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Abstract
A torus manifoldis an even-dimensional manifold acted on by a half-dimensional

torus with non-empty fixed point set and some additional orientation data. It may
be considered as a far-reaching generalisation oftoric manifolds from algebraic
geometry. The orbit space of a torus manifold has a rich combinatorial structure,
e.g., it is amanifold with cornersprovided that the action islocally standard. Here
we investigate relationships between the cohomological properties of torus manifolds
and the combinatorics of their orbit quotients. We show thatthe cohomology ring of
a torus manifold is generated by two-dimensional classes ifand only if the quotient is a
homology polytope. In this case we retrieve the familiar picture from toric geometry:
the equivariant cohomology is theface ring of the nerve simplicial complex and the
ordinary cohomology is obtained by factoring out certain linear forms. In a more
general situation, we show that the odd-degree cohomology of a torus manifold
vanishes if and only if the orbit space isface-acyclic. Although the cohomology
is no longer generated in degree two under these circumstances, the equivariant
cohomology is still isomorphic to the face ring of an appropriate simplicial poset.

1. Introduction

Since the 1970s algebraic geometers have studied equivariant algebraic compact-
ifications of thealgebraic torus(C�)n, nowadays known ascomplete toric varieties.
The study quickly grew into a separate branch of algebraic geometry, “toric geome-
try”, incorporating many topological and convex-geometrical ideas and constructions,
and producing a spectacular array of applications. A toric variety is a (normal) alge-
braic variety on which an algebraic torus acts with a dense orbit. The variety and the
action are fully determined by a combinatorial object called a fan [7].

With the appearance of the pioneering work [6] of Davis and Januszkiewicz in
the beginning of the 1990s, the ideas of toric geometry have started penetrating into
topology. The orbit space of a non-singular projective toric variety with respect to the
action of the compact torusTn � (Cn)� can be identified with the simple polytope
“dual” to the corresponding fan. Moreover, the action of the compact torus on a non-
singular toric variety is “locally standard,” that is, locally modelled by the standard
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action on Cn. Davis and Januszkiewicz took these two characteristic properties as a
starting point for their topological generalisation of toric varieties, namelyquasitoric
manifolds. A quasitoric manifold is a compact manifoldM2n with a locally standard
action of Tn whose orbit space is (combinatorially) a simple polytope. (Davis and
Januszkiewicz used the term “toric manifold,” but by the time their work appeared
the latter had already been used in algebraic geometry as a synonym of “non-singular
toric variety.”) According to one of the main results of [6],the cohomology ring of a
quasitoric manifoldM has the same structure as that of a non-singular complete toric
variety, and is isomorphic to the quotient of the Stanley-Reisner face ring of the or-
bit space by certain linear forms. In particular, the cohomology of M is generated by
degree-two elements.

In contrast, the convex-geometrical notion of polytope, while playing a very im-
portant role in geometrical considerations related to toric geometry, appears to be less
relevant in the topological study of torus actions. The orbit quotient Q = M=T of
a non-singular compact toric varietyM locally looks like the positive coneRn

+ and
thereby acquires a specific face decomposition. This combinatorial structure onQ is
known to differential topologists as that of amanifold with corners. Moreover, all faces
of Q, including Q itself, and all their intersections are acyclic. We call such a mani-
fold with corners ahomology polytope. It is a genuine polytope provided that the toric
variety is projective, but in general may fail to be so. This implies, in particular, that
the class of quasitoric manifolds does not include all non-singular compact toric va-
rieties (see [3,§5.2] for more discussion on the relationships between toricvarieties
and quasitoric manifolds). On the other hand we might expectthat all the topologi-
cal properties of quasitoric manifolds would still hold under a weaker assumption that
the orbit space of the torus action is a homology polytope. This is justified by some
results of the present paper (see Theorem 8.3).

An alternative far-reaching topological generalisation of complete nonsingular
toric varieties was introduced in [13] and [11] under the name of torus manifolds
(or unitary toric manifoldsin the earlier terminology). A torus manifold is an even-
dimensional manifoldM acted on by a half-dimensional torusT with non-empty fixed
point set; we also specify certain orientation data onM from the beginning, in or-
der to make certain isomorphisms canonical. Particular examples of torus manifolds
include non-singular complete toric varieties (otherwiseknown as toric manifolds) and
the quasitoric manifolds of Davis and Januszkiewicz. On theother hand, the condi-
tions on the action are significantly weakened in comparisonto quasitoric manifolds.
Surprisingly, torus manifolds admit a combinatorial treatment similar to toric varieties.
It relies on the notions ofmulti-fans and multi-polytopes, developed in [11] as an al-
ternative to fans associated with toric varieties.

The notion of torus manifold appears to be an appropriate concept for investigat-
ing relationships between the topology of torus action and the combinatorics of orbit
quotient, which is the main theme of the current paper. Our first main result (Theo-
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rem 8.3) measures the extent of the analogy between the cohomological structure of
non-singular complete toric varieties and torus manifolds:

Theorem 1. The cohomology of a torus manifold M is generated by its degree-
two part if and only if M is locally standard and the orbit space Q is a homology
polytope.

The cohomology ring itself may also be calculated and has a structure familiar
from toric geometry: it is isomorphic to the Stanley-Reisner face ring of Q modulo
certain linear forms.

Next we study a more general class of torus manifolds: those with vanishing odd-
degree cohomology. Under these circumstances the equivariant cohomology ofM is
a free finitely generated module over the equivariant cohomology of point, H�

T (pt) =
Z[t1; : : : ; tn]. This condition is known to algebraists asCohen-Macaulaynessand is
equivalent toM being equivariantly formalin the terminology of [9]. The orbit space
of a torus manifold withHodd(M) = 0 may fail to be a homology polytope, as a sim-
ple example of torus acting on an even-dimensional sphere shows (see Example 3.2).
We introduce a weaker notion offace-acyclicmanifold with cornersQ, in which all
the faces are still acyclic, but their intersections may fail to be connected, and prove

Theorem 2. The odd-degree cohomology of M vanishes if and only if M is lo-
cally standard and the orbit space Q is face-acyclic.

This result is stated as Theorem 9.3 in our paper. We also showthat the equi-
variant cohomology is isomorphic to the face ring of the simplicial poset of faces of
Q and identify the ordinary cohomology accordingly (Theorem7.7 and Corollary 7.8).
The face ring of a simplicial poset is not generated by its degree-two elements in
general.

At the end we prove Stanley’s conjecture on the characterisation of h-vectors of
Gorenstein* simplicial posets in the particular case of face posets of orbit quotients
for torus manifolds (Theorem 10.1). Unlike the case of Gorenstein* simplicial com-
plexes (which can be considered as an “algebraic approximation” to triangulations of
spheres), the conditions for an integer vector to be anh-vector of a Gorenstein* sim-
plicial poset are relatively weak. Such anh-vector must have non-negative entrieshi

and satisfy theDehn-Sommerville equations hi = hn�i , i = 0; : : : ;n. There are no
other conditions for oddn. In even dimensions there is one other troublesome con-
dition; the middle-dimensional entry of theh-vector must be even if at least one other
entry is zero. It is not hard to check that these conditions are sufficient, by provid-
ing the corresponding examples of simplicial posets. We show that these simplicial
posets can be realised as the face posets of orbit quotients for torus manifolds with
Hodd(M) = 0 (so that theh-vectors of posets are the even Betti vectors of torus mani-
folds). Stanley’s conjecture [17] was that those three conditions are also necessary. In
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this paper we establish the necessity forh-vectors of posets associated to torus man-
ifolds with Hodd(M) = 0. This is done through the calculation of the Stiefel-Whitney
classes of torus manifolds. Similar topological ideas wereused by the first author to
prove the Stanley conjecture in full generality in [14].

We note that the characterisation ofh-vectors for Gorenstein* simplicial complexes,
as well as for sphere triangulations, remains wide open.

The paper is organised as follows. In Section 2 we establish the notation concern-
ing torus actions on manifolds and prove three pivotal statements (Lemmas 2.1–2.3)
describing different properties of fixed point sets. In Section 3 we introduce the con-
cept of torus manifold, give a few examples, and establish some basic facts about them.
In Section 4 we discuss locally standard torus actions. The main result here is Theo-
rem 4.1 showing that a torus manifoldM is locally standard provided thatHodd(M) =
0. We also introduce a canonical model for a torus manifold with given orbit space
Q and the distribution of circle subgroups fixing characteristic submanifolds. Then we
show that a torus manifold is equivariantly diffeomorphic to its canonical model pro-
vided that H2(Q) = 0. This extends the corresponding result for quasitoric manifolds
due to Davis and Januszkiewicz. In Section 5 we develop the necessary apparatus of
“combinatorial commutative algebra.” Here we introduce face rings of manifolds with
corners and simplicial posets, and list their main algebraic properties. We try not to
overload the notation with poset terminology, but a reader familiar with posets will
recognise the notions of (semi)lattice, meet, join, etc. InSection 6 we turn to the equi-
variant cohomology of torus manifolds. We introduce certain key concepts and con-
struct a map from the face ring of the orbit quotient to the equivariant cohomology of
the torus manifold, which is later shown to be an isomorphismunder certain condi-
tions. Sections 7–9 contain the proofs of the main results quoted above. In Section 10
we prove the above mentioned particular case of Stanley’s conjecture on Gorenstein*
simplicial posets.

2. Preliminaries

We start with recalling some basic theory ofG-spaces, referring to [1, Ch. II]
for the proofs of the corresponding statements. LetX be a topological space with a
left action of a compact topological groupG. The action iseffective if unit is the
only element ofG that acts trivially, and isfree if the isotropy subgroup Gx = fg 2
G : gx = xg is trivial for all x 2 X. The fixed point set is denotedXG. There ex-
ists a contractible free rightG-spaceEG called theuniversal G-space; the quotient
BG := EG=G is called theclassifying spacefor free G-actions. The productEG� X
is a free leftG-space byg � (e; x) = (eg�1; gx); the quotientEG�G X := (EG� X)=G
is called theBorel constructionon X or the homotopy quotientof X. The equivariant
cohomologywith coefficients in a ringk is defined as

H�
G(X; k) := H�(EG�G X; k):
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The map� collapsing X to a point induces a homomorphism

(2.1) �� : H�
G(pt; k) = H�(BG; k)! H�

G(X; k)

thereby defining a canonicalH�(BG; k)-module structure onH�
G(X; k). The Borel con-

struction can also be applied to aG-vector bundle. For instance, ifE is an oriented
G-vector bundle over aG-spaceX, then the Borel construction onE produces an ori-
ented vector bundle overEG�G X and its Euler class is called theequivariant Euler
class of E and denoted byeG(E). Note thateG(E) lies in H�

G(X; Z). Below we use
integer coefficients, unless another coefficient ring is specified.

If G is a commutative group (e.g., a compact torusT = Tk), then the notions of
left and right G-spaces coincide. As is well known,H�(BT) is a polynomial ring in
k variables of degree two, in particularHodd(BT) = 0. All manifolds M in this paper
are closed connected smooth and orientable.

