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1. Introduction. This paper is concerned with the general problem of de-
termining the cohomology ring of a fibre space whose fibre is a sphere in terms
of the cohomology of the base space and various invariants of the fibre space
structure, such as characteristic cohomology classes (in particular, Stiefel-
Whitney classes and Pontrjagin classes).

The first part of the paper is concerned with two formulas which give explicit
relations between cup products in the total space of an orientable sphere bundle
and triple products® in the base space (for which one of the arguments is the
characteristic class of the bundle). In general, these formulas do not suffice
to completely determine the cohomology ring of the total space. An example is
given of a non-trivial case where they do suffice, however.

It should be mentioned that one of these two formulas is due originally to
G. Hirscu [7], who gave it under more restrictive hypotheses than we do.
Apparently his proof of this formula is different from ours.

The second part of this paper is concerned with the problem of determining
the cohomology ring of a sphere bundle whose characteristic class vanishes.
This special case is simpler than the general case, and our results are correspond-
ingly more complete. In this case the structure of the cohomology ring of the
bundle may be expressed succinctly by the statement that it is a quadratic exten-
sion of the cohomology ring of the base space.® From this it follows that the

1During the preparation of this paper the author was partially supported by a grant from
the National Science Foundation. Three abstracts announcing some of the results of this
paper were submitted to the American Mathematical Society in August, 1957; see Notices
Amer. Math. Soc., Feb., 1938,

?The triple product is a secondary cohomology operation on three variables which assigns
to any elements v = H?(B), v ¢ HY{B), and w £« H'(B) such that u-v = v-w = 0 a coset of a
certain subgroup of Hetet—(B), This coset is denoted by (u, v, w). For the definition
and properties, see [16].

3This fact has apparently been known for some time, although never stated explicitly in
this form; see, for example, Liao [10}, or Hirscu [5].

The definition of a quadratic extension of a ring is the obvious generalization of the de-
finition of a quadratic extension of a field; see N. Boursaxki's Algébre, chap. 11, §7. For our
purposes, the definition of BourBax1 needs to be modified slightly because we are dealing
with graded, anti-commutative rings.
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complete determination of the structure of the cohomology ring of such a sphere
bundle depends on two invariants. One of these invariants turns out to be
essentially a Stiefel-Whitney class. The situation with regard to the other
invariant is more complicated. In case the dimension of the fibre is even, it is
related to one of the Pontrjagin classes.

Tinally, we give some applications of the results in part II. As a first appli-
cation, we are able to put the formulas for the secondary obstruction to a cross
section of a 2-sphere bundle in a more convenient and explicit form. The second
application is to prove the impossibility of imbedding certain manifolds differ-
entiably in Euclidean spaces of certain dimensions. In most of the examples
given, we show that certain orientable n-dimensional manifolds cannot be
imbedded differentiably in Euclidean space of dimension approximately 3n.
These results depend on knowledge of the Pontrjagin classes of the tangent
bundle of the manifold, and the method works even in cases where all the Stiefel-
Whitney classes vanish.

Parts I and II are independent of each other to a large extent.

2. Notation and Terminology. Throughout this paper we will use the term
“fibre space” to mean a ‘“locally trivial fibre space’’ in accordance with the
following definition:

Definition. A fibre space is an ordered quadruple (¥, =, B, F) such that E, B,
and F are topological spaces, r : £ — B is a continuous map, and the following
condition holds: Each point z ¢ B has a neighborhood U such that there exists
a homeomorphism ¢ of U X F onto =~ '(U) having the property that #[¢(y, 2)] = y
for any y e U and z ¢ F.

On the other hand, the term ‘““fibre bundle” will be reserved for fibre spaces
which admit a structural group. We will use the definition of fibre bundle as
given in STEENROD’s book [14], and use the notation (£, p, B, I/, () to denote
a fibre bundle with fibre F' and group G. A fibre bundle whose fibre F is an
n-sphere, S”, and whose group is the group of all (n 4+ 1) X (» -+ 1) real orthog-
onal matrices of determinant +1 (denoted by SO(n 4+ 1)) will be called an
n-sphere bundle. Analogously, a fibre space whose fibre F' is an n-sphere will
be called an n-sphere space.

We will assume that all n-sphere bundles and n-sphere spaces with which
we are concerned satisfy the following orientability condition: If S} denotes
the fibre over the point x ¢ B, then the local system of groups defined by H"(S}),
z ¢ B, is a simple system. Of course, if we are using integers mod 2 as coefficients
for cohomology, this condition is superfluous.

We will use a notation similar to that of R. Trom [15] for the Gysin sequence
of a sphere space (E, =, B, 8*™"):

e LHTB) S HB) S HE SHTTB) S

The homomorphism g is multiplication by the characteristic class, W, ¢ H*(B, Z).
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Throughout this paper we will use the ring of integers, Z, the ring of integers
mod m, Z,, (m > 1), or the field of rational numbers, Z, , as coefficients for
cohomology. For the sake of simplicity, we will assume that the base space of
any fibre space or fibre bundle that we consider is compact, although this assump-
tion is probably not absolutely necessary. Unless otherwise indicated, we will
use Cech-Alexander-Spanier cohomology with compact supports.

PartI:ReLATIONS BETWEEN CUP PrODUCTS IN THE ToTAL SPACE
AND TripLE Probpucts 1N THE BASE SpAce

3. Statement of Results. When confronted with the problem of determining
the cohomology ring of a sphere space, one of the most natural questions to
ask is the following: What are the properties of the homomorphisms of the
Gysin sequence of a sphere space (¥, x, B, $*') with respect to cup products?
The answer is obvious for the homomorphisms u and #*. For ¢ we have the
following result:

Lemma 1. If x ¢ H'(B) and y ¢ H*(E), then
Ylr*2) -yl = (=D (yy),
Yly-@*0)] = (D" (yy) -«

(coeffictents in any ring).

The proof, which is quite easy, will be given in section 4. In case z- (¥y) = 0,
it follows by exactness of the Gysin sequence that there exists an element
z ¢ H(B) such that

@.1 @) = (@*z)-y.

