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Abstract

We study the relation between possibility
measures and the theory of imprecise proba-
bilities. It is shown that a possibility measure
is a coherent upper probability iff it is nor-
mal. We also prove that a possibility measure
is the restriction to events of the natural ex-
tension of a special kind of upper probability,
defined on a class of nested sets. Next, we
go from upper probabilities to upper previ-
sions. We show that if a coherent upper pre-
vision defined on the convex cone of all pos-
itive gambles is supremum preserving, then
it must take the form of a Shilkret integral
associated with a possibility measure. But
at the same time, we show that a supre-
mum preserving upper prevision is not nec-
essarily coherent! This makes us look for al-
ternative extensions of possibility measures
that are not necessarily supremum preserv-
ing, through natural extension.

1 INTRODUCTION

Supremum preserving set functions have popped up in
the literature under a number of different guises and
names, and in a diversity of contexts. To give only a
few examples, they are join-morphisms and therefore
play an important part in order (or lattice) theory [1,
4]; in a modified form they appear in Shackle’s logic of
surprise [13]; they were studied in a measure-theoretic
context by Shilkret [15]; they appear as limiting cases
in Shafer’s theory of belief functions [14] and they were
associated with fuzzy sets by Zadeh [22]. Zadeh called
them possibility measures because, in his view, they
model graded possibility.

In this paper, we investigate how these supremum pre-
serving set functions, or possibility measures, adopt-
ing Zadeh’s nomenclature for the sake of continuity,

fit into the theory of imprecise probabilities, as it was
elegantly formulated by Walley [19]. To a certain ex-
tent, we also generalize results by Dubois and Prade
[11] from a finitary towards a more general context.

2 PRELIMINARY DEFINITIONS
AND RESULTS

In what follows, we consider a non-empty universe of
discourse Ω. Note that Ω need not be finite. A real-
valued mapping X on Ω will be called a gamble on Ω
iff it is bounded, i.e., if sup X = sup{X(ω) | ω ∈ Ω}
and inf X = inf{X(ω) | ω ∈ Ω} are finite real num-
bers. The set of the gambles on Ω is a linear space
under pointwise addition and multiplication with real
numbers, and will be denoted by L(Ω). If X and Y are
gambles on Ω, we write X ≤ Y iff (∀ω ∈ Ω)(X(ω) ≤
Y (ω)). Also, a constant gamble will be denoted by the
unique value it assumes.

There is a special class of gambles which assume only
values in {0, 1}. If X is such a mapping, then clearly
it is the characteristic function (or indicator) of the
subset A = {ω | X(ω) = 1} of Ω, and it will also be
denoted as χA. A subset of Ω will be called an event,
and the set of events will be denoted by ℘(Ω). We shall
often identify an event A with its characteristic func-
tion χA. It should be clear from the context whether
A denotes an event (a set) or a gamble (an indicator).

With a gamble X on Ω we may associate a class of
events, the dual cut sets of X at level x, defined as
DX

x = {ω | X(ω) ≤ x}, x ∈ R.

An ample field R on Ω [5, 20] is a class of subsets of Ω
that is closed under arbitrary unions and complements.
It is therefore also closed under arbitrary intersections.
For any ω in Ω, the atom [ ω ]R of R containing ω is
defined as [ ω ]R =

⋂

{A ∈ R | ω ∈ A}. The atoms
of R make up a partition of Ω. Interestingly, for any
subset A of Ω we have that A ∈ R iff A =

⋃

ω∈A[ ω ]R.
An element of R is called R-measurable. A gamble X



on Ω is called R-measurable iff its dual cut sets are
R-measurable, or equivalently, iff it is constant on the
atoms of R.

A possibility measure Π on (Ω,R) is a complete join-
morphism [4] between the complete lattices (R,⊆) and
([0, 1],≤). In other words, for any family (Aj | j ∈ J)
of elements of R, Π(

⋃

j∈J Aj) = supj∈J Π(Aj). Note
that Π(∅) = 0. Π is called normal iff Π(Ω) = 1. A dis-
tribution for Π is a R-measurable Ω − [0, 1] mapping
π for which for any A in R: Π(A) = supω∈A π(ω).
Clearly, such a distribution is unique and completely
determined by π(ω) = Π([ ω ]R), ω ∈ Ω. Conversely,
a possibility measure is uniquely determined by its
distribution. For more information about possibility
measures, we refer to [5, 6, 7, 9, 10, 22].