Lemma 2.1. Let M be a manifold with a smooth action of T such that the fixed
point set MT is finite and non-empty. Then H�T (M) is free as an H�(BT)-module if
and only if Hodd(M) = 0. In this case H�T (M) �= H�(BT) 
 H�(M) as H�(BT)-
modules.

Proof. AssumeHodd(M) = 0. Then the Serre spectral sequence of the fibration
ET �T M ! BT collapses andH�(M) has no torsion, soH�

T (M) is isomorphic to
H�(BT)
 H�(M) and thus is a freeH�(BT)-module. This proves the “if” part.

To prove the “only if” part, we use the Eilenberg-Moore spectral sequence of the
bundle ET �T M ! BT with fibre M. It converges toH�(M) and has

E�;�
2 = Tor�;�H�(BT)

�
H�

T (M);Z�:
Since H�

T (M) is free as anH�(BT)-module, we have

Tor�;�H�(BT)

�
H�

T (M);Z� = Tor0;�H�(BT)

�
H�

T (M);Z�
= H�

T (M)
H�(BT) Z

= H�
T (M)

Æ����H>0(BT)
��:

Therefore,E0;�
2 = H�

T (M)=(��(H>0(BT))) and E�p;�
2 = 0 for p > 0. It follows that the

Eilenberg-Moore spectral sequence collapses at theE2 term and

(2.2) H�(M) = H�
T (M)

Æ����H>0(BT)
��:

On the other hand, it follows from the localisation theorem (see [12]) that the kernel
of the restriction map

H�
T (M)! H�

T (MT ) = H�(BT)
 H�(MT )
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is the H�(BT)-torsion subgroup and hence the restriction map is injective in our case.
ThereforeHodd

T (M) = 0 becauseMT is a finite set of isolated points. This fact together
with (2.2) proves thatHodd(M) = 0.

Two classes ofT-manifolds, namely those having zero odd degree cohomologyor
even cohomology generated in degree two, are of particular importance in this paper.
Next we prove two technical lemmas showing that these cohomological properties are
inherited by the fixed point setM H for any subtorusH � T . These lemmas will be
used in inductive arguments later in the paper.

Lemma 2.2. Let M be a T -manifold, H a subtorus of T and N a connected
component of MH . If H odd(M) = 0, then Hodd(N) = 0 and NT 6= ∅.

Proof. We first prove thatHodd(M H ) = 0. Note that for a generic circle sub-
group S � H we have M S = M H . Let p be a prime andG be an orderp sub-
group in S. The induced action ofG on H�(M) is trivial becauseG is contained in
the connected groupS. Then dimHodd(MG; Z=p) 6 dim Hodd(M; Z=p) by [1, Theo-
rem VII.2.2]. Therefore,Hodd(MG; Z=p) = 0 by the assumption. Repeating the same
argument forMG with the induced action ofS=G, which is again a circle group, we
conclude thatHodd(MG; Z=p) = 0 for any p-subgroupG of S. However, MG = M S =
M H if the order of G is sufficiently large, so we haveHodd(M H ; Z=p) = 0. Since p
is an arbitrary prime, this implies thatHodd(M H ) = 0.

Now since Hodd(N) = 0, the Euler characteristic�(N) of N is non-zero. As is
well-known �(N) = �(NT ), which implies thatNT is non-empty.

Lemma 2.3. Let M; H; N be as inLemma 2.2.If H �(M) is generated by its
degree-two part(as a ring), then the restriction map H�(M) ! H�(N) is surjective;
in particular, H�(N) is also generated by its degree-two part.

Proof. SinceHodd(M) = 0, we haveHodd(N) = 0 by Lemma 2.2; so it suffices to
prove that the restriction mapH�(M; Z=p)! H�(N; Z=p) is surjective for any primep.

The argument below is similar to that used in the proof of Theorem VII.3.1 in
[1]. As in the proof of Lemma 2.2, letS be a generic circle subgroup ofH (so that
M S = M H ) and let G be the subgroup ofS of prime order p. Then the restriction
map H k

G(M; Z=p) ! H k
G(MG; Z=p) is an isomorphism for sufficiently largek by [1,

Theorem VII.1.5]. Hence, for any connected componentN 0 of MG the restriction
r : H k

G(M; Z=p) ! H k
G(N 0; Z=p) is surjective if k is sufficiently large. Now consider

the commutative diagram

H�
G(M; Z=p) r //

��

H�
G(N 0; Z=p) �= H�(BG; Z=p)
H�(N 0; Z=p)

��
H�(M; Z=p) s // H�(N 0; Z=p)

:
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Choose a basisv1; : : : ; vd 2 H2(M; Z=p); then these elements are multiplicative gen-
erators for H�(M; Z=p). Since Hodd(M; Z=p) = Hodd(MG; Z=p) = 0 and �(M) =�(MT ) = �(MG), we have

P
dim H i (M; Z=p) =

P
dim H i (MG; Z=p). By [1, The-

orem VII.1.6] the Serre spectral sequence of the fibrationEG�G M ! BG collapses.
Therefore, the vertical mapH�

G(M; Z=p)! H�(M; Z=p) in the above diagram is sur-
jective. Let � j 2 H�

G(M; Z=p) be a lift of v j , andw j := s(v j ). Let t be a generator of
H2(BG; Z=p) �= Z=p. Since the above diagram is commutative andH1(N 0; Z=p) = 0
by Lemma 2.2, we haver (� j ) = � j t+w j for some� j 2 Z=p. Now let a 2 H�(N 0; Z=p)
be an arbitrary element. Then there existl and a polynomialP(�1; : : : ; �d) such that

r (P(�1; : : : ; �d)) = t l a:
On the other hand,

r (P(�1; : : : ; �d)) = P(�1t +w1; : : : ; �dt +wd) =
X
k>0

tk Qk(w1; : : : ; wd)

for some polynomialsQk. Therefore, a = Ql (w1; : : : ; wd), the restriction map
H�(M; Z=p) ! H�(N 0; Z=p) is surjective, andH�(N 0; Z=p) is generated by the
degree-two elementsw1; : : : ; wd.

Now we can repeat the same argument forN 0 with the induced action ofS=G,
which is again a circle group. It follows that the restriction map H�(M; Z=p)!
H�(N 0; Z=p) is surjective for any connected componentN 0 of MG with G any p-
subgroup ofS. However, if the order ofG is sufficiently large, thenMG = M S = M H

and henceN 0 = N, so it follows that the restriction mapH�(M; Z=p)! H�(N; Z=p)
is surjective for any connected componentN of M H . Since the primep is arbitrary,
the proof is finished.

3. Torus manifolds

The notion of torus manifold was introduced in [11] and [13],and here we follow
the notation of these papers with some additional specifications.

A torus manifold is a 2n-dimensional closed connected orientable smooth mani-
fold M with an effective smooth action of ann-dimensional torusT = (S1)n such that
MT 6= ∅. Since dimM = 2 dimT and M is compact, the fixed point setMT is a finite
set of isolated points.

A codimension-two connected component of the set fixed pointwise by a circle
subgroup ofT is called acharacteristic submanifoldof M. The existence of aT-
fixed point is required for the definition of characteristic submanifold in [11] and [13]
but not in this paper. However, whenHodd(M) = 0, these two definitions agree by
Lemma 2.2.

Since M is compact, there are only finitely many characteristic submanifolds, and
we denote them byMi , i = 1; : : : ;m. Each characteristic submanifoldMi is orientable
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as a connected component of the fixed point set for a circle action on an orientable
manifold. Following [4], we say thatM is omniorientedif an orientation is specified
for M and for every characteristic submanifoldMi . There are 2m+1 choices of omni-
orientations. It is extremely convenient, although not absolutely necessary to assume
that all torus manifolds are omnioriented (in [11] a choice of omniorientation for char-
acteristic submanifolds was a part of the definition of torusmanifold).

Here are two typical examples of torus manifolds.

EXAMPLE 3.1. A complex projective spaceCPn has a naturalT-action defined
in the homogeneous coordinates by

(t1; : : : ; tn) � (z0 : z1 : � � � : zn) = (z0 : t1z1 : � � � : tnzn):
It has (n + 1) characteristic submanifoldsfz0 = 0g; : : : ; fzn = 0g and (n + 1) fixed points
(1 : 0 : � � � : 0); : : : ; (0 : � � � : 0 : 1). In this example the intersection of any set of
characteristic submanifolds is connected.

EXAMPLE 3.2. Let S2n be the 2n-sphere identified with the following subset in
Cn � R: �

(z1; : : : ; zn; y) 2 Cn � R : jz1j2 + � � � + jznj2 + y2 = 1
	 :

Define aT-action by

(t1; : : : ; tn) � (z1; : : : ; zn; y) = (t1z1; : : : ; tnzn; y):
It has n characteristic submanifoldsfz1 = 0g; : : : ; fzn = 0g, and two fixed points
(0; : : : ;0;�1). The intersection of anyk characteristic submanifolds is connected if
k 6 n� 1, but consists of two disjoint fixed points ifk = n.

If M is an (omnioriented) torus manifold, then bothM and Mi are oriented, and
the Gysin homomorphismH�

T (Mi ) ! H�+2
T (M) in equivariant cohomology is defined.

Denote by�i 2 H2
T (M) the image of the identity element inH0

T (Mi ). We may think
of �i as the Poincaré dual of Mi in equivariant cohomology.

Proposition 3.3 (See section 1 of [13]). Let M be a torus manifold.
1. For each characteristic submanifold Mi with (Mi )T 6= ∅, there is a unique element
ai 2 H2(BT) such that

��(t) =
X

i

ht;ai i�i modulo H�(BT)-torsions

for any element t2 H2(BT). Here the sum is taken over all characteristic sub-
manifolds Mi with (Mi )T 6= ∅ and �� denotes the homomorphism(2.1).
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2. The circle subgroup fixing Mi with (Mi )T 6= ∅ coincides with the one determined
by ai 2 H2(BT) through the identification H2(BT) = Hom(S1; T).
3. If n different characteristic submanifolds Mi1; : : : ;Min have a T -fixed point in their
intersection, then the elements ai1; : : : ;ain form a basis of H2(BT) over Z.

The next lemma provides a sufficient cohomological condition for the intersections
of characteristic submanifolds to be connected (compare Examples 3.1 and 3.2).

Lemma 3.4. Suppose that H�(M) is generated in degree two. Then all non-empty
multiple intersections of the characteristic submanifolds are connected and have co-
homology generated in degree two.