Of course, the element 2 is only determined modulo the image of u. The question
now arises, can we determine the set of all possible elements z satisfying (1)
in terms of z and ¢(y) by means of operations in H*(B) alone? The following
theorem gives an affirmative answer to this question.

Theorem I. If we H(B),v e H'(B), u-v = 0, and u(v) = 0, then
@) T = (=17, v, W)

(coefficients in any commutative ring).

The proof of this theorem will be given in section 5. By definition, the triple
product {(u, v, W,) is a coset of the subgroup [H****(B)-W, + u-H***"'(B)]
of H*****}(B). This theorem asserts that (—1)""*(z*)"'[x*u)(¥ '»)] is pre-
cisely the same coset.

Lemma 1 and theorem I may be looked on as giving information on the product
of two elements of H*(E), of which one is in the image of #* and the other is
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not in the image of #*. The next question that arises is the following: Is there a
similar theorem giving information about the product of two elements of H*(I7),
neither of which is in the image of »*? If z, y ¢ H*(E), can we express ¥ (z-y)
as a function of ¥(z) and ¢(y)? This last question can be reworded as follows:
If u, v e H*(B), and p(u) = u(®) = 0, let (¢ "'u) (¥ v) denote the set of all elements
x-y for z e ¥ 'u and y £ ¢ 'v. Then can we express ¥[(¥ " 'u)- (¥~ "v)] as a function
of w and »? An easy calculation using lemma 1 shows that ¥[(¥ 'u) (¥ )] is a
coset of the subgroup H***"*(B)-v + u-H**"*"(B) where p and q are the degrees
of u and v respectively.

Theorem® II. Under the hypotheses above, if u ¢ H*(B), v ¢ H*(B), p(u) =
u() = 0, then

VI -@T)] = (=D, Wy, 0).

The proof of this theorem will be given in section 6.
Although theorems I and IT do not suffice in general to completely determine
the cohomology ring H*(E), we will give an example later where they do suffice.

4. Preliminaries to the Proofs of Theorems I and II. ILet A denote the
mapping cylinder of the projection = : E — B. According to R. Trom [15], the
cohomology sequence of the pair (4, E) is isomorphic to the Gysin sequence
of the fibre space (I, =, B, 8*7'). To be precise, there exist isomorphisms

¢* : H"(B) — H (A — E)
i H'(B) — H*(A)
such that the following diagram is commutative:

H*B) * H'B)
v <
HY(E) jdf" j]’ H(E)
[T 7
H'(A — E) — H(A)
h

In this diagram the top line is the Gysin sequence, while the bottom line is the
cohomology sequence of the pair (4, E).

In addition, Taom proves the following important property of the isomor-
phisms ¢* and j: For any element « ¢ H* *(B),

4.1 ¢*(@) = jx)-U

where U ¢ H*(4 — E) is the image of 1 ¢ H°(B) under the isomorphism ¢* (recall
that we have assumed that B is compact!). The isomorphism j§ is induced by
the natural projection A — B of the mapping cylinder onto the base space,

4This theorem is due originally to G. Hirscu [7]. However, HirscH states the theorem under
more restrictive hypotheses, and in his formulation there is an additional term on the right.
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while the definition of ¢* is more complicated. The reader can, if he wishes,
take equation (4.1) as the definition of ¢*.

We are now in a position to prove lemma 1. To prove the second equation of
lemma 1, it suffices to prove that

P*Yly*a)] = (=1 e*[(¢y) -z],
since ¢* is an isomorphism. We now compute as follows:
p*Yly(r )] = *[y(r*0)] = o*[y(ijo)] = (8*y)(ja),
¢*[(yy)z] = j[(Yy)2]-U = (¥ (m)U
= (=D"[G UG = (= D"@* () = (—1)"(6*y)(jx).
The proof of the first formula of lemma 1 is similar.

We conclude this section by recalling Trom’s definition of the generalized
characteristic classes. First of all, the characteristic class W, is defined by

Wy = nU).
Second, the generalized Stiefel-Whitney classes are defined by
o*(W) = S¢'(U), 0=i=k—1,

where W, is an integral or mod 2 cohomology class according as ¢ is odd or even.
If 7 is odd, then 2W,; = 0. One may also consider W, reduced mod 2 for ¢ odd.

Actually, we will be mainly concerned with the classes W, and W,_, in what
follows.

5. Proof of Theorem I. First of all, an easy computation shows that (under
the hypotheses of theorem I) («*) '[(z*u)(y )] is a coset of the subgroup
u[H”*Y(B)] 4+ w-H** *(B). By definition, the triple product (u, v, W,) is a
coset of the subgroup H***“ " *(B)-W, + wu-H**"*(B). Thus (#* ")[z*u) (¢ )]
and (—1)"*"u, v, W,) are cosets of the same subgroup. Therefore, to prove
theorem I, it obviously suffices to prove that
(51) (W*u)(‘l’—lv) = ("‘DPHW*(”; v, Wk>‘

Rather than prove (5.1) directly, we will reduce it to an equivalent statement
involving only the cohomology sequence of the pair (4, E). To this end, note
that #*(u) = 4j(u), and ¢ » = §* '¢*» = §*'[(jv) U], therefore

(5.2) @u)(¥ ) = () - 6* () - Ul

AISO) 7r*<u7 , Wk> = 7’.7(“) v, Wk); and ](’LL, v, ch) = <.7u; j?), ]ch> = (]u: jv: hU)y
since j is an isomorphism onto. Thus we have

(53) 7r*<u7 v, Wk) = 7’(]“7 jv) h‘U>
It follows that (5.1) is equivalent to the following equation:
(5.4) (iju) - 8* 7' {() - UL = (=" "iju, jo, hU).
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The hypothesis u-» = 0 is equivalent to (ju)-(jv) = 0, and the hypothesis
u(®) = 01is equivalent to the statement that 0 = j(eW,), or, alternatively, that
() (AU) == 0. Therefore, if we write u, = ju and v, = , theorem I is equivalent
to the following:

Theorem I'. Suppose u, € H*(A), v, ¢ H(A), and ugvo = 0, v,(AU) = 0. Then
(/I:?/LO) 6*.‘1(2)0[]) == (_1)1’+]’L'<U() 7UO 3 h/U>.