We conclude this section with a number of notions
from the theory of imprecise probabilities. An up-
per prevision P [19] can be formally defined as a
real-valued function defined on a class of gambles
K ⊆ L(Ω). In order to identify its universe of dis-
course and domain, we also denote P as (Ω,K, P ).
The corresponding lower prevision P is defined on
−K = {−X | X ∈ K} by P (X) = −P (−X). When
the domain of an upper (lower) prevision is a class of
events – indicators –, it will also be called an upper
(lower) probability.

A linear prevision P on L(Ω) [19] is a positive linear
functional with unit norm (P (1) = 1) on the linear
space L(Ω). Its restriction to ℘(Ω) is a finitely addi-
tive probability. We shall denote the set of all linear
previsions on L(Ω) by P(Ω). Given an upper proba-
bility (Ω,K, P ), we define the set M(P ) by

M(P ) = {P ∈ P(Ω) | (∀X ∈ K)(P (X) ≤ P (X))}.

Define, for any gamble X on Ω, G(X) = X − P (X),
whence G(−X) = P (X) − X. An upper prevision
(Ω,K, P ) is said to avoid sure loss [19] iff for any X1,
. . . , Xn in K, n ≥ 1,

sup
n

∑

k=1

G(−Xk) ≥ 0.

Walley [19] has shown that (Ω,K, P ) avoids sure loss
iff M(P ) 6= ∅.

An upper prevision (Ω,K, P ) is said to be coherent [19]
iff for any m ≥ 0, n ≥ 0 and Xo, X1, . . . , Xn in K,

sup
(

n
∑

k=1

G(−Xk)−mG(−Xo)
)

≥ 0.

It has been proven by Walley [19] that (Ω,K, P ) is
coherent iff it is the upper envelope of M(P ), i.e.,

(∀X ∈ K)(P (X) = sup{P (X) | P ∈M(P )}).

If the upper prevision (Ω,K, P ) avoids sure loss, then
its natural extension [19] (Ω,L(Ω), E) is the maximal
coherent upper prevision on L(Ω) that is dominated
by P on K. It is then given by, for any X ∈ L(Ω),

E(X) = max{P (X) | P ∈M(P )}).

This discussion of upper and lower previsions, coher-
ence and natural extension is necessarily very limited.
For a detailed exposition of the theory of imprecise
probabilities, we refer to Walley’s book [19].

3 POSSIBILITY MEASURES AND
FAMILIES OF NESTED SETS

Let us consider a possibility measure Π with distri-
bution π, defined on an ample field R of subsets of
Ω. We turn our attention to the family of subsets
(Dπ

x | x ∈ [0, 1]) of Ω. For any x and y in [0, 1], if x ≤ y
then Dπ

x ⊆ Dπ
y , which implies that the sets Dπ

x are
nested. Moreover, for any ω in Ω, we find that π(ω) =
inf{x | ω ∈ Dπ

x}, and that ω ∈ Dπ
π(ω). Since π is R-

measurable, it is obvious that Dπ
x ∈ R, x ∈ [0, 1]. We

may therefore also consider the [0, 1]−[0, 1]-mapping κ,
defined by κ(x) = Π(Dπ

x ) = supπ(ω)≤x π(ω), x ∈ [0, 1].
Note that κ is increasing and that κ(x) = κ(y) when-
ever Dπ

x = Dπ
y . Since Dπ

1 = Ω it also follows that
κ(1) = 1 iff Π is a normal possibility measure.

So, given the possibility measure Π, we are in a very
natural way able to define a family of nested subsets
(Dπ

x | x ∈ [0, 1]) of Ω and a mapping κ specifying
the values which the possibility measure Π assumes
on those subsets. In what follows, we want to answer
the opposite question: given a nested family of sub-
sets of Ω and a mapping specifying the ‘possibility’ of
these subsets, is it possible to construct1 a possibility
measure that is compatible with this information?