Proof. Since every characteristic submanifoldMi is a connected component of
the fixed point set of a circle subgroup ofT , the cohomologyH�(Mi ) is generated by
the degree-two part and the restriction mapH�(M)! H�(Mi ) is onto by Lemma 2.3.
It follows that the restriction mapH�

T (M) ! H�
T (Mi ) in equivariant cohomology is

also onto.
Now we prove the connectedness of multiple intersections. Suppose thatMi1\� � �\

Mik 6= ∅, (1 < k 6 n), and pick a connected componentN of the intersection. Since
N is fixed by a subtorus, it contains aT-fixed point by Lemma 2.2. For eachi 2fi1; : : : ; ikg there are embeddings'i : N ! Mi ,  i : Mi ! M, and the corresponding
Gysin homomorphisms in equivariant cohomology:

H0
T (N)

'i !�! H2k�2
T (Mi )

 i !�! H2k
T (M):

Since the restriction �
i : H�

T (M) ! H�
T (Mi ) is surjective, we have'i ! (1) =  �

i (u) for
someu 2 H2k�2

T (M). Now we calculate

( i Æ 'i )!(1) = i ! ('i ! (1)) = i !

� �
i (u)

�
=  i ! (1)u = �i u:

Hence, ( i Æ 'i )!(1) is divisible by �i for every i 2 fi1; : : : ; ikg. By Proposition 3.4 of
[13], the degree-2k part of H�

T (M) is additively generated by the monomials� k1
j1
: : : � kp

j p

such thatM j1 \ � � � \ M j p 6= ∅ and k1 + � � � + kp = k. It follows that ( i Æ 'i )!(1) is
a non-zero integral multiple of�i1 � � � �ik 2 H2k

T (M). By the definition of Gysin map,
( i Æ 'i )!(1) goes to zero under the restriction mapH�

T (M) ! H�
T (x) for every point

x 2 (MnN)T . On the other hand, the image of�i1 � � � �ik under the restriction map
H�

T (M)! H�
T (x) is non-zero for everyT-fixed point x 2 Mi1 \ � � � \ Mik . Thus, N is

the only connected component of the latter intersection. The fact thatH�(N) is gener-
ated by its degree-two part follows from Lemma 2.3.
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4. Locally standard torus manifolds and orbit spaces

4.1. Locally standardness. We say that a torus manifoldM is locally standard
if every point in M has an invariant neighbourhoodU weakly equivariantly diffeo-
morphic to an open subsetW � Cn invariant under the standardTn-action on Cn.
The latter means that there is an automorphism : T ! T and a diffeomorphism
f : U ! W such that f (ty) =  (t) f (y) for all t 2 T , y 2 U .

The following statement gives a sufficient cohomological condition for local stan-
dardness.

Theorem 4.1. A torus manifold M with Hodd(M) = 0 is locally standard.

Proof. We first show that there are no non-trivial finite isotropy subgroups for
the T-action onM. Assume the opposite, i.e., the isotropy groupTx is finite and non-
trivial for some x 2 M. Then Tx contains a non-trivial cyclic subgroupG of some
prime orderp. Let N be the connected component ofMG containingx. SinceN con-
tains x and Tx is finite, the principal isotropy group ofN is finite. Like in the proof
of Lemma 2.2, it follows from [1, Theorem VII.2.2] thatHodd(N; Z=p) = 0. In partic-
ular, the Euler characteristic ofN is non-zero, and therefore,N has aT-fixed point,
say y. The tangentialT-representationTyM at y is faithful, dimM = 2 dimT andTyN
is a properT-subrepresentation ofTyM. It follows that there is a subtorusT 0 (of pos-
itive dimension) which fixesTyN and does not fix the complement ofTyN in TyM.
Clearly, T 0 is the principal isotropy group ofN, which contradicts the above observa-
tion that the principal isotropy group ofN is finite.

If the isotropy groupTx is trivial, M is obviously locally standard nearx. Suppose
that Tx is non-trivial. Then it cannot be finite and therefore, dimTx > 0. Let H be the
identity component ofTx, and N the connected component ofM H containing x. By
Lemma 2.2,N has aT-fixed point, sayy. Looking at the tangential representation at
y, we observe that the induced action ofT=H on N is effective. By the previous ar-
gument, no point ofN has a non-trivial finite isotropy group for the induced action
of T=H , which implies thatTx = H . Since x and y are both in the same connected
componentN fixed pointwise byTx, the Tx-representation inTx M agrees with the re-
striction of the tangentialT-representationTyM to Tx. This implies thatM is locally
standard nearx.

In the rest of this section we assume thatM is locally standard.

Let Q := M=T denote the orbit space ofM and � : M ! Q the quotient projec-
tion. SinceM is locally standard, any point in the orbit spaceQ has a neighbourhood
diffeomorphic to an open subset in the positive cone

Rn
> = f(y1; : : : ; yn) 2 Rn : yi > 0; i = 1; : : : ;ng:
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This identifiesQ as amanifold with corners, see e.g. [5,§6], and faces ofQ can be
defined in a natural way. The vertices ofQ, that is, the 0-dimensional faces, corre-
spond to theT-fixed points ofM through the quotient projection� . Codimension one
faces ofQ are called thefacetsof Q. They are the� images of characteristic subman-
ifolds Mi , i = 1; : : : ;m. We setQi := �(Mi ). We refer to a non-empty intersection of
k facets as a codimension-k preface, k = 1; : : : ;n. In general, prefaces of codimension> 1 may fail to be connected (see Example 3.2). Faces are connected components of
prefaces. We also regardQ itself as a codimension-zero face; other faces are called
proper faces. If Hodd(M) = 0, then every face has a vertex by Lemma 2.2. Moreover,
if H�(M) is generated in degree two, then all prefaces are connectedby Lemma 3.4;
so prefaces are faces in this case.

A space X is acyclic if eHi (X) = 0 for all i . We say thatQ is face-acyclic if
all of its faces (includingQ itself) are acyclic. It is not difficult to see that ifQ is
face-acyclic, then every face ofQ has a vertex. We callQ a homology polytopeif
all its prefaces are acyclic (in particular, connected), inother words,Q is a homology
polytope if and only if it is face-acyclic and all non-empty multiple intersections of
characteristic submanifolds are connected.

REMARK . A simple convex polytopeis an example of a manifold with corners
and is a homology polytope. Aquasitoric manifold[6], [3] can be defined as a lo-
cally standard torus manifold whose orbit space is a simple convex polytope with the
standard face structure.

EXAMPLE 4.2. Torus manifoldCPn with the T-action from Example 3.1 is lo-
cally standard and the map

(z0 : z1 : � � � : zn)! 1Pn
i =0 jzi j2

�jz1j2; : : : ; jznj2�

induces a face preserving homeomorphism from the orbit space CPn=T to a standard
n-simplex. The latter is a simple polytope, in particular, a homology polytope.

EXAMPLE 4.3. Torus manifoldS2n with the T-action from Example 3.2 is also
locally standard and the map

(z1; : : : ; zn; y)! (jz1j; : : : ; jznj; y)

induces a face preserving homeomorphism from the orbit space S2n=T to the space

�
(x1; : : : ; xn; y) 2 Rn+1 : x2

1 + � � � + x2
n + y2 = 1; x1 > 0; : : : ; xn > 0

	:
This space is not a homology polytope, but is a face-acyclic manifold with corners.
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4.2. Canonical model. In this paragraph we reconstruct the torus manifoldM
from the orbit spaceQ and a map3 defined below using a “canonical model”MQ(3),
which generalises a result of Davis-Januszkiewicz [6, Prop. 1.8].

Remember thatMi = ��1(Qi ) is fixed by a circle subgroup ofT . We choose
a map

(4.1) 3 : fQ1; : : : ; Qmg ! H2(BT) = Hom(S1; T) �= Zn

such that3(Qi ) is primitive and determines the circle subgroup ofT fixing Mi . When
Mi has aT-fixed point,3(Qi ) coincides with the elementai introduced in Proposi-
tion 3.3 up to sign. The following lemma follows immediatelyfrom the local stan-
dardness ofM.

Lemma 4.4. If Q i1 \ � � � \ Qik is non-empty, then3(Qi1); : : : ; 3(Qik ) is a part
of basis for the integral latticeHom(S1; T) �= Zn.

Given a pointx 2 Q, the smallest face which containsx is an intersectionQi1 \� � � \ Qik of some facets, and we defineT(x) to be the subtorus ofT generated by
the circle subgroups corresponding to3(Qi1); : : : ; 3(Qik ). Now introduce the identifi-
cation space

(4.2) MQ(3) := T � Q=�;
where (t; x) � (t 0; x0) if and only if x = x0 and t�1t 0 2 T(x). The spaceMQ(3) admits
a natural action ofT and is a closed manifold (this follows from Lemma 4.4 and the
fact that Q is a manifold with corners). The following is a straightforward generalisa-
tion of a [6, Prop. 1.8].

Lemma 4.5. Let M be a locally standard torus manifold with orbit space Q,
and the map3 defined by(4.1). If H 2(Q) = 0, then there is an equivariant homeo-
morphism

MQ(3)! M

covering the identity on Q.

Proof. The idea is to construct a continuous mapf : T � Q! M taking T � q
onto ��1(q) for each pointq 2 Q. This is done by subsequent “blowing up the sin-
gular strata.” The condition on the second cohomology groupguarantees that the re-
sulting principalT-bundle overQ is trivial. Then the mapf descends to the required
equivariant homeomorphism. See [6] for details.

REMARK . Like in the case of quasitoric manifolds, it follows that a torus mani-
fold whose orbit quotientQ satisfiesH2(Q) = 0 is determined byQ and3.
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5. Face rings of manifolds with corners and simplicial posets

Before we proceed with describing the ordinary and equivariant cohomology rings
of torus manifolds we need an algebraic digression. Here we review a notion of face
ring generalising the classical Stanley-Reisner face ring[18] to combinatorial structures
more general than simplicial complexes. We consider two cases, which are in a sense
dual to each other: “nice” manifolds with corners and simplicial posets. The latter one
is more general, however the former one is more convenient for applications to torus
manifolds. The face ring of a manifold with corners is also a little easier to visualise,
so we start with considering this case.

The relationship between nice manifolds with corners and simplicial posets is sim-
ilar to that between simple polytopes and simplicial complexes. Face rings of simpli-
cial posets were introduced and studied in [17]. Most of the statements in this section
follow from the general theory of ASL’s (algebras with straightening law) and Hodge
algebrasas explained in [17] and [2, Ch. 7], however our treatment is independent and
geometrical.

5.1. Nice manifolds with corners. To begin, we assume thatQ is a homology
polytope (or even a simple convex polytope) withm facets Q1; : : : ; Qm. Let k be a
ground commutative ring with unit, and assign a degree-two polynomial generatorvQi

to each facetQi . We refer to the quotient ring

k[Q] = k
�vQ1; : : : ; vQm

�Æ�vQi1
� � � vQik

= 0 if Qi1 \ � � � \ Qik = ∅
�:

as theface ringof Q. In coincides with the Stanley-Reisner face ring [18] of thenerve
simplicial complexK .