We will now prove theorem I’. Let C* = >_,., C” denote the ring of Alexander-
Spanier cochains of A and I* = D_,., I” denote the ring of Alexander-Spanier
cochains with compact support of A — E. Then I* is a 2-sided ideal in C* which
is stable under the coboundary operator (i.e., §(I*) C I'*). Moreover, the quotient
ring C*/I* may be used for the cochain ring of E, 7.e., H*(C*/I*) = H(E).

Choose representative cocycles u’ e C*, v’ ¢ C% U’ ¢ I* for u, , v, , and U respec-
tively. Since uw, = 0, there exists a cochain @ ¢ C**** such that é(a) = u'v’.
Similarly, there exists a cochain b e C*"*™* such that 6b = »'U’. Then the cocycle
al’ — (= D™'b is, by definition, a representative of the triple product
{ug , Vo , RU). On the other hand, since U’ e I* o'U’ £ I'*, and b is a cocycle mod I*.
Therefore the cohomology class of b (mod I*) is obviously a representative of
§* (v, U). Therefore the cohomology class of u'b (mod I*) is a representative
of (2ue)6* (0, U). Since U’ & I*, aU’ & I*, and

(—1D"""'b = aU’ — (—1)"'b (mod I*).

From this theorem I’ follows.
This completes the proof of theorem I.

6. Proof of Theorem II. First of all, by applying the isomorphism ¢*, we
will reduce theorem II to an equivalent theorem about the cohomology sequence
of the pair (4, E). For this purpose we make the following two computations:

o*YI(¥ W] = SF[(¥TWEW )]
(6.1) = §*[6* 7 (p*u) - 6* 7 (¢*)]
= §[5* (Gu-U)- & (ju- U)].

(62) ¢*<ux Wi ,i)> = (](u: Wi 17)»' U= <]u7 ]Wk ’ .71)> U= (]ua hU; ]7)> U.

Also p(u) = 0if and only if ju(u) = 0. Now ju(u) = h¢*(u) = h[(ju)-U]. There-
fore u(w) = 0 if and only if A[(ju) - U] = 0. A similar equation holds for v.

From these computations, it follows that if we set j(u) = u, , j(v) = v, ,
then theorem II is equivalent to the following:

Theorem II'. Let u, e H°(A) and v, ¢ H(A) be elements such that hlu,U] = 0,
hlvo,U] = 0. Then

§*[6* M uoU) - 8* o U)] = (=17 uo , AU, v5)- U.
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We will now prove theorem II’. As in the proof of theorem I’, let C* = > C”
and I* = >, I” denote the ring of Alexander-Spanier cochains with compact
support of A and A — E respectively. We may assume that STEENROD’S cup-i
products are defined in C*, and that they have the usual properties (see [3],
exposé 14, or [13]). Choose representative cochains u’ ¢ C%, v’ ¢ C%, and U’ ¢ I*
for u, , v, , and U respectively. Since h(u,U) = 0, there exists a cochain a such
that 6(a) = «'U’; similarly, there exists a cochain b such that §(b) = »'U’.
Then a and b are cocycles mod 7*, and cohomology classes mod I* are elements
of 6% '(u,U) and 6* '(»,U) respectively. Therefore the cocycle

(6.3) 8ab) = w'U'D + (=D’ U’

represents 6*[6* ' (u,U) - 8% (v, U)].
We will now transform the expression on the right side of (6.3) as follows.
First of all,

8(b\J, U = (=DDBU" — (=1D)*"U'b + 'U") U, U’
therefore
(6.4) U'b = (=)0 + (=)W U) U, U — (=1 U, U).
By a theorem of G. Hirscu ([6], theorem 1),
(6.5) @UN\NLU = (U \J,U)+ I, U,
Substituting (6.5) in (6.4), we obtain
6.6) U'b = (—D*bU’ + (=)@ U, UYU’
+ (=D (U U, U') — (=D 5(b U, U).
If we substitute (6.6) into (6.3), there results the following:
©.7) 8ab) = [(— 1" e’ + (—=D*u'b + (—1)*" '@ \J, UNU’
+ (=D (U U, U) — (D" 50’ (b \J, UN].
Next, we will compute a representative for {u, , AU, v,). We have
8 \U, U) = (=)™ WU’ 4+ (—1)*" U,
therefore
U = (=)™ %0 U, U) + (=)' U’
= 3[(—1** Ny U, U’ + (—1)%b].
From the definition of the triple product (see [16]), it follows that the cocycle
av’ — (=D (=D U, U + (—=1)%D]
=av — (=)0 U, UY) — (=D '

(6.8)
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is a representative of (u, , AU, v,). In order to utilize this expression for a repre-
sentative of {u, , AU, v,), we will rewrite (6.7) in the following form:
sab) = [(—1)** e’ + (—=D** b 4 (=D '@ U, UN]-U’
+ (=12 — (=) s (b U, U]

(6.9)

where
2= [1 — (=D U’ + (=D'(U" \J, U).

Now clearly 2 £ I°***7", and an easy computation shows that 6(z) = 0, i.e.,

z = a cocycle. Thus the term (—1)*“u’z on the right side of equation (6.9)
represents an element of the subgroup u,-H**** (4 — E) of H******"Y(4 — E).
Since (uy , RU, v)-U is a coset of u,H*"™ (A — E) + H*** (4 — E)-v, ,
comparison of (6.8) and (6.9) shows that 6(ab) is a representative of (—1)""*"*
(uo , hU, vo)- U, as required. This completes the proof.

7. An Example. We will consider in this section sphere bundles (£, =, B,
S*, SO(2)) such that the fibre is a 1-sphere (i.e., k = 2), and the base space B
is a finite, connected 5-dimensional CW-complex which satisfies the following
conditions:

(a) B has only one vertex.

(b) B has no cells of dimension 1, 3, or 4.

Such a cell complex may be constructed by taking a cluster of 2-spheres having
but a single common point and adjoining 5-cells by arbitrary continuous maps.
It is clear that H'(B) = H*(B) = H*(B) = 0, while H*(B) and H°(B) are free
abelian groups. As is well known, given any element of H*(B, Z), there exists
an orientable 1-sphere bundle over B having that element as characteristic
class. We will consider only bundles over B such that the characteristic class
W, is a member of some basis of H*(B) (.e., the subgroup generated by W, is
a direct summand of H*(B)).