We are thus led to consider a mapping Γ from [0, 1] to
℘(Ω), increasing in the following sense:

(∀(x, y) ∈ [0, 1]2)(x ≤ y ⇒ Γ(x) ⊆ Γ(y)). (1)

Using the so-called multivalued mapping Γ and draw-
ing inspiration from the discussion above, we also de-
fine the Ω− [0, 1]-mapping α as follows:

α(ω) = inf{x | ω ∈ Γ(x)},

for any ω in Ω. We want to stress here that the map-
ping α need not be surjective. Our next assumption
is a kind of continuity condition imposed on Γ, also
inspired by the foregoing discussion:

(∀ω ∈ Ω)(ω ∈ Γ(α(ω))). (2)
1This is a special case of a question treated by Wang

[21] and in a more general context by Boyen et al. [2].



Interestingly, it is easily verified that conditions (1)
and (2) also ensure that

Γ(1) = Ω. (3)

Besides Γ we also consider a mapping ξ from [0, 1] to
[0, 1] satisfying the following isotonicity condition:

(∀(x, y) ∈ [0, 1]2)(x ≤ y ⇒ ξ(x) ≤ ξ(y)). (4)

Furthermore, ξ should be constant wherever Γ is:

(∀(x, y) ∈ [0, 1]2)(Γ(x) = Γ(y) ⇒ ξ(x) = ξ(y)). (5)

Note that at this point we do not require that ξ(1) = 1.

We may interpret ξ as an assignment of possibility
to the nested sets Γ(x), x ∈ [0, 1]. The question we
want to answer here is whether there exists a possi-
bility measure Π, defined on some ample field R of
subsets of Ω such that (∀x ∈ [0, 1])(Π(Γ(x)) = ξ(x)),
or equivalently, Π ◦ Γ = ξ.

The requirements (4) and (5) imposed on ξ are neces-
sary conditions for the existence of such a possibility
measure. The requirement Π ◦ Γ = ξ also presupposes
that Γ([0, 1]) ⊆ R, with of course, Γ([0, 1]) = {Γ(x) |
x ∈ [0, 1]}. Moreover, it follows from (3) that Π will be
normal iff ξ(1) = 1. Also, suppose we can find a possi-
bility measure fulfilling the above requirement, which
is defined on an ample field R on Ω. Given any other
ample field R′ on Ω that includes R, we can easily find
a possibility measure Π′ defined on R′ and satisfying
Π′ ◦Γ = ξ by extending Π in the familiar way. For any
B in R′:

Π′(B) = inf{Π(A) | A ∈ R and B ⊆ A}
= Π(

⋃

ω∈B

[ ω ]R).

Remark that Π′ and Π have the same distribution!

It follows from these remarks that it is natural to try
and solve the problem for the ample field

RΓ =
⋂

{R | R ample field on Ω and Γ([0, 1]) ⊆ R},

i.e., the smallest ample field for which the sets Γ(x),
x ∈ [0, 1], are all measurable. In order to characterize
the atoms of this ample field, it will be convenient to
introduce a new class of subsets of Ω. For any x in
[0, 1]:

∆(x) = Γ(x) \
⋃

y<x

Γ(y) (6)

The following propositions tell us that there is a very
interesting relation between the Ω − [0, 1]-mapping α
and the sets Γ(x) and ∆(x), x ∈ [0, 1]. They ensure
that for any x in [0, 1], Γ(x) = Dα

x , or in other words,
that the Γ(x) are dual cut sets for the mapping α.

Proposition 1 Let x and ω be arbitrary elements of
the sets [0, 1] and Ω respectively. Then

1. ω ∈ Γ(x) ⇔ α(ω) ≤ x;

2. ω ∈ ∆(x) ⇔ α(ω) = x.

Proposition 2 The atoms of the ample field RΓ are
given by [ ω ]RΓ = ∆(α(ω)), ω ∈ Ω.

In the following theorem, we formulate a necessary
and sufficient condition that ξ must satisfy besides (4)
and (5) in order that the set mapping assuming the
values ξ(x) on Γ(x), x ∈ [0, 1], would be extendable to
a possibility measure on (Ω,RΓ).