For arbitrary pair of facesG; H of Q the intersectionG \ H is a unique maxi-
mal face contained in bothG and H . There is also a unique minimal face that con-
tains bothG and H , which we denoteG _ H . Let k[vF : F a face] be the graded
polynomial ring with one 2k-dimensional generatorvF for every proper codimension-k
face F . We also identifyvQ with the unit andv∅ with zero. The following proposition
gives another presentation ofk[Q], by extending both the set of generators and rela-
tions. It will be used for a subsequent generalisation ofk[Q] to arbitrary manifolds
with corners.

Proposition 5.1. There is a canonical isomorphism of rings

k[vF : F a face]=IQ
�= k[Q];

whereIQ is the ideal generated by all elements

vGvH � vG_HvG\H :
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Proof. The identification is established by the map sendingvF to
Q

Qi�F vQi .

Now let Q be an arbitrary connected manifold with corners. We also assume that
Q is nice, that is, every codimension-k face is contained in exactlyk facets. Note that
the orbit space of a locally standard torus manifold is always nice. In a nice manifold
with corners, all faces containing a given face form a Boolean lattice (like in the case
of Rn

>).

REMARK . By the definition of manifold with corners, every codimension-k face
is contained in at mostk facets. A 2-disc with one 0-face and one 1-face on the bound-
ary gives an example of manifold with corners which is not nice.

The intersection of two facesG and H in a manifold with corners may be discon-
nected, but every its connected component is a face of codimension codimG+codimH .
We regardG \ H as the set of its connected components; so the notationE 2 G \ H
is used below for connected componentsE of the intersection.

Proposition 5.2. For every two faces G and H with non-empty intersection, there
is a unique minimal face G_ H that contains both G and H.

Proof. Take anyE 2 G \ H . The statement follows from the fact that the poset
of faces containingE is a Boolean lattice.

Now we use the interpretation from Proposition 5.1 to introduce a more general
version ofk[Q].

DEFINITION 5.3. The face ring k[Q] of a nice manifold with cornersQ is a
graded ring defined by

k[Q] := k[vF : F a face]=IQ;
where degvF = 2 codimF and IQ is the ideal generated by all elements

vGvH � vG_H � X
E2G\H

vE:
If G and H are transversal, that is, codimG \ H = codimG + codimH , then G _

H = Q, so in k[Q] we get the identity

vGvH =
X

E2G\H

vE:
Below we give a sequence of statements describing algebraicproperties ofk[Q]

and emphasising its analogy with the classical Stanley-Reisner face ring.
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Lemma 5.4. Every element a2 k[Q] can be written as a linear combination

a =
X

G1�����Gq�1;:::;�q

A(G1 � � � � � Gq;�1; : : : ; �q)v�1
G1
� � � v�q

Gq

with coefficients A(G1 � � � � � Gq;�1; : : : ; �q) 2 k. Here codimGi = i and Gq is an
inclusion minimal face, and the sum is taken over all chains of faces G1 � � � � � Gq

with all non-negative integers�i .

Proof. We may assume thata = vH1vH2 � � � vHk (someHi may coincide), and it is
enough to show that it can be written as

P vG1 � � � vGl with G1 � � � � � Gl for every
summand (without making any assumptions on codimensions, but allowing someGi

to coincide). By induction we may assume thatH2 � � � � � Hk. Now we apply the
relation from Definition 5.3 and replacea by

vH1_H2

0
� X

E2H1\H2

vE

1
A vH3 � � � vHk :

The first two faces in every summand above are ordered. Then wereplace eachvEvH3

by vE_H3

�P
G2E\H3

vG
�
. Since H1 _ H2 � E _ H3, we get the first three faces in a

linear order. Proceeding in this fashion we finally end up in asum of monomials cor-
responding to ordered sets of faces.

We refer to the presentation from Lemma 5.4 as thechain decompositionof an
elementa 2 k[Q].

For any vertex (0-face)p 2 Q we define therestriction map sp by

sp : k[Q] ! k[Q]=(vF : F 63 p):
The next observation is straightforward.

Proposition 5.5. The image sp(k[Q]) of the restriction map can be identified with
the polynomial ringk

�vQi1
; : : : ; vQin

�
on n degree-two generators, where Qi1; : : : ; Qin

are the n different facets containing p.

Lemma 5.6. If every face of Q has a vertex, then the sum s=
L

p sp of re-
striction maps over all vertices p2 Q is a monomorphism fromk[Q] to the sum of
polynomial rings.

Proof. Take a non-zeroa 2 k[Q] and write it as in Lemma 5.4. Fix a monomialv�1
G1
� � � v�n

Gn
entering the chain decomposition with a non-zero coefficient, and consider

the restrictionsp to the vertexp = Gn. We claim thatsp(a) 6= 0. Identify sp(k[Q]) with
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the polynomial ringk[t1; : : : ; tn] (so that t j := vQi j
in the notation of Proposition 5.5).

Then sp(vGn) = t1 � � � tn and we may also assume thatsp(vG j ) = t1 � � � t j , j = 1; : : : ;n.
Hence,

sp
�v�1

G1
� � � v�n

Gn

�
= t�1

1 (t1t2)�2 � � � (t1 � � � tn)�n :
It follows that sp(a) 6= 0 unless some other monomialv�1

H1
� � � v�n

Hn
hits the same mono-

mial in k[t1; : : : ; tn]. Note that

sp
�v�1

H1
� � � v�n

Hn

�
= 0 unless Hk � Gn for �k 6= 0:

Suppose

(5.1) sp
�v�1

G1
� � � v�n

Gn

�
= sp

�v�1
H1
� � � v�n

Hn

�:
We want to prove thatv�1

G1
� � � v�n

Gn
= v�1

H1
� � � v�n

Hn
, that is,�i = �i and Gi = Hi if �i 6= 0,

i = 1; : : : ;n. By induction, we may prove this fori = j assuming that it is true for
i > j . Then (5.1) turns to the identity

sp
�v�1

G1
� � � v� j

G j

�
(t1 � � � t j +1)

� j +1 � � � (t1 � � � tn)�n

= sp
�v�1

H1
� � � v� j

H j

�
(t1 � � � t j +1)

� j +1 � � � (t1 � � � tn)�n;
whencesp

�v�1
G1
� � � v� j

G j

�
= sp

�v�1
H1
� � � v� j

H j

�
. Suppose that�l is the last non-zero expo-

nent (so that�l+1 = � � � = � j = 0). Then we also have�l+1 = � � � = � j = 0, since

otherwisesp
�v�1

G1
� � � v� j

G j

�
would be divisible byt1 � � � tl+1, while sp

�v�1
H1
� � � v� j

H j

�
is not.

We also have�l = �l and Gl = Hl since�l is the maximal power oft1 : : : tl that di-
vides sp

�v�1
G1
� � � v� j

G j

�
. By induction, we conclude thatv�1

G1
� � � v�n

Gn
= v�1

H1
� � � v�n

Hn
, whence

sp(a) 6= 0.

REMARK . The same argument as in the proof of Lemma 5.6 shows that for ar-
bitrary Q the sums =

L
G sG of (obviously defined) restriction mapssG over all min-

imal facesG � Q is a monomorphism.

Corollary 5.7. The chain decomposition of a2 k[Q] is unique, and the mono-
mials v�1

G1
� � � v�q

Gq
corresponding to all chains G1 � � � � � Gq and all exponents�i

form an additive basis ofk[Q].

The f -vector of Q is defined asf (Q) = ( f0; : : : ; fn�1) where fi is the number
of faces of codimensioni + 1 (so that f0 = m is the number of facets). The equiv-
alent information is contained in theh-vector h(Q) = (h0; : : : ; hn) determined by the
equation

(5.2) h0tn + � � � + hn�1t + hn = (t � 1)n + f0(t � 1)n�1 + � � � + fn�1:
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In particular,h0 = 1 andhn = (�1)n + (�1)n�1 f0 + � � �+ fn�1, which is equal to 1 when
Q is face-acyclic.

EXAMPLE 5.8. We turn again to theTn-action on S2n from Examples 3.2
and 4.3 and setn = 2 there. ThenQ is a 2-ball with two 0-faces (say,p and q) and
two 1-faces (say,G and H ). Then f (Q) = (2;2), h(Q) = (1;0;1) and

k[Q] = k[vG; vH ; vp; vq]=(vGvH = vp + vq; vpvq = 0);
where degvG = degvH = 2, degvp = degvq = 4.

5.2. Simplicial posets. The faces (simplices) in a (finite) simplicial complexK
form a poset (partially ordered set) with respect to the inclusion, and the empty sim-
plex ∅ is the initial element. This poset is called theface posetof K , and it car-
ries the same combinatorial information as the simplicial complex itself. A posetP is
called simplicial if it has an initial element̂0 and for eachx 2 P the lower segment�
0̂; x� is a boolean lattice (the face poset of a simplex). The face poset of a simplicial

complex is a simplicial poset, but there are simplicial posets that cannot be obtained
in this way. In the sequel we identify a simplicial complex with its face poset, thereby
regarding simplicial complexes as particular cases of simplicial posets.

To eachx 2 P := P � �0̂	 we assign a geometrical simplex whose face poset is�
0̂; x�, and glue these geometrical simplices together according to the order relation in
P. We get a cell complex such that the closure of each cell can beidentified with a
simplex preserving the face structure and all the attachingmaps are inclusions. We call
it a simplicial cell complexand denote its underlying space byjPj. If P is (the face
poset of) a simplicial complexK , then jPj agrees with the geometric realisationjK j
of K . The barycentric subdivision of a simplicial cell complex is obviously defined,
and is again a simplicial cell complex.

Proposition 5.9. The barycentric subdivision of a simplicial cell complex isa
(geometric realisation of) simplicial complex.

Proof. Indeed, we may identify the barycentric subdivisionunder question with
the geometric realisation of the order complex1�P � of the posetP.

In the sequel we will not distinguish between simplicial posets and simplicial cell
complexes, and call (the face poset of) the order complex1�P � the barycentric sub-
division of P. The set of faces of a nice manifold with cornersQ forms a simplicial
poset with respect to reversed inclusion (soQ is the initial element). We call it the
face posetof Q. It is a face poset of a simplicial complex if and only if all non-empty
multiple intersections of facets ofQ are connected.
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EXAMPLE 5.10. Let Q be the orbit space from Example 4.3. There aren facets
in Q and the intersection of anyk facets is connected whenk 6 n� 1, but the inter-
section ofn facets consists of two points. The corresponding simplicial cell complex
is obtained by gluing two (n� 1)-simplices along their boundaries.

Let P be a simplicial poset. When
�
0̂; x� is the face poset of a (k � 1)-simplex,

the rank of x 2 P, denoted by rkx = k, is defined to bek. The rank ofP is the
maximum of ranks of elements inP. Introduce the graded polynomial ringk

�vx : x 2
P
�

with degvx = 2 rkx. We also write formallyv0̂ = 1. For any two elementsx; y 2 P

denote byx _ y the set of their least common upper bounds, and byx ^ y the set of
their greatest common lower bounds. SinceP is simplicial, x ^ y consists of a single
element provided thatx _ y is non-empty. The following is the obvious dualisation of
Definition 5.3.