The Gysin sequence of such a sphere bundle is readily seen to split into the
following pieces:

0— HB) =5 HYE) — 0,
0 — H(B) % H'B) IS5 H(E) — 0,
0 — H¥B) L HE) — 0,
0 — H'B) ™ H'(E) — 0,
0 — H'E) % H'(B) — 0.

Thus the only non-zero cohomology groups of E are in dimensions 0, 2, 3, 5,
and 6. Moreover, there is no torsion. The product of an element of degree two
and an element of degree three can be computed by means of theorem I, and
the product of two elements of degree three can be computed by use of theorem
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I1. In each case the products in £ depend on the triple products in B. Moreover,
if the 5-cells of B were attached to the 2-skeleton of B by maps representing
non-trivial triple Whitehead products, there will be non-zero triple products in
H*(B); for the proof see sections 2, 3, and 4 of [16].

Part I1: Tar Coromorocy RinG oF A SPHERE BUNDLE
Waose CuaracterIsTIC CLASS VANISHES

8. Statement of Results. Let (E, =, B, " ") be a sphere space whose char-
acteristic class, W, , is zero. The Gysin sequence of such a fibre space breaks up
into pieces of length 3, as follows:

0 — H%B) =5 HYE) b H**"(B) — 0.

Moreover, the group H*(E) is a trivial extension of H*(B) by H**"'(B). This
may be proved as follows: Choose an element ¢ ¢ H* *(E) such that ¢(a) = 1,
where 1 ¢ H°(B) is the unit of H*(B). Then if z ¢ H**"*(B),

Yla-r*@)] = (=D)*(ya) -z = (=1)"z.
Therefore, if we define
9 : H**"(B) — HYE)
by
6(x) = (=" a-7*(2),
it follows that
Yo() = z,

which proves that the extension is trivial. Thus given any element w ¢ H*(E),
there exist unique elements u, ¢ H*(B) and u, ¢ H****(B) such that

u = 1*u,) + a-7*u,).
In particular, there exist unique elements o ¢ H**"*(B) and 8 ¢ H*"*(B) such that
(8.1) @ = 1) + a-7*8).

Moreover, in view of the anti-commutativity of the cohomology ring of £ and
the fact that #* is an isomorphism which preserves products, if « and 8 are
known, the multiplicative structure of H*(E) is completely determined.

Of course a is not uniquely determined. If a’ is another element of H* *(E)
such that ¢(a’) = 1, then by exactness of the Gysin sequence there exists an
element b ¢ H*"*(B) such that #*(b) = a’ — a. By analogy with (8.1), there
exist unique elements o’ ¢ H**?(B) and 8’ ¢ H* *(B) such that

(8.1) a* = 1*a) + o' -7*(g).
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An easy calculation shows that o’ and 8’ are related to « and 8 as follows:’

8.2) 8 =8+ 2 if k is odd,
(8.3) B =8 if k is even,
(8.4) o =a—b3 b for any k, odd or even.

Thus, in case k is even, 8 is an invariant of the given sphere space; in case k
is odd, the coset of 8 mod 2H*"'(B) is an invariant of the given fibre space
(note that in the above formulas, b may be an arbitrary element of H* *(B)).

Theorem® IIL. If k is even, then 8 = W,_, ; if k is odd, then 8 = W,_, mod 2,
ie., Wiy, = B reduced mod 2.

The proof of this theorem will be given in section 9. In either case, 8 is identified
with a standard invariant of the given sphere space.

As formula (8.4) indicates, the situation with regard to « is more complicated.
If k is odd, an easy computation using formulas (8.2) and (8.4) shows that

4o’ + B = do + &,
i.e., 4o + B° is an invariant of the given fibre space.

Theorem IV. If k is odd, and (E, =, B, ", S0(k)) s a (k — 1)-sphere bundle
with W, = 0 and B a polyhedron, then 4a + 8° = Py,_, , the Ponlrjagin class in
dimension 2k — 2.

The proof of this theorem will be given in sections 10-12. It does not seem
possible to drop the hypothesis that the given fibre space admit the rotation
group as structural group, because at present it is not known whether or not it
is possible to define Pontrjagin classes for the most general sphere spaces as
we have defined them in section 2.

In case H*7*(B, Z) has no elements of order 2 (and hence no elements of
order 4), theorems IIT and IV together give the complete determination of the
cohomology ring of a k-sphere bundle (k odd) admitting the rotation group as
structural group and such that W, = 0. Examples seem to indicate that no such
simple result is possible in case k is even. It should be noted that when k is
even, 2« = 0 and 28 = 0; this follows from the anti-commutativity of multipli-
cation. Hence if H**"*(B) contains no elements of order 2, it follows that o = 0.

On the other hand, the problem of determining the cohomology ring with
mod 2 coefficients of a sphere bundle with vanishing characteristic class seems
like an interesting and difficult problem which is not even touched on here.

9. Proof of Theorem III. Tt is readily seen that 8 in equation (8.1) is given by
9.1) B = +y()

SFormulas (8.2) and (8.4) are given by Hirscn for the case k¥ = 3 in [5], section 2.1.
¢This theorem is closely related to theorem 22.1 of L1ao [10].
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(the sign is immaterial). Therefore, to prove theorem III, it suffices to prove
that ¢(a®) = W,_, if k is even, and ¢(¢*) = W,_; mod 2 if k is odd (W,_, is
of order 2, hence W,_, = —W,_,). Applying the isomorphism ¢* to these rela-
tions, and using the facts that ¢* oy = 6* and ¢*(W,.,) = S¢" U (see section
4), we see that theorem III is equivalent to the following:

(9.2) 8*(a®) = S¢'U if k is even,
(9.3) 8*(a®) = S¢""'(U) mod 2  if kis odd.

Now (9.2) and (9.3) are easy consequences of the fact that §%(a) = U and the
fact that 6* and S¢"™* commute (see theorem (9.6) of STEENROD, [13]) plus the
fact that a® = S¢* ' if k is even, and @ = S¢" 'a mod 2 if k is odd.