Theorem 3 Let Γ be a [0, 1] − ℘(Ω)-mapping satis-
fying (1) and (2). Let ξ be a [0, 1] − [0, 1]-mapping
satisfying (4) and (5). Then there exists a possibility
measure Π on (Ω,RΓ) that is a solution of Π ◦ Γ = ξ
iff for any x in [0, 1]:

ξ(x) = sup
α(ω)≤x

ξ(α(ω)). (7)

In that case, the greatest such possibility measure has
distribution ξ ◦ α. Moreover, any solution Π will be
normal iff ξ(1) = 1.

It can be shown that conditions (1), (2), (4) and (5)
are in general not sufficient for (7) to hold, unless Ω
is a finite set. Interestingly, (7) is satisfied in the case
Γ(·) = Dπ

· and ξ = κ considered in the beginning of
this section. It also holds if Γ and therefore also ξ
assume only a finite number of different values.

4 POSSIBILITY MEASURES AS
NATURAL EXTENSIONS

Let us now consider the upper probability PΓ on the
set of events Γ([0, 1]), defined as follows:

(∀x ∈ [0, 1])(PΓ(Γ(x)) = ξ(x)).

In the previous section, we investigated under what
conditions this upper probability can be extended to
a possibility measure. Here, we determine the natural
extension EΓ of the upper probability (Ω, Γ([0, 1]), PΓ)
on the set of events ℘(Ω).

First of all, we want (Ω, Γ([0, 1]), PΓ) to avoid sure
loss2.

Proposition 4 The upper probability
(Ω, Γ([0, 1]), PΓ) avoids sure loss iff ξ(1) = 1.

2If an upper probability does not avoid sure loss, then
its natural extension assumes the value −∞ everywhere
[19].



It will therefore from now on be assumed that ξ(1) = 1.

Since (Ω, Γ([0, 1]), PΓ) avoids sure loss, its natural ex-
tension to L(Ω) (and therefore also the restriction to
℘(Ω)) is a coherent upper prevision (probability). If
A is any subset of RΓ, then we must determine [19]

EΓ(A) = inf
λk≥0;xk∈[0,1]

k=1,...,n;n≥0

sup Y (x1, . . . , xn; λ1, . . . , λn)

where

Y (x1, . . . , xn;λ1, . . . , λn) = A +
n

∑

k=1

λkG(−Γ(xk))

and for any x in [0, 1], G(−Γ(x)) = ξ(x)− Γ(x).

Theorem 5 Let Γ be a [0, 1] − ℘(Ω)-mapping satis-
fying (1) and (2). Let ξ be a [0, 1] − [0, 1]-mapping
satisfying (4), (5) and ξ(1) = 1. Let (Ω, Γ([0, 1]), PΓ)
be the upper probability defined by PΓ(Γ(x)) = ξ(x),
x ∈ [0, 1]. Let EΓ be the natural extension of PΓ.
Then EΓ(∅) = 0 and for any non-empty subset A of
Ω,

EΓ(A) = inf
A⊆Γ(x)

ξ(x). (8)

Theorem 6 Let Γ be a [0, 1] − ℘(Ω)-mapping satis-
fying (1) and (2). Let ξ be a [0, 1] − [0, 1]-mapping
satisfying (4), (5) and ξ(1) = 1. Let (Ω,Γ([0, 1]), PΓ)
be the upper probability defined by PΓ(Γ(x)) = ξ(x),
x ∈ [0, 1]. Let EΓ be the natural extension of PΓ.
Then the upper probability (Ω, Γ([0, 1]), PΓ) is coher-
ent. Moreover the restriction of EΓ to ℘(Ω) is a pos-
sibility measure on (Ω, ℘(Ω)) iff

(∀∅ ⊂ A ⊆ Ω)(sup ξ(α(A)) = ξ(sup α(A))). (9)

In that case, the distribution of this possibility measure
is given by ξ ◦ α.

Since by Propositions 1 and 2 α is constant on the
atoms of RΓ, (9) is equivalent to

(∀A ∈ RΓ \ {∅})(sup ξ(α(A)) = ξ(sup α(A))),

which also implies that the restriction of EΓ to ℘(Ω) is
a possibility measure on (Ω, ℘(Ω)) iff its restriction to
R is a possibility measure on (Ω,R), where R is any
ample field on Ω with RΓ ⊆ R.