DEFINITION 5.11. Theface ring of a simplicial posetP is the quotient

k[P] := k[vx : x 2 P]=IP ;
whereIP is the ideal generated by the elements

vxvy � vx^y � X
z2x_y

vz:
REMARK . Let Q be a nice manifold with corners and letP be the face poset

of Q. Then k[Q] �= k[P]. Let K be the nerve simplicial complex of the covering of�Q =
Sm

i =1 Qi by the facets, that is, the simplicial complex onm vertices whose (k�
1)-dimensional simplices correspond to the codimension-k prefaces ofQ. If all non-
empty multiple intersections of facets inQ are connected, then the Stanley-Reisner
face ringk[K ] agrees withk[P], but otherwisek[K ] may differ from k[P].

The f -vector of a simplicial posetP of rank n is f (P) = ( f0; : : : ; fn�1) where fi
is the number of elements of ranki . The h-vector h(P) = (h0; : : : ; hn) is determined
by (5.2). If P is the face poset of a nice manifold with cornersQ then h(P) = h(Q).

Since we have defined degvx = 2 rkx, the face ringk[P] has no odd degree part.
Its Hilbert seriesF(k[P]; t) :=

P
i dimk k[P]2i t2i , where k[P]2i denotes the homo-

geneous degree 2i part of k[P], looks exactly as in the case of simplicial complexes.

Theorem 5.12 (Proposition 3.8 of [17]). Let P be a simplicial poset of rank n
with h-vector(h0; h1; : : : ; hn). Then

F(k[P]; t) =
h0 + h1t2 + � � � + hnt2n

(1� t2)n
:
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In [6], Davis and Januszkiewicz realised the classical Stanley-Reisner face ring
k[K ] of a simplicial complexK as the equivariant cohomology ring of aT-space. The
same approach works for a simplicial posetP as well. The order complex1�P � is
a simplicial complex. LetP be the cone on the geometric realisation

��1�P ���. Since��1�P ��� = jPj, the “boundary” ofP is jPj. For each simplex� 2 1�P �, let F� � P
denote the geometric realisation of the poset

�� 2 1�P � : � � �	. If � is a (k � 1)-
simplex, then we declareF� to be a face of codimension k. Therefore, each facet
(codimension-one face) can be identified with the star of some vertex in1�P �. Each
codimension-k face is a connected component of an intersection ofk facets and is
acyclic since it is a cone. In the case whenP is a simplicial complex the spaceP
with the face decomposition was called in [6, p.428] asimple polyhedral complex.

Suppose that the number of facets ofP is m and that we have a map3 as in (4.1)
satisfying the condition form Lemma 4.4. (The existence of such a map3 is equiva-
lent to the existence of alinear system of parametersin the ring Z[P], see e.g. [18,
Lemma III.2.4].) Then the same construction asMQ(3) in (4.2) with Q replaced by
P produces aT-spaceMP(3). Since P is not a manifold with corners for arbitraryP,
the spaceMP(3) may fail to be a manifold. Nevertheless, a similar argumentto that
in [6, Theorem 4.8] gives the following result:

Proposition 5.13. H�
T (MP(3); Z) is isomorphic toZ[P] as a ring.

For an arbitrary nice manifold with cornersQ the equivariant cohomology of the
canonical modelMQ(3) may fail to be isomorphic toZ[Q] as the faces ofQ them-
selves may have complicated cohomology. In the next sections we shall study this ques-
tion in more details. As the first step in this direction we relate MQ(3) to MP(3) in
our last statement of this paragraph.

Proposition 5.14. Let Q be a nice manifold with corners, and P the space as-
sociated with the face posetP of Q. Then there is a map Q! P which preserves
the face structure. It is covered by a canonical equivariant map

8 : MQ(3)! MP(3):
Proof. The mapQ ! P is constructed inductively, starting from an identifica-

tion of vertices and extending the map on each higher-dimensional face by a degree-
one map. Every face ofP is a cone, so there are no obstructions to such extensions.
Since the map between orbit spaces preserves the face structure, it is covered by an
equivariant map of the identification spaces

MQ(3) = T � Q=�! T � P=� = MP(3)

by the definition of identification spaces, see (4.2).
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6. Axial functions and Thom classes

Here we relate the equivariant cohomology ring of a torus manifolds M to the
face ring of the orbit spaceQ. We construct a natural ring homomorphism fromZ[Q]
to H�

T (M) modulo H�(BT)-torsions. In the next section we show that this is an iso-
morphism whenHodd(M) = 0. In this and next sections we assume thatM is locally
standard for simplicity, but the arguments will work without this assumption with a
little modification.

6.1. Axial functions. Like in the algebraic situation of the previous section, we
have the restriction map to a sum of polynomial rings:

(6.1) r =
M
p2MT

r p : H�
T (M)! H�

T

�
MT

�
=
M
p2MT

H�(BT):
The kernel ofr is the H�(BT)-torsion subgroup ofH�

T (M), so r is injective when
Hodd(M) = 0 by Lemma 2.1.

We identify MT with the vertices ofQ. The 1-skeleton ofQ, consisting of ver-
tices (0-faces) and edges (1-faces) ofQ, is an n-valent graph. Denote byE(Q) the
set of oriented edges. Given an elemente 2 E(Q), denote the initial point and ter-
minal point of e by i (e) and t(e) respectively. ThenMe := ��1(e) is a 2-sphere fixed
by a codimension-one subtorus inT (here� : M ! Q is the quotient map). It con-
tains twoT-fixed pointsi (e) and t(e). The 2-dimensional subspaceTi (e)Me � Ti (e)M is
an irreducible component of the tangentialT-representationTi (e)M. The same is true
for the otherT-fixed point t(e), and theT-representationsTi (e)M and Tt(e)M are iso-
morphic. There is a unique characteristic submanifold, sayMi , intersectingMe at i (e)
transversally. Assuming bothM and Mi are oriented, we choose a compatible orien-
tation for the normal bundle�i of Mi and therefore, forTi (e)Me. The orientation on
Ti (e)Me determines a complex structure, so thatTi (e)Me can be viewed as a complex
1-dimensionalT-representation. This defines an element of Hom(T; S1) = H2(BT),
which we denote by�(e).

Let eT (�i ) be the equivariant Euler class inH2
T (Mi ) and denote its restriction to

p 2 MT
i by eT (�i )jp 2 H2

T (p) = H2(BT). Then

(6.2) eT (�i )jp = �(e);
where e is the unique edge such thati (e) = p and e =2 Qi = �(Mi ). Following [10],
we call the map

� : E(Q)! H2(BT)

an axial function.
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Lemma 6.1. The axial function� has the following properties:
(1) �(ē) = ��(e) for all e 2 E(Q), where ē denotes e with the opposite orientation;
(2) for each vertex(or a T -fixed point) p, the set�p := f�(e) : i (e) = pg is a basis of
H2(BT) over Z.
(3) for e2 E(Q), we have�i (e) � �t(e) mod�(e).

Proof. Property (1) follows from the fact thatTi (e)Me andTt(e)Me are isomorphic
as realT-representations, and (2) from that theT-representationTi (e)M is faithful of
complex dimensionn. Let Te be the codimension one subtorus fixingMe. Then theT-
representationsTi (e)M andTt(e)M are isomorphic asTe-representations, since the points
i (e) and t(e) are contained in the same connected componentMe of the Te-fixed point
set. This implies (3).

REMARK . In [10], the property�(ē) = ��(e) is required in the definition of axial
function, but we allow�(ē) = �(e). For example,�(ē) = �(e) for the T2-action onS4

from Example 3.2.

Lemma 6.2. Fix � 2 H�
T (M); then ri (e)(�) � r t(e)(�) is divisible by�(e) for all

e2 E(Q).

Proof. Consider the commutative diagram of restrictions

H�
T (M) //

��

H�
T (i (e))� H�

T (t(e)) = H�(BT)� H�(BT)

��
H�

Te
(Me) // H�

Te
(i (e))� H�

Te
(t(e)) = H�(BTe)� H�(BTe)

:

Since H�
Te

(Me) = H�(BTe) 
 H�(Me), the two components of the image of� in
H�(BTe)�H�(BTe) above coincide. Therefore it follows from the commutativity of the
above diagram that the restrictions ofr i (e)(�) and r t(e)(�) to H�(BTe) coincide. Since
the kernel of the restriction mapH�(BT)! H�(BTe) is the ideal generated by�(e),
the lemma follows.

6.2. Thom classes. The preimageMF := ��1(F) of a codimension-k face F �
Q is a connected component of an intersection ofk characteristic submanifolds. The
orientations ofM and characteristic submanifoldsMi determine compatible orienta-
tions for the normal bundles�i of Mi . These orientations determine an orientation on
the normal bundle�F of MF , and thereby onMF itself, since M is oriented. With
this convention on orientations, we consider the Gysin homomorphism H0

T (MF ) !
H2k

T (M) in the equivariant cohomology and denote the image of the identity element
by �F . The element�F may be thought of as the Poincaré dual of MF in equivariant
cohomology and is called theThom classof MF . The restriction of�F 2 H2k

T (M) to
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H2k
T (MF ) is the equivariant Euler class of�F , and r p(�F ) = 0 unlessp 2 (MF )T . It

follows from (6.2) that

(6.3) r p(�F ) =

8><
>:

Y
i (e)=p; e*F

�(e); if p 2 (MF )T

0; otherwise.

We set

bH�
T (M) := H�

T (M)=H�(BT)-torsions:
The restriction map (6.1) induces a monomorphismbH�

T (M) ! H�
T (MT ), which we

also denote byr . Therefore,�F = 0 in bH�
T (M) if MF has noT-fixed point. The fol-

lowing lemma shows that the relations from Definition 5.3 hold in bH�
T (M) with vF

replaced by�F .

Lemma 6.3. For any two faces G and H of Q, the relation

�G�H = �G_H � X
E2G\H

�E;
holds in bH�

T (M), where we set�∅ = 0.

Proof. Since the restriction mapr : bH�
T (M)! H�

T (MT ) is injective, it suffices to
show thatr p maps both sides of the identity to the same element for allp 2 MT .

Let p 2 MT . For a faceF such thatp 2 F , we set

Np(F) := fe2 E(Q) : i (e) = p; e =2 Fg;
which may be thought of as the set of directions normal toF at p. We also set
Np(F) = ∅ if p =2 F . Then the identity (6.3) can be written as

(6.4) r p(�F ) =
Y

e2Np(F)

�(e)

where the right hand side is understood to be zero ifNp(F) = ∅. If p =2 G \ H ,
then Np(E) = ∅ for any connected componentE of G \ H and eitherNp(G) = ∅ or
Np(H ) = ∅. Therefore, both sides of the identity from the lemma map to zero by r p.
If p 2 G \ H , then

Np(G) [ Np(H ) = Np(G _ H ) [ Np(E)

where E is the connected component ofG\ H containing p, and Np(E0) = ∅ for any
other connected component ofG \ H . This together with (6.4) shows that both sides
of the identity map to the same element byr p.