10. Preliminaries to the Proof of Theorem IV. We assume that the reader
is familiar with the classification theorem for principal fibre bundles:” Given
any topological group @, there exists a universal principal G-bundle (Ey , p,
B, , G, G) such that the principal G-bundles over a polyhedron B are in 1-1
correspondence with the homotopy classes of maps B — By . The correspondence
is established by assigning to each map f : B — By the induced bundle f *(E¢ , p,
Bg, G, @) (for details see STEENROD, [14], H. CARTAN, [3], and J. MILNOR, [11]).

In this section we shall use the term “‘characteristic class” in the most general
sense: If (B, m, B, G, @) is a principal G-bundle corresponding to a continuous
map f: B — Bg and w ¢ H*(B¢ , II), then f*(w) ¢ H"(B, II) will be called the
characteristic class of (B, =, B, G, G) which corresponds to w. Our main objective
in this section is to define a modified type of “universal” bundle which will be
universal only for those principal G-bundles for which a given charadteristic
class vanishes.

First of all, it is necessary to recall the following facts:

(10.1) If T is a countable abelian group, then it is possible to realize the
Eilenberg-MacLane space K(II, n) as an abelian topological group (MILNOR,
[11]).

(10.2) If P is a polyhedron and Y is a space of type K(II, n), the homotopy
classes of maps P — Y are in 1-1 correspondence with the elements of the
cohomology group H"(P, II); the correspondence is established by assigning to
the map f : P — Y the cohomology class f*(e) ¢ H"(P, II), where ¢ ¢ H*(Y, II)
is the fundamental cohomology class of ¥ (this result can be proved by the
standard methods of obstruction theory).

From these facts we can deduce the following lemma:

Lemma 2. Let A be an abelian topological group which is a space of type
K11, n — 1) and let P be a polyhedron. Then the equivalence classes of principal

"In the course of the proof of theorem IV, we will allow for consideration fibre bundles
whose base space is not, compact. Instead of using Alexander-Spanier cohomology with com-~
pact supports, we will use ordinary singular cohomology.
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A-bundles with base space P are in 1-1 correspondence with the elements of the
cohomology group H"(P, II). The correspondence is defined by assigning to each
such bundle its characteristic class.

Proof: The classifying space B, is readily seen to be a space of type K(1I, n).
The result now follows from (10.2) and the classification theorem for fibre
bundles.

We will call the principal A-bundle over P with w ¢ H"(P, II) as characteristic
class the bundle which “kills off the cohomology class w”’. Let (E, p, P, 4, 4)
be such a bundle; it has the following important property:

(10.3) Given any polyhedron @ and continuous map f: @ — P, there exists
a continuous map g : @ — E such that f = p o g if and only if f*(w) = 0.

This result’ may be easily proved by the methods of obstruction theory as
outlined, for example, in part III of STEENROD [14].

Definition. Let B, be the classifying space for the topological group G and
let w ¢ H*"(B¢ , II). Denote the space obtained from B, by killing off the co-
homology class w by (Be , w). We will call (Bg , w) the “classifying space for
G-bundles with vanishing characteristic class w”. Note that there exists a map
¢: (Bg, w) — Be which exhibits (B , w) as a principal K(II, n — 1)-bundle
over By . Let (Eq , w), p, (Bg , w), G, G) denote the principal G-bundle over
(Bg , w) induced by ¢. Then this bundle has the following characteristic property:

Lemma 3. Let (B, =, B, G, G) be any principal G-bundle over the polyhedron B
such that its characteristic class corresponding to w ¢ H"(Bg , I1) vanishes. Then
there exisis a continuous map [ : B — (Bg , w) such that (E, =, B, G, G) <s iso-
morphic to the G-bundle over B induced by f. (Note that the homotopy class of f
need not be unique.)

So far, all the results of this section have referred to principal G-bundles. By
using the following lemma, it is possible to extend them to bundles with arbitrary
fibre which admit G as structural group.

Lemma 4. Let (E, p, B, F, @) be a fibre bundle, and let (E', p’, B, G, G) be
the associated principal bundle. If f: X — B is any continuous map, then the
induced bundles { '(E, p, B, F, Q) and f *(E’, p', B, G, @) are associated bundles.

This lemma can be paraphrased as follows: The operations of taking induced
bundles and of taking associated bundles commute. The proof is obvious pro-
vided one uses the definitions of “induced bundle” and “associated bundle”
in terms of coordinate transformations in B; see StErNrOD [14], §8.1 and §10.1.

For the statement of the next two lemmas, let G, be a closed subgroup of
the topological group G. Then G operates on the coset space G/G, , and associated
with any principal G-bundle is a fibre bundle with fibre G/G, and group G.

8The facts we have just reviewed are rather well known; for a brief discussion of them, see
also [4], exposé 17 (by R. Taom).
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Lemma 5. If (E, p, B, G, G) is a principal G-bundle, and = : E/G, — E/G = B
denotes the natural projection, then (E/G, , =, B, G/G, , Q) is a fibre bundle which
1s assoctated with (E, p, B, G, G).

For the proof, see H. CARTAN [3], exposé 7, theorem 2.

Lemma 6. If (E; , p, By, G, Q) is a universal principal G-bundle and (E, m,
Bg,G/Gy, G) isthe associated bundle with fibre G /G, , then B has the same homotopy
type as B, , the classifying space for G, .

Proof: By Lemma 5, (E¢/G, , 7, B¢ , G/G, , @) is an associated bundle with
fibre G/@, . The natural projection ¢ : K¢ — E ¢/G, defines a principal Gy-bundle
(B¢, q, Es/G,y , Gy, Q). Since E is contractible, this principal G-bundle is a
universal Gy-bundle, and E /G, is the classifying space for G, .

