤x(α)} − Y 1

(α)
{Y≤y(α)}

]

= E
[
X
(
1

(α)
{Z≤z(α)} − 1

(α)
{X≤x(α)}

)
+ Y

(
1

(α)
{Z≤z(α)} − 1

(α)
{Y ≤y(α)}

)]

≥ x(α) E
[
1

(α)
{Z≤z(α)} − 1

(α)
{X≤x(α)}

]
+ y(α) E

[
1

(α)
{Z≤z(α)} − 1

(α)
{Y≤y(α)}

]

= x(α) (α− α) + y(α) (α− α) = 0

which proves the thesis. In the inequality above we used the fact that





1
(α)
{Z≤z(α)} − 1

(α)
{X≤x(α)} ≥ 0 if X > x(α)

1
(α)
{Z≤z(α)} − 1

(α)
{X≤x(α)} ≤ 0 if X < x(α)

(A.4)

which in turn is a consequence of (3.4) and (3.5) 2
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