ON THE COHOMOLOGY OF TORUS MANIFOLDS 733

By virtue of the above lemma, the mapZ[vF : F a face]! H�
T (M) sendingvF

to �F induces a homomorphism

(6.5) ' : Z[Q] ! bH�
T (M):

Lemma 6.4. The homomorphism' is injective if every face of Q has a vertex.

Proof. We haves = r Æ', wheres is the map from Lemma 5.6. Sinces is injec-
tive if every face ofQ has a vertex, so is'.

7. Equivariant cohomology ring of torus manifolds with vanishing odd-degree
cohomology

In this section we give a sufficient condition for the monomorphism ' in (6.5) to
be an isomorphism (Theorem 7.5). In particular, it turns outthat ' is an isomorphism
when Hodd(M) = 0 (Corollary 7.6). Using these results, we give a description of the
ring structure inH�(M) in the case whenHodd(M) = 0 (Corollary 7.8).

7.1. Ring structure in equivariant cohomology. The following theorem shows
that the converse of Lemma 6.2 holds for torus manifolds withvanishing odd degree
cohomology.

Theorem 7.1 ([8], see also Chapter 11 in [9]).Suppose Hodd(M) = 0 and we are
given an element�p 2 H�(BT) for each p2 MT . Then (�p) 2 Lp2MT H�(BT) be-
longs to the image of the restriction map r in(6.1) if and only if �i (e)��t(e) is divisible
by �(e) for any e2 E(Q).

Corollary 7.2. The 1-skeleton of any face of Q(including Q itself) is connected
if H odd(M) = 0.

Proof. SinceM is connected, the imager
�
H0

T (M)
�

is one-dimensional. Then it
follows from the “if” part of Theorem 7.1 that the 1-skeletonof Q is connected. Sim-
ilarly, the 1-skeleton of any faceF of Q is connected becauseMF = ��1(F) is also a
torus manifold with vanishing odd degree cohomology (see Lemma 2.2).

REMARK . The connectedness of 1-skeletons of faces ofQ can be proven without
referring to Theorem 7.1, see remark after Theorem 9.3.

For a faceF of Q, we denote byI (F) the ideal in H�(BT) generated by all
elements�(e) with e2 F .



734 M. MASUDA AND T. PANOV

Lemma 7.3. Suppose that the1-skeleton of a face F is connected. Given � 2
H�

T (M), if r p(�) =2 I (F) for some vertex p2 F , then rq(�) =2 I (F) for any vertex
q 2 F .

Proof. Supposerq(�) 2 I (F) for some vertexq 2 F . Then rs(�) 2 I (F) for any
vertex s 2 F joined to q by an edgef � F becauserq(�)� rs(�) is divisible by�( f )
by Lemma 6.2. Since the 1-skeleton ofF is connected,�(q) 2 I (F) for any vertex
q 2 F , which contradicts the assumption.

Proposition 7.4. If the 1-skeleton of every face of Q is connected, then bH�
T (M)

is generated by the elements�F as an H�(BT)-module.

Proof. Let� 2 H>0
T (M) be a nonzero element. Set

Z(�) :=
�

p 2 MT : r p(�) = 0
	:

Take p 2 MT such that p =2 Z(�). Then r p(�) 2 H�(BT) is non-zero and we can
express it as a polynomial inf�(e) : i (e) = pg (the latter is a basis ofH2(BT)). Let

(7.1)
Y

i (e)=p

�(e)ne;
ne > 0, be a monomial enteringr p(�) with a non-zero coefficient. LetF be the face
spanned by the edgese with ne = 0. Thenr p(�) =2 I (F) sincer p(�) contains the mono-
mial (7.1). Hence,rq(�) =2 I (F), in particular rq(�) 6= 0, for every vertexq 2 F by
Lemma 7.3.

On the other hand, it follows from (6.3) that the monomial (7.1) can be written as
r p(uF�F ) with someuF 2 H�(BT). Set�0 := �� uF�F 2 H�

T (M). Sincerq(�F ) = 0 for
every vertexq =2 F , we haverq(�0) = rq(�) for such q. At the same time,rq(�) 6= 0
for every vertexq 2 F (see above). It follows thatZ(�0) � Z(�). However, the num-
ber of monomials inr p(�0) is less than that inr p(�). Therefore, subtracting from�
a linear combination of�F ’s with coefficients in H�(BT), we obtain an element�
such thatZ(�) contains Z(�) as a proper subset. Repeating this procedure, we end
up at an element whose restriction to every vertex is zero. Since the restriction map
r : bH�

T (M)! H�
T (MT ) is injective, this finishes the proof.

Theorem 7.5. Let M be a(locally standard) torus manifold with orbit space Q.
If every face of Q has a vertex and its1-skeleton is connected, then the monomorphism' : Z[Q] ! bH�

T (M) in (6.5) is an isomorphism.

Proof. To prove that' is surjective it suffices to show thatbH�
T (M) is generated

by the elements�F as a ring. By Proposition 3.3,bH2
T (M) is generated overZ by the

elements�Qi corresponding to the facetsQi . (Note: the notation�i is used for�Qi in
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Proposition 3.3.) In particular, any element inH2(BT) � bH�
T (M) can be written as a

linear combination of�Qi ’s with coefficients inZ. Hence, any element inH�(BT) is
a polynomial in�Qi ’s. The rest follows from Proposition 7.4.

Now assumeHodd(M) = 0. Then the assumption in Theorem 7.5 is satisfied, and
H�

T (M) is a free H�(BT)-module by Lemma 2.1, whencebH�
T (M) = H�

T (M).

Corollary 7.6. For a torus manifold M with vanishing odd degree cohomology,
the map' : Z[Q] ! H�

T (M) in (6.5) is an isomorphism.

Proof. This follows from Corollary 7.2 and Theorem 7.5.

REMARK . When H�(M) is generated in degree two, all non-empty multiple in-
tersections of facets are connected by Lemma 3.4. Therefore, the face poset ofQ is
the face poset of the nerveK of the covering of�Q, and Z[Q] reduces to the clas-
sical Stanley-Reisner face ring of a simplicial complex. Therefore, Corollary 7.6 is a
generalisation of Proposition 3.4 in [13].

If P is the face poset ofQ, then Z[P] = Z[Q] by the definition. The following
statement gives a characterisation of torus manifoldsM with vanishing odd degree co-
homology (and with cohomology generated in degree two) in terms of the face poset
P associated withM.

Theorem 7.7. Let M be a torus manifold with orbit space Q, and letP be the
face poset of Q. Then Hodd(M) = 0 if and only if the following two conditions are
satisfied:
(1) H�

T (M) is isomorphic toZ[P](= Z[Q]) as a ring;
(2) Z[P] is Cohen-Macaulay.
Moreover, H�(M) is generated by its degree-two part if and only ifP is (the face
poset of) a simplicial complex in addition to the above two conditions.

Proof. If Hodd(M) = 0, then H�
T (M) �= Z[Q] = Z[P] by Corollary 7.6, andZ[P]

is Cohen-Macaulay becauseH�
T (M) is a free H�(BT)-module by Lemma 2.1. This

proves the “only if” part of the first statement.
Now we prove the “if” part. Let� : ET�T M ! BT be the projection, and con-

sider the composite map

H�(BT)
��! H�

T (M)
r! M

p2MT

H�(BT):
Its restriction to each summand of the target is the identity, i.e., r Æ �� is a diagonal
map. This implies that��(t1); : : : ; ��(tn) is a linear system of parameters (an l.s.o.p.),
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see [2, Theorem 5.1.16]. By the assumption,H�
T (M) is isomorphic toZ[P] and Z[P]

is Cohen-Macaulay, so every l.s.o.p. is a regular sequence (see [18, Theorem I.5.9]). It
follows that H�

T (M) is a freeH�(BT)-module and henceHodd(M) = 0 by Lemma 2.1,
thus proving the “if” part of the first statement.

It remains to prove the second statement. The “only if” part follows from Lem-
ma 3.4 by the last remark. For the “if” part, ifP is a simplicial poset, thenZ[P] is
generated by its degree-two part. By the first statement of the theorem,H�

T (M) �= Z[P]
is a freeH�(BT)-module, whenceH�(M) is a quotient ring ofH�

T (M). It follows that
H�(M) is also generated by its degree-two part.

The following description of cohomology ring of a torus manifold with vanishing
odd degree cohomology generalises that of a complete non-singular toric variety, see
[7, p.106].

Corollary 7.8. For a torus manifold M with vanishing odd degree cohomology,

H�(M) �= Z[vF : F a face of Q]=I as a ring;
where I is the ideal generated by the following two types of elements:
(1) vGvH � vG_H

P
E2G\H vE;

(2)
Pm

i =1ht;ai ivQi for t 2 H2(BT).
Here Qi are the facets of Q and the elements ai 2 H2(BT) are defined inProposi-
tion 3.3.

Proof. Since the Serre spectral sequence of the fibration� : ET�T M ! BT col-
lapses, the restriction mapH�

T (M) ! H�(M) is surjective and its kernel is the ideal
generated by all��(t) with t 2 H2(BT). Therefore, the statement follows from Propo-
sition 3.3 and Corollary 7.6.

7.2. Dehn-Sommerville equations. Suppose thatHodd(M) = 0. Then, since
H�

T (M) = H�(BT) 
 H�(M) by Lemma 2.1 andH�(BT) is a polynomial ring inn
variables of degree two, the Hilbert series ofH�

T (M) is given by

F(H�
T (M); t) =

Pn
i =0 rankZ H2i (M)t2i

(1� t2)n
:

On the other hand, the Hilbert series of the face ringZ[Q] is given by Theorem 5.12
and these two series must coincide by Corollary 7.6. It follows that

(7.2) rankZ H2i (M) = hi :
Since M is a manifold, the Poincaré duality implies that

(7.3) hi = hn�i ; i = 0; : : : ;n:
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When every non-empty multiple intersection of facets inQ is connected,Z[Q] reduces
to the classical Stanley-Reisner ring of the nerve of the covering of �Q and equa-
tions (7.3) are known as theDehn-Sommerville equationsfor the numbers of faces.

8. Orbit spaces of torus manifolds with cohomology generated in degree two

Using the equivariant cohomology calculations from the previous section, we are
finally able to relate the cohomology of a torus manifoldM and the cohomology of
its orbit spaceQ. The main result of this section is Theorem 8.3 which gives a co-
homological characterisation of torus manifolds whose orbit spaces are homology poly-
topes. Using this result, in the next section we prove thatQ is face-acyclic if
Hodd(M) = 0.

Lemma 8.1. If H odd(M) = 0, then H1(Q; k) = 0 for any coefficient ringk. In
particular, Q is orientable.