We will use this lemma in the case where @ = SO(k), and G, = SOF — 1).
Then G/G, = S**. Thus if (Esow , P, Bsow , SOK&), SO(k)) is a universal
SO(k)-bundle, and (E, w, Bsowy, S**, SO(k)) is the associated (k — 1)-sphere
bundle, then £ = Bgou-1) -

11. The Universal Gysin Sequence. Let (Esocm , Pn s Bsowm , S0n), 8O(n))
be a universal SO(n)-bundle, and let (Bsow-1) ; @ y Bsowm , S 1, SO(n)) denote
the associated (n — 1)-sphere bundle. We will call the Gysin sequence of the
latter bundle the “universal Gysin sequence”. We will denote the homomorphisms
of the universal Gysin sequence by u, : H*(Bsom) — H*"™(Bsow), 7%:
H*(Bsow) — H*(Bsow-1y), and ¢ : H(Bsowm-n) — H*""(Bsow), respec-
tively.

The eohomology ring of the classifying space Bgo, has been studied rather
thoroughly (see the following articles by A. BoreL and the references given
there: [1], [2]). We will use the following notation for certain cohomology classes
of Bgom :

(a) Universal Stiefel-Whitney classes mod 2:
wz(n) € Hi(Bso(n) ’ Z2)r 2

iiA
-,
fIA
3

(b) Universal integral Stiefel-Whitney classes:
W.n) e HBsow , £), 2<1=Sn, ¢ odd.
(¢) Universal Fuler-Poincaré class:
W.m) e H(Bsow , 4), n even.
(d) Universal Pontrjagin classes:

Pyun) e H*(Bsow » Z), 12 =

ol

n.

The integral Stiefel-Whitney classes are of order 2, while the Euler-Poincaré
class and the Pontrjagin classes are of infinite order. The class w.(n) is the reduc-
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tion mod 2 of W,(n), 7 odd or ¢ = n, n even. It is known that all torsion elements
of H¥*(Bsow) , Z) are of order 2.

Our main objective in this section is to prove the following two lemmas
which will be used in the next section to prove theorem IV.

Lemma 7. For n odd, ¥,[W,_.(n — 1)] is twice a generator of H(Bsow , Z)-
Lemma 8. For n odd, x*[Py,_s(n)] = [W,.(n — DI

Proof of lemma 7: Consider the following portion of the universal Gysin
sequence (n odd, integer coefficients):

0= H ' Bsow) ™ H ' Bsow-1) B HBsow) *> H'Bsow)-

Now u, is defined as follows: u,(x) = z-W,(n). Since 2W,(n) = 0, the kernel of
a2 H(B 5o my) — H*(Bgoewm) is the subgroup of H°(Bso,) which is of index 2.
By exactness, it follows that the cokernel of #* is an infinite cyclic group; and
to prove the lemma, it suffices to prove that W,_,(n — 1) is a generator of this
cokernel. Note that it follows from exactness that =% maps the torsion subgroup
of H" *(Bgow) isomorphically onto the torsion subgroup of H" ™" (Bgom-1))-

Let T'(m) be a maximal toral subgroup of SO(n — 1) (here m = i(n — 1)).
Then T'(m) is also a maximal torus in SO(n) (we are considering that SO(n — 1)
is imbedded in SO(n) as a subgroup). This leads to the following commutative
diagram involving the integral cohomology rings of the corresponding classifying
spaces:

H*Bsow) ™ H*(Bsow-v)
I N e I
H *(B T(m))

Now H*(Br(m) is a polynomial algebra Z[x, , -+ , &.], where the generators
x; are of degree 2. The following facts about the homomorphisms p, and p,
follow easily from the work of BorgL (op. ¢if.):

(a) The kernels of p; and p, consist of the torsion elements of H*(Bgowm)
and H*(B gos-1)), respectively.

(b) The image of p, is the ring of symmetric polynomials in the variables
xfyai) e }xnzz'

(¢) The image of p, is the subring of H*(By.) generated by the symmetric

polynomials in 22, 23, - -+ , 22 and the monomial #,2; + - Zm .
(d) p[Ps;i(n)] = po[Py;(n — 1)] = the ¢*h elementary symmetric function in
the variables 2% , 23, -+ , 2 (0 £ 7 £ m).

(@) m[Wai(n — 1)] = my2p -+ - 2y .
From these facts it readily follows that W,_,(n — 1) generates the cokernel of
7% H" " (Bsowm) — H "(Bgsow-1,) as desired.

Proof of lemma 8: Let 7, : H*(Bsow , Z) — H*(Bsow , Z:) and 71y
H*(Bsowmy » Z) = H*(Bsow-1 , Z») denote the homomorphisms which are
reduction modulo 2. Since all torsion elements of H*(Bgo -1 , 4) are of order 2,
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in order to prove lemma 8, it suffices to prove the following two statements:
(@ psmi[Po2(m)] = po[ Wil — D
®) rom ¥ [Pou-o(n)] = ro{W,_i(n — 1)]2-

Now (e) follows easily from statements (d) and (e) listed in the proof of lemma 7.
To prove (8), one uses the following three facts:

® rPu) = [w..m)]".
(g) ro(Win — 1)) = w,(n — 1).

(h) In the universal Gysin sequence with coefficients mod 2,7%[w;(n)] =
w;(n — 1),0 =7 = n — 1, and 7*w,(n)] = 0. These results are all proved in
the work of BoreL referred to above.

12. Proof of Theorem IV. Let ¢, : B, — By, denote the space and map
obtained by “killing off”’ the integral cohomology class W,(k) ¢ H*(Bsow) , Z)
as described in section 8, and let (B} , =}, B, S*™*, SO(k)) denote the induced
bundle, ¢ (Bsow-1y , T4 , Bsow , 87, SO(k)). Then (E} , =/, Bi, 8", SO(k))
is the universal bundle for (k — 1)-sphere bundles with vanishing characteristic
class W, . Note also that there exists a continuous map @, : E{ — Bgsowu-n
such that the following diagram is commutative:

El % Bsogoy
(12.1) ~L T \L Tk

r ok
i Sad BSO(k)

Now let (B, =, B, 8%, SO(k)) be any (k — 1)-sphere bundle with vanishing
characteristic class. There exists a map 5 : B — Bgow such that (E, =, B,
S SO(k)) is isomorphic t0 1 (Bsowry , T , Bso » 8°), SO()). Since
the characteristic class W, of (E, =, B, S*') vanishes, n*(W,(k)) = 0, and
hence there exists a map f : B — B} such that ¢ o f = 4. It follows that (E, =,
B, 87, 8O(k)) is isomorphic to f *(E} , =}, B}, 8**, SO(k)).