From the theorem above, we may also deduce the fol-
lowing.

Theorem 7 Let R be an ample field on Ω. Consider
an arbitrary possibility measure Π on (Ω,R). Then
(Ω,R, Π) is a coherent upper probability iff Π is nor-
mal.

This result also implies that any possibility measure is
an upper envelope of a class of additive probabilities.

Proposition 8 Let R be an ample field on Ω. Con-
sider an arbitrary normal possibility measure Π on
(Ω,R). Consider the set

M(Π) = {P ∈ P(Ω) | (∀A ∈ R)(P (A) ≤ Π(A))}

Then Π is the upper envelope of M(Π), i.e., for any
A in R:

Π(A) = max{P (A) | P ∈M(Π)}.

To conclude this section, let us consider the special
case where Γ and therefore also ξ assume only a finite
number of different values. We have already mentioned
in the previous section that in this case the equation
Π ◦Γ = ξ always has a solution. Moreover, since α(Ω)
is now a finite set, condition (9) is trivially satisfied,
which means that the restriction of the natural exten-
sion EΓ to ℘(Ω) is indeed a possibility measure. Our
discussion therefore includes and at the same time gen-
eralizes the finite version, treated by Dubois and Prade
[11].

5 UPPER PREVISIONS
ASSOCIATED WITH
POSSIBILITY MEASURES

Let us again consider a normal possibility measure Π,
defined on an ample field R of subsets of Ω. We de-
note its distribution by π. We know from Theorem 7
that (Ω,R, Π) is a coherent upper probability. In this
section, we first look for coherent extensions of Π to
the set K(R) of the R-measurable gambles on Ω.

First of all, note that for any A and B in R, since Π
is increasing and Π(A ∪B) = max(Π(A), Π(B)),

Π(A ∩B) + Π(A ∪B)
≤ min(Π(A), Π(B)) + max(Π(A), Π(B))

= Π(A) + Π(B),

which, together with Π(∅) = 0, Π(Ω) = 1 and
(∀A ∈ R)(Π(A) ≤ 1) implies that the upper probabil-
ity (Ω,R, Π) is 2-alternating, or equivalently, a Cho-
quet capacity of order 2 [3, 18, 19]3. Let us define the
lower distribution function FX :R→ [0, 1] of X under
Π by, for any x in R:

FX(x) = 1−Π(coDX
x )

= 1−Π({ω | X(ω) > x})
= 1− sup

X(ω)>x
π(ω).

3This simple observation, together with the fact that 2-
alternating upper probabilities are always coherent [12, 18],
provides an alternative proof for Theorem 7.



Walley [18, 19] has shown that, since Π is 2-
alternating, the natural extension EΠ of Π on K(R) is
given by

EΠ(X) =
∫ +∞

−∞
xdFX(x) (10)

for any X in K(R), where the integral is a Riemann-
Stieltjes integral with integrator FX . Moreover, since
K(R) is a linear space containing all the constant gam-
bles, we deduce from [19] that for the natural extension
EΠ of Π on the set L(Ω) of all gambles on Ω:

EΠ(X) = inf{EΠ(Y ) | X ≤ Y and Y ∈ K(R)}
= EΠ(X#)

for any gamble X on Ω, where, for any ω in Ω,
X#(ω) = supν∈[ ω ]R X(ν).

It can be verified that in general, the natural exten-
sion of a possibility measure Π on (Ω,R) as deter-
mined by (10) need not be supremum preserving (on
the convex cone of all positive gambles), even though it
coincides with Π on R. Indeed, in the rest of this sec-
tion, we shed more light on this problem. For a start,
it is natural when considering supremum preservation
to restrict ourselves to gambles which are uniformly
non-negative.

Theorem 9 Let (Ω, C, P ) be a coherent upper previ-
sion, where C ⊂ L(Ω) is the convex cone of all positive
gambles on Ω: C = {X ∈ L(Ω) | X ≥ 0}. Remark that
C is closed under arbitrary suprema. Then for any X
in C:

P (X) ≥ sup
ω∈Ω

X(ω)P ({ω}).