Proof. We use the Leray spectral sequence (withk coefficient) of the projection
map ET �T M ! M=T = Q on the second factor. ItsE2 term is given byEp;q

2 =
H p(M=T ;Hq) whereHq is a sheaf with stalkHq(BTx; k) over a pointx 2 M=T , and
the spectral sequence converges toH�

T (M; k). Since theT-action onM is locally stan-
dard by Theorem 4.1, the isotropy groupTx at x 2 M is a subtorus; soHodd(BTx; k) =
0. Hence,Hodd = 0, in particular,H1 = 0. Moreover,H0 = k (a constant sheaf). There-
fore, we haveE0;1

2 = 0 and E1;0
2 = H1(M=T ; k), whenceH1(M=T ; k) �= H1

T (M; k). On
the other hand, sinceHodd(M) = 0 by assumption,H�

T (M) is a free H�(BT)-module
(isomorphic toH�(BT) 
 H�(M) by Lemma 2.1). Therefore,Hodd

T (M; k) = 0 by the
universal coefficient theorem. In particular,H1

T (M; k) = 0, thus proving the lemma.

Lemma 8.2. If either
(1) Q is a homology polytope, or
(2) H�(M) is generated by its degree-two part,
then the face posetP of Q is (the face poset of) a simplicial Gorenstein* complex.
In particular, Z[P] is Cohen-Macaulay and the geometric realisationjPj of P has
the homology of an(n� 1)-sphere.

Proof. Under either assumption (1) or (2), all non-empty multiple intersections
of facets of Q are connected, soP agrees with the face poset of the nerve simplicial
complex K of the covering of�Q. In what follows we identifyP with K .

First we prove thatP is Gorenstein* under assumption (1). According to Theo-
rem II.5.1 of [18] it is enough to show that the link of a simplex � of P, denoted
by link � , has the homology of a sphere of dim link� = n� 2� dim� . If � = ∅ then
link � is P itself and its homology is isomorphic to the homology of the boundary�Q
of Q, sinceP is the nerve ofQ and Q is a homology polytope. If� 6= ∅ then link�
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is the nerve of a face ofQ. Since any face ofQ is again a homology polytope, link�
has the homology of a sphere of dim link� by the same argument.

Now we prove thatP is Gorenstein* under assumption (2). Using Theorem II.5.1
of [18] once again, it is enough to show that
(a) P is Cohen-Macaulay;
(b) every (n� 2)-dimensional simplex is contained in exactly two (n� 1)-dimensional
simplices;
(c) �(P) = �(Sn�1).
The condition (a) follows from Lemma 2.1 and Corollary 7.6. By definition, everyk-
dimensional simplex ofP corresponds to a set ofk + 1 characteristic submanifolds
having non-empty intersection. By Lemma 3.4, the intersection of any n characteris-
tic submanifolds is either empty or consists of a singleT-fixed point. This means that
the (n�1)-simplices ofP are in one-to-one correspondence with theT-fixed points of
M. Now, each (n� 2)-simplex ofP corresponds to a non-empty intersection ofn� 1
characteristic submanifolds ofM. The latter intersection is connected by Lemma 3.4
and has a non-trivialT-action, so it is a 2-sphere. Every 2-sphere contains exactly two
T-fixed points, which implies (b). Finally, (c) is just the Dehn-Sommerville equation
h0 = hn, see (5.2) and (7.3).

Theorem 8.3. The cohomology of a torus manifold M is generated by its degree-
two part if and only if M is locally standard and the orbit space Q is a homology
polytope.

Proof. LetP be the face poset ofQ, and P the cone onjPj with the face struc-
ture associated withP, see end of Subsection 5.2.

We first prove the “if” part. SupposeQ is a homology polytope. SinceH2(Q) = 0
and M is locally standard,M is equivariantly homeomorphic toMQ(3) by Lemma 4.5;
so we may regard the map8 in (5.14) as a map fromM to MP := MP(3). Let MP;i
be characteristic subcomplexes ofMP defined similarly to characteristic submanifolds
Mi of M. Since theT-actions onMPnSi MP;i and MnSi Mi are free, we have

H�
T

 
MP;[

i

MP;i
! �= H�(P; jPj); H�

T

 
M;[

i

Mi

! �= H�(Q; �Q):
Therefore, the map8 induces a map between exact sequences

(8.1)

// H�(P; jPj) //

��

H�
T (MP) //

8�
��

H�
T

 [
i

MP;i
!

//

// H�(Q; �Q) // H�
T (M) // H�

T

 [
i

Mi

!
//
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Each Mi itself is a torus manifold over a homology polytopeQi . Using induction and
a Mayer-Vietoris argument, we may assume that the mapH�

T

�S
i MP;i �! H�

T

�S
i Mi

�
above is an isomorphism. By Lemma 8.2,jPj has the homology of an (n� 1)-sphere,
and sinceP is the cone overjPj, we have H�(P; jPj) �= H�(Dn; Sn�1). We also
have H�(Q; �Q) �= H�(Dn; Sn�1) becauseQ is a homology polytope. Using these iso-
morphisms, we see from the construction of the map8 that the induced map
H�(P; jPj) ! H�(Q; �Q) is the identity map onH�(Dn; Sn�1). Therefore, the 5-
lemma applied to (8.1) shows that8� : H�

T (MP)! H�
T (M) is an isomorphism; whence

H�
T (M) �= Z[P] by Proposition 5.13. We also know thatZ[P] is Cohen-Macaulay by

Lemma 8.2. Therefore, the two conditions in Theorem 7.7 are satisfied. It follows that
H�(M) is generated by its degree-two part by Theorem 7.7, which finishes the proof
of the “if” part.

Now we prove the “only if” part. Suppose thatH�(M) is generated by the degree-
two elements. ThenM is locally standard by Theorem 4.1. Since all non-empty mul-
tiple intersections of characteristic submanifolds are connected and their cohomology
rings are generated in degree two by Lemma 3.4, we may assume by induction that
all the proper faces ofQ are homology polytopes. In particular, the proper faces are
acyclic, whenceH�(�Q) �= H�(jPj). This together with Lemma 8.2 shows that

(8.2) H�(�Q) �= H��Sn�1�:
Claim. H2(Q) = 0.

The claim is trivial for n = 1. If n = 2 then Q is a surface with boundary, hence,
H2(Q) = 0 in this case too. Now assumen > 3. Let us consider the exact equivari-
ant cohomology sequence of pair

�
M;Si Mi

�
, see the bottom row of (8.1). All the

maps in the exact sequence areH�(BT)-module maps. By Lemma 2.1,H�
T (M) is a

free H�(BT)-module. On the other hand,H�(Q; �Q) is finitely generated overZ, so
it is a torsionH�(BT)-module. It follows that the whole sequence splits in shortexact
sequences:

(8.3) 0! H k
T (M)! H k

T

 [
i

Mi

!
! H k+1(Q; �Q)! 0

Taking k = 1 above, we get

H1
T

 [
i

Mi

! �= H2(Q; �Q):
The same argument as in Lemma 8.1 shows that the former is isomorphic to
H1
��S

i Mi
�=T�= H1(�Q), and the above isomorphism implies (through the projec-

tion (ET � M)=T ! M=T = Q) that the coboundary mapH1(�Q) ! H2(Q; �Q)
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in the exact sequence of the pair (Q; �Q) is an isomorphism. Therefore, we get the
following exact sequence fragment:

0! H2(Q)! H2(�Q)! H3(Q; �Q):
Since H2(�Q) �= H2(Sn�1) by (8.2), we haveH2(Q) = 0 if n > 4. When n = 3,
the coboundary map above is an isomorphism becauseQ is orientable by Lemma 8.1,
whenceH2(Q) = 0 again. This completes the proof of the claim.

Since H2(Q) = 0, we have a map8 : M ! MP(3) as in the proof of the “if”
part. Let us consider the diagram (8.1) withk coefficient wherek = Q or Z=p
with prime p. Using induction and a Mayer-Vietoris argument, we deduce that
H�

T

�S
i MP;i ; k

� ! H�
T

�S
i Mi ; k

�
is an isomorphism. We know thatH�(P; jPj; k) �=

H�(Dn; Sn�1; k) by Lemma 8.2, and it follows from the construction of8 that the in-
duced map

(8.4) H�(Dn; Sn�1; k) �= H�(P; jPj; k)! H�(Q; �Q; k)

is an isomorphism in degreen, and thus is injective in all degrees. Therefore (an ex-
tended version of) the 5-lemma (see [16, p.185]) applied to (8.1) with k coefficient
shows that8� : H�

T (MP; k)! H�
T (M; k) is injective. Here,H�

T (M) �= Z[Q] �= H�
T (MP)

by Corollary 7.6 (or Proposition 3.4 in [13]) and Proposition 5.13 (or Theorem 4.8
of [6]), so H�

T (MP; k) and H�
T (M; k) have the same dimension overk in each de-

gree. Therefore, the monomorphism8� : H�
T (MP; k) ! H�

T (M; k) is actually an iso-
morphism. Again, the 5-lemma applied to (8.1) withk coefficients implies that the
map (8.4) is an isomorphism, soH�(Q; �Q; k) �= H�(Dn; Sn�1; k) for any k and hence
H�(Q; �Q) �= H�(Dn; Sn�1). This together with (8.2) (or the Poincaré-Lefschetz dual-
ity) gives the acyclicity ofQ, thus finishing the proof of the theorem.

The following statement gives a characterisation of simplicial complexes associ-
ated with torus manifolds with cohomology generated in degree two.

Theorem 8.4. A simplicial complexP is associated with a torus manifold M
whose cohomology is generated by its degree-two part if and only if P is Gorenstein*
and Z[P] admits an l.s.o.p.

Proof. If H�(M) is generated by its degree-two part, thenP is Gorenstein*, in
particularZ[P] is Cohen-Macaulay by Lemma 8.2. MoreoverH�

T (M) �= Z[P] by Corol-
lary 7.6 (or Proposition 3.4 in [13]). SinceH�

T (M) �= H�(BT)
H�(M) as anH�(BT)-
module by Lemma 2.1,Z[P] admits an l.s.o.p.

Now we prove the “if” part. According to Theorem 12.2 of [5], there exists a
homology polytopeQ whose nerve isP. Since the face ringZ[P] admits an l.s.o.p.,
it is a free module over a polynomial ringZ[t1; : : : ; tn] in n variables. We can express
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any elementt 2 H2(BT) �= Z[t1; : : : ; tn] as

t =
mX

i =1

ai (t)vi ;
where ai (t) 2 Z. Clearly, ai (t) is linear on t , so ai can be viewed as an element of
the dual spaceH2(BT) (see Proposition 3.3). Now define a map3 (4.1) by sending
Qi to ai . Then M := MQ(3) (see (4.2)) is a torus manifold, and its cohomology is
generated in degree two by Theorem 8.3, which finishes the proof.