Lemma 9. If k is odd and theorem IV is true for (E} , = , B}, 8", SO%)),
then it is also true for (E, =, B, S**, SO(k)),

The proof of this lemma is straightforward and is left to the reader.

We will now prove that theorem 1V is true for the bundle (E. , =} , B, S*,
SO(%)). The maps ¢, and &, in diagram (12.1) induce maps of the universal
Gysin sequence into that of (£, =}, B]) as indicated in the following diagram:

- Hj(B soac)) U’*’ Hi(B SO(k~1)) ‘@* Hi_kH(B SO(k)) .

‘lf Gr* e l Dr* , . l br*
0- H®B) ™ H®@ " H™*'®B) -0
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Let w e H'(Bgow , Z) and o’ ¢ H°(B], , Z) denote the unit elements. Assume
that a e H* "(E}), « ¢ H* *(B}), and 8 ¢ H*"*(B}) are chosen so that
(12.2) ¥i(a@) = o,
o’ = m*e + 7*(8)-a.
Choose ¢ = *£1 so that
YuleWioa(k — 1] = 20,

which is possible by lemma 7. One now computes easily that (writing
Wik — 1) = W)

¥il2e — @HW)] = 0,

hence by exactness there exists an element ¢ ¢ H*"*(B)] such that
w*) = 20 — (W)

or

(12.3) 20 = ed¥(W) + mi*().

Squaring both sides of this equation, we obtain

(12.4) 40° = W) + 2B W)m*(©) + mi*(c).

Now by lemma 8§,

(12.5) LW = B4t (Por—(0)} = 7*¢4[Poss(k)] = 7l*(Pas-s),

and by (12.3),

(12.6) edt(W) = 20 — mi*(0).
Substituting (12.5) and (12.6) in (12.4), we obtain
(12.7) 40" = 7*(Poy_y — ¢) + da-7i*(0).

If now we multiply equation (12.2) by four and compare with (12.7), we have
4o = Poy_y — ¢,
48 = 4c.
To complete the proof, we will show that 8 = ¢. On the one hand, if we reduce
both sides of equation (12.3) modulo two, we see that
¢ = Wy, mod 2.

But since 8 = W,_, mod 2 by theorem III, it follows that 8 = ¢ mod 2, .e.,
there exists an element z such that

8 — ¢ = 2z.
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On the other hand, 4(8 — ¢) = 0, hence 8¢ = 0. We will complete the proof by
showing that the torsion subgroup of H*~*(B}) contains only elements of order 2;
it then follows that 8 = 0 implies 2z = 0, 0r 8 = ¢.

Lemma 10. The torsion subgroup of H**(B}) contains only elements of order 2.

Proof: The map ¢, : B, — Bgowy is a fibre map with fibre a space of type
K(Z, &k — 1). Consider the following portion of the cohomology sequence of
this fibre space, which is exact by a theorem of Smrrr ([12], proposition 5,
chap. III):

0 — H '(Bsow) WHTBY SHTZ, k- 1) A H'Bsow)-

By the definition of the space B} and the map ¢, , the transgression 7* maps a
generator of the infinite cyclic group H* '(Z, k — 1) onto W,(k), which is a
cohomology class of order 2. Therefore the kernel of 7*, which is also the image
of ¢*, is the subgroup of H**(Z, k¥ — 1) of index two. It follows that H*"*(B})
is isomorphic to the direct sum of H* *(Bgoy) and an infinite eyclic group.
Since the torsion elements of H*(Bgo ) are all of order 2, the result follows.

13. Application to the Determination of the Secondary Obstruction to the
Cross Section of a 2-sphere Bundle. Let (E, p, B, S% SO(3)) be an orientable
2-sphere bundle with B a polyhedron and vanishing characteristic class W; «
H3(B, 7). Since W3 = 0, there exists a cross section over the 3-skeleton of B
and the secondary obstruction to the extension of the cross section to the 4-
skeleton is defined. A comparison of our formulas in section 8 with the work of
Liao [10] shows that the set of all possible elements « in formula (8.1) is pre-
cisely this secondary obstruction. Using theorem IV, we immediately obtain
the following result:

Theorem® V. Let (E, p, B, 8%, SO(3)) be a 2-sphere bundle with B a polyhedron,
W, = 0, and no 2-torsion in H*(B, Z). Then there exists a cross section over the
4-skeleton if and only if there exists an integral cohomology class 8 ¢ H*(B, Z)
such that

(a) 8 = W,mod 2,

(b) 62 = P, s
where W, and P, denote the Stiefel-Whitney class and Pontrjagin class respectively.

It has been pointed out to me that a recent paper by W. T. Wu entitled Proof of a Certain
Conjecture of Hopf (Scientia Sinica, vol. 4 (1955) pp. 491-500) also indicates a connection
between the Pontrjagin class Ps; and the second obstruction in a 2-sphere bundle. However,
Wvu does not indicate how the Stiefel-Whitney class W, enters into the picture. WU bases his
proofs on papers of Horr (Sur une formule de la théorie des espaces fibrés, Colloque de Topologie
(Espaces Fibrés), Brussels, 1950, pp. 117-121) and V. Bouryansk:r (Vector Fields in Mani-
folds, Doklady Akad. Nauk URSS, 80 (1950) pp. 305-307), but apparently he did not know of
Liao’s thesis.
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14. Application to Prove Non-imbeddability of Certain Differentiable Mani-
folds in Euclidean Space. In this section we show how Theorems IIT and IV
can be applied to prove the non-imbeddability of certain manifolds in Euclidean
space of certain dimensions. Our method requires knowledge of certain Pontrjagin
classes, but has the advantage that it works in some cases where all the Stiefel-
Whitney classes of the tangent bundle to the manifold vanish.