Moreover, P is supremum preserving on C iff for any
X in C:

P (X) = sup
ω∈Ω

X(ω)P ({ω}) (11)

This result, and in particular (11), tells us that if a
coherent prevision (Ω, C, P ) is supremum preserving,
it must take the form of a Shilkret4 integral [15] as-
sociated with the possibility measure which is the re-
striction of P to ℘(Ω).

We are therefore led to study upper previsions
(Ω, C, Pπ) of the form:.

Pπ(X) = sup
ω∈Ω

X(ω)π(ω), X ∈ C,

where π is any Ω − [0, 1]-mapping5. More in particu-
lar, we want to find out whether such upper previsions

4Actually, in a different context Shilkret proved a some-
what stronger result, because he only used the preservation
of countable suprema, and imposed conditions which are
weaker than coherence.

5A coherent upper probability can only assume values in
[0, 1] [19].

are necessarily coherent. Note that for any A ⊆ Ω,
Pπ(A) = supω∈A π(ω), which means that the restric-
tion of Pπ to events is a possibility measure with distri-
bution π, and is, by Theorem 7, coherent iff sup π = 1.
That sup π = 1 (sup-normality of π) is therefore a
necessary condition for the coherence of (Ω, C, Pπ).

Generally it can be shown [19] that any upper previ-
sion (Ω, C, P ) is coherent iff it satisfies the following
three conditions, for arbitrary X and Y in C, for arbi-
trary λ in R with λ > 0 and for arbitrary µ in R:

P (λX) = λP (X) (12)

P (X + Y ) ≤ P (X) + P (Y ) (13)

X ≥ Y + µ ⇒ P (X) ≥ P (Y ) + µ (14)

It is easily verified that Pπ satisfies (12) and (13).
However, as the following counterexample shows, even
if sup π = 1, Pπ is not necessarily coherent. Together
with Theorem 9, it also tells us that the natural exten-
sion of a possibility measure is not necessarily supre-
mum preserving on C.

Example 10 Let Ω = [0, 1], π(ω) = ω and Y (ω) =
1 − ω, ω ∈ [0, 1]. Then clearly sup π = 1 and Y ≥ 0.
For any real µ, consider X = Y + µ. If µ ≥ 0 then
X ≥ Y + µ ≥ 0. Moreover,

Pπ(X) = sup
ω∈[0,1]

ω(1− ω + µ) =
(

1 + µ
2

)2

whereas Pπ(Y ) + µ = 1/4 + µ. Clearly, Pπ(X) ≥
Pπ(Y ) + µ iff µ ≤ 0 or µ ≥ 2. If we choose µ = 1, we
see that (14) is not satisfied. Note on the other hand
that EΠ(Y ) = 1/2 and EΠ(Y + µ) = 1/2 + µ.

There is a special case, however, in which (Ω, C, Pπ) is
always coherent, as the following proposition tells us.

Proposition 11 Let π be any Ω− [0, 1]-mapping and
let Π be the possibility measure on (Ω, ℘(Ω)) with dis-
tribution π. If π can only assume the values 0 and 1,
and sup π = 1 then (Ω, C, Pπ) is coherent and coin-
cides on C with the natural extension of (Ω, ℘(Ω), Π).

6 CONCLUSION

The results in this paper show that it is possible to
incorporate possibility measures, or supremum pre-
serving set functions, into the framework of imprecise
probabilities. Particularly interesting is the fact that
any possibility measure is a coherent upper probabil-
ity measure iff it is normal; and that any possibility
measure can be retrieved as the restriction to events of
the natural extension of an upper probability defined
on a class of nested sets, and vice versa (under some
restrictions).



It is on the other hand surprising that the preserva-
tion of suprema does not carry over from events to
(positive) gambles: supremum preserving upper pre-
visions on C are not necessarily coherent, and natural
extensions of possibility measures are not necessarily
supremum preserving on C. There therefore seems to
be a potential incompatibility between the Shilkret in-
tegral [15] – which is, by the way, the only form of the
fuzzy integral [8, 16, 17] which may lead to coherent
extension – and the notion of coherence.

For a more detailed exposition, with the proofs of the
results given here, and a discussion of necessity mea-
sures, we refer to a forthcoming paper.
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