9. Orbit spaces of torus manifolds with vanishing odd degreecohomology

Let F be a face ofQ. The facial submanifoldMF = ��1(F) is a connected com-
ponent of an intersection of finitely many characteristic submanifolds. The Whitney
sum of their normal bundles restricted toMF gives the normal bundle�F of MF . The
orientations for M and characteristic submanifolds determine aT-invariant complex
structure on�F , so that the complex projective bundleP(�F ) of �F can be considered.
ReplacingMF in M by P(�F ), we obtain a new torus manifoldeM . The passage from
M to eM is called theblowing-upof M at MF . (Remark: the normal bundle�F admits
many invariant complex structures and the following argument works once we choose
one.) The orbit spaceeQ of eM is then the result of “cutting off” the faceF from Q,
and the simplicial cell complex dual toeQ is obtained from that dual toQ by applying
a stellar subdivision of the face dual toF .

Lemma 9.1. The orbit spaceeQ is face-acyclic if and only if so is Q.

Proof. By cutting the faceF off Q we obtain a new faceteF � eQ, and all other
new faces ofeQ are contained in this facet. The projection mapeQ ! Q collapseseF
back to F . The faceF is a deformation retract ofeF . Hence,F is acyclic if and only
if eF is acyclic. The same is true for any other new face ofeQ. It is also clear from
the construction thatQ is a deformation retract ofeQ. Therefore,eQ is acyclic if and
only if so is Q.

Lemma 9.2. Hodd
� eM� = 0 if H odd(M) = 0.

Proof. The facial submanifoldMF � M is blown up to a codimension-two facial
submanifoldeMeF � eM , namely, eMeF = P(�F ). Since eMeF is the total space of a bundle
with baseMF and fibre a complex projective space, its cohomology is a freeH�(MF )-
module on even-dimensional generators by Dold’s theorem (see, e.g., [19, Ch. V]). If
Hodd(M) = 0, then Hodd(MF ) = 0 by Lemma 2.2 and henceHodd

� eMeF� = 0. Let eM !
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M be the collapse map and consider the diagram

H k�1(MF ) //

��

H k(M;MF ) //

�=
��

H k(M) //

��

H k(MF )

��
H k�1

� eMeF� // H k
� eM; eMeF� // H k

� eM� // H k
� eMeF�

where the second vertical arrow is an isomorphism by excision. Assume thatk is odd.
If Hodd(M) = 0 then H k�1(MF ) ! H k(M;MF ) is onto. Therefore, it follows from
the above commutative diagram thatH k�1

� eMeF� ! H k
� eM; eMeF� is also onto. Since

H k
� eMeF� = 0, this impliesH k

� eM� = 0.

The following main result of this section is an analogue of Theorem 8.3.

Theorem 9.3. The odd-degree cohomology of M vanishes if and only if M is lo-
cally standard and the orbit space Q is face-acyclic.

Proof. The idea is to reduce to Theorem 8.3 by blowing up sufficiently many fa-
cial submanifoldsMF = ��1(F). Since the barycentric subdivision is a sequence of
stellar subdivisions, by applying sufficiently many blow-ups we get a torus manifoldbM with orbit spacebQ such that the face poset ofbQ is the barycentric subdivision of
the face poset ofQ. The collapse mapbM ! M is decomposed into a sequence of
collapse maps for single blow-ups:

(9.1) M = M0 M1
oo : : :oo Mk = bM :oo

Assume thatHodd(M) = 0. Then M is locally standard by Theorem 4.1. By ap-
plying Lemma 9.2 several times we getHodd

� bM �
= 0. By construction, all the inter-

sections of faces ofbQ are connected, soH�� bM �
is generated by its degree-two part

by Theorem 7.7 andbQ is a homology polytope by Theorem 8.3. In particular,bQ is
face-acyclic. Finally, by applying Lemma 9.1 inductively we conclude thatQ is also
face-acyclic.

The scheme of the proof of the “if” part is same as that of Theorem 8.3. But
there are two things to be checked. These are
(1) jPj has the homology of an (n� 1)-sphere,
(2) Z[P] is Cohen-Macaulay.
Let bP be the face poset ofbQ. Since Q is face-acyclic,bQ is a homology polytope.
Therefore,

��bP�� has the homology of an (n� 1)-sphere by Lemma 8.2. However,
��bP�� =

jPj, so the first statement above follows. SincebQ is a homology polytope,Z
�bP � is

Cohen-Macaulay by Lemma 8.2. This implies thatZ[P] itself is Cohen-Macaulay by
Corollary 3.7 of [17], proving the second statement above.
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REMARK . As one can easily observe, the argument in the “only if” partof the
above theorem is independent of Theorem 7.1 and Corollary 7.6. Now, given thatQ
is face-acyclic, one readily deduces that the 1-skeleton ofQ is connected. Indeed, oth-
erwise the smallest face containing vertices from two different connected components
of the 1-skeleton would be a manifold with at least two boundary components and
thereby non-acyclic. Thus, our reference to Theorem 7.1 wasactually irrelevant, al-
though it made the arguments more straightforward.

Finally, we note that the proof of the “if” part of Theorem 9.3could have been
identical to that of the “only if” part if the converse of Lemma 9.2 was true. It is in-
deed the case, however the only proof we have so far uses quitecomplicated analysis
of Cohen-Macaulay simplicial posets. We are going to write itdown elsewhere.

10. Gorenstein simplical posets and Betti numbers of torus manifolds

The barycentric subdivisionbP of a simplicial posetP is (the face poset of) a
simplicial complex andP is called Gorenstein* if bP is Gorenstein* ([17], [18]). If
P is the simplicial poset associated with a torus manifoldM with Hodd(M) = 0, then
the torus manifoldbM corresponding tobP has cohomology generated by its degree-two
part as remarked in the proof of Theorem 9.3. Hence,bP is Gorenstein* by Lemma 8.2
and P is Gorenstein* by definition. In [17] Stanley proved that anyvector satisfying
the conditions in Theorem 10.1 below is anh-vector of a Gorenstein* simplicial poset.
He also conjectured that those conditions are necessary. Inthis section we prove this
conjecture for Gorenstein* simplicial posetsP associated with torus manifoldsM with
vanishing odd degree cohomology, and characterizeh-vectors of those Gorenstein* sim-
plicial posets. The Stanley conjecture was proved in full generality by the first author
in [14].

Since

(10.1) hi (P) = rankZ H2i (M);
by (7.2), we need to characterise the Betti numbers of torus manifolds with vanishing
odd degree cohomology. We note that

hi (P) > 0; hi (P) = hn�i (P) for all i; and h0(P) = 1:
Theorem 10.1. Let h = (h0; h1; : : : ; hn) be a vector of non-negative integers with

hi = hn�i for all i and h0 = 1. Any of the following(mutually exclusive) conditions is
sufficient for the existence of a rank n Gorenstein* simplicial posetP that is associ-
ated with a2n-dimensional torus manifold with vanishing odd degree cohomology and
has h-vectorh:
(1) n is odd,
(2) n is even and hn=2 is even,
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(3) n is even, hn=2 is odd, and hi > 0 for all i .
Moreover, if h is the h-vector of a simplicial poset of the above described type, then
it satisfies one of the above three conditions.

Proof. For a torus manifoldM, we sethi (M) = rankZ H2i (M). Thanks to (10.1),
we may usehi (M) instead ofhi (P) to prove the theorem.

We shall prove the sufficiency first. Examples 3.1 and 3.2 produce torus manifolds
CPn, S2n and S2n�2k � S2k with 1 6 k 6 n � 1. In all three cases the odd-degree
cohomology is zero. IfM1 and M2 are torus manifolds (of same dimension) with van-
ishing odd degree cohomology, then their equivariant connected sumM1 # M2 at two
fixed points with isomorphic tangential representations produces a torus manifold with
vanishing odd degree cohomology. We have

hi (M1 # M2) = hi (M1) + hi (M2) for 1 6 i 6 n� 1:
Using this identity, one easily gets any vector satisfying the conditions in the theorem
by taking equivariant connected sum ofCPn, S2n and S2n�2k � S2k.

Now we prove the necessity. LetM be a torus manifold of dimension 2n. It suf-
fices to prove thathn=2(M) is even if n is even andhi (M) = 0 for somei > 0.

Let G be the 2-torus subgroup ofT of rank n (that is, G �= (Z=2)n). Then the
equivariant total Stiefel-Whitney class ofM with the restrictedG-action is defined to
be the ordinary total Stiefel-Whitney class of the vector bundle EG�GT M ! EG�G

M, and is denoted bywG(M). By definition,wG(M) lies in H�
G(M; Z=2). We denote

by �i the image of the identity under the equivariant Gysin mapH0
G(Mi ; Z=2) !

H2
G(M; Z=2), whereMi (i = 1; : : : ;m) are characteristic submanifolds ofM.

Claim. wG(M) =
Qm

i =1(1 + �i ).

The proof of the claim is similar to that of Theorem 3.1 in [13], where the same for-
mula was proved for the total equivariant Chern class. SinceHodd(M; Z=2) = 0 and
MG = MT is isolated, we have

dim H�(M; Z=2) = �(M) = ��MT
�

= ��MG
�

= dim H��MG; Z=2�:
Therefore,H�

G(M; Z=2) is a freeH�(BG; Z=2)-module (see [1, Theorem VII.1.6]). It
follows from the localisation theorem that the restrictionmap

(10.2) H�
G(M; Z=2)! H�

G

�
MG; Z=2�

is injective. Givenp 2 MG = MT , set I (p) := fi : p 2 Mi g. The cardinality ofI (p) is
n and the tangentialG-representationTpM decomposes as

TpM =
M

i2I (p)

�i jp
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where �i is the normal bundle ofMi to M and �i jp is its restriction to p. It fol-
lows that

(10.3) wG(M)jp =
Y

i2I (p)

wG(�i jp):
Since�i is orientable of real dimension two,wG

1 (�i ) = 0 andwG
2 (�i ) is the mod 2 re-

duction of the equivariant Euler class of�i . Therefore, we havewG
2 (�i jp) = �i jp for

i 2 I (p). Moreover,�i jp = 0 for i =2 I (p) by a property of equivariant Gysin homo-
morphism. Thus, the identity (10.3) gives

wG(M)jp =
Y

i2I (p)

(1 + �i )jp =
mY

i =1

(1 + �i )jp:
This together with the injectivity of the restriction map in(10.2) proves the claim.

The forgetful map H�
G(M; Z=2)! H�(M; Z=2) takes the equivariant Stiefel-

Whitney classwG(M) to the (ordinary) Stiefel-Whitney classw(M) of M. Since �i

is of degree two, the above claim shows thatw2n(M) is a polynomial in degree two
elements. Assumehi (M) = 0 for some i > 0. Thenw2n(M) = 0. The mod 2 re-
duction of the Euler characteristic�(M) of M agrees withw2n(M) evaluated on the
mod 2 fundamental class ofM. Hence,w2n(M) = 0 implies that�(M) is even. Here�(M) =

Pn
i =0 hi (M) and hi (M) = hn�i (M) by the Poincaŕe duality, thushn=2(M) must

be even for evenn.
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