We will use the following notation:

R" = Euclidean n-space,

P.(C) = n-dimensional complex projective space (2n real dimensions),

P.(Q) = n-dimensional quaternionic projective space (4n real dimensions).
To illustrate our methods, we will prove the following results:

Theorem'® VI. (a) For m > 1, P,,(C) cannot be imbedded differentiably in
R6m+1.
(b) P,(Q) cannot be imbedded differentiably in R™™* for n > 2.

First, we state a series of lemmas on which our method depends.

Lemma 11. Let M" be a compact orientable manifold imbedded differentiably
n R™, m > n. Then the characteristic class of the normal bundle to M™ vanishes.

This is an old theorem of SmiFErT and WHITNEY. A recent proof may be
found in THowM [15], corollary 111, 15.

For the statements of the next two lemmas, let M" be a compact, connected,
orientable n-dimensional manifold imbedded differentiably in the sphere S***,
and let 4 and B denote the components of §*** — M" Then A = 4 \J M"
and B = B \U M", where the bar denotes closure. Let ¢ : H*(4) — H*(M™) and
j:H'(B) — H*(M") denote homomorphisms induced by inclusion maps.

Lemma 12. For ¢ = n, HY(4) = HY(B) = 0.
This follows from the Alexander duality theorem.

Lemma 13. For 0 < ¢ < m, the tnjections i : HY(A) — H*(M™) and j : H*(B) —
H(M™) are tsomorphisms into, and H*(M™) 1s the direct sum of the image subgroups.

This follows from the exactness of the Mayer-Vietoris sequence of the triad
(8" 4, B).

For any differentiable manifold M", we will denote certain characteristic
classes as follows:

Stiefel-Whitney class (mod 2) of the tangent bundle,

w(M") € H‘(Mn: Zy).

]n a recent paper entitled On Curvature and Characteristic Classes of a Riemannion Mani-
fold (Abh. Math. Sem. Univ. Hamburg, 20 (1955) pp. 117-126), 8. 8. CuerN proves the
following weaker result: P:n(C) cannot be imbedded differentiably in Rt He also proves
that Pym(C) cannot be imbedded differentiably in Rf#*!, In his proofs, he uses Pontrjagin
classes with real coefficients.
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Pontrjagin class of the tangent bundle,
P.(M" e HY(M", Z).
Stiefel-Whitney class (mod 2) of the normal bundle for any imbedding in
Euclidean space,
w(M") ¢ H(M", Zs).
Pontrjagin class of the normal bundle for any imbedding in Euclidean space,
P.(M™ e HY(M").
Total Stiefel-Whitney classes:
w(M") = ; wi(M"),
(M) = g W, (M").
Total Pontrjagin classes:
PM") = 2 Pu(MY),

iz0

P = 2 Pu(MY).

iz0

According to the Whitney duality theorem, w(M™)-w(M"™) = 1. Similarly, if
H*(M", Z) has no 2-torsion, then P(M™)-P(M™ = 1 (see A. Borew [1]).

Lemma 14. If y is a generator of H*(P,(C), Z,), then w(P,(C)) = (1 + )"
similarly, if y denotes a generator of H*(P,(Q), Z,), then w(P,(Q)) = (1 + y)"*".

This lemma may be proved by the method of Wu [18]. The first statement is
due originally to E. STIEFEL.

Corollary. w(P,(C)) = (1 + )™ and w(P,(Q)) = (1 + y)™ ", where y
denotes a generator of H*(P,(C), Z,) or H*(P.(Q), Z.) as is appropriate.

To prove the corollary, one uses the Whitney duality theorem.

Lemma 15. If x denotes a generator of H(P,(C), Z), then P( P.(C)) =
(1 4+ 25" and P(P,(C)) = (1 + 25"\

For the proof, see HirzeBrUCH [9], Safz 4.10.2.

Lemma 16. For proper choice of a generator x of H(P.(Q), Z), P(P.(Q) =
(1 4 ™71 + 42)7" and P(P,(Q)) = (1 + 2)77°(1 + 4x).

The proof is given in a paper by HirzesrucH [8].
Lemma 17. For every integer m > 1 there exists a prime p such that

4m + 2 < p < 6m.
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Proof: According to a theorem of I. Scuur ([19], Hilfsatz I), for any integer
x = 29, there exists a prime p such that x < p =< $x. Therefore, if we take
x = 4m -+ 2, we see that the lemma is true for m = 7. It is readily checked
directly that the lemma is true for m = 2, 3, 4, 5, and 6.

Alternatively, one could use the main theorem of a paper by R. Breusca [20]
to prove this lemma."

Proof of theorem VI (@): Suppose the theorem is false and that P,,(C) can be
imbedded differentiably in R*"*'. We may add the point at infinity and thus
assume that P,,(C) is imbedded differentiably in S8***'. We assume that S*"**
is given a definite Riemannian metric. Choose a positive number e so small
that given any point a € 8" of distance < e from P,,,(C), there exists a unique
geodesic segment through a of length < ¢ normal to P,,(C). Let N denote the
set of all points a & 8*™** whose distance from P,,(C) is < e We will call N
an open tubular neighborhood of P,,(C) in S*"*'. Let E denote the boundary
of N and r: E — P,,(C) the projection defined by assigning to any point
a ¢ E the point 7(a) & P,,(C) where the unique geodesic segment through a of
length e normal to P,,,(C) meets P,,(C). Then (B, =, P,,(C), §°", SO@2m + 1))
is a sphere bundle which is associated with the bundle of all normal vectors to
P, (C) in 8**,

Since E is a differentiable hypersurface in S°"*!, we can apply lemmas 12
and 13 to it. We will denote the complement of NV in S°"** by R. Since the
injections H*(N) — H%E) and H*(R) — H%(E) are isomorphisms into for all
g, we may identify H*(N) and H*(R) with certain subrings of H*(E); this we
will do. With this convention,

H'(N) = H'(R) = HYE),
(14.1) HYE) = H'B) + H'™V) (0 < ¢ < 6m, direct sum),
H*"R) = H"™(@N) = 0.
Moreover, the subring IT*() is obviously the same as the image of the projection
7 s H¥*(P,,.(C)) — H*(E).
On the other hand, the characteristic elass of the normal bundle vanishes by
lemma 11; hence we can use theorems IIT and IV to compute the cohomology

ring of E. According to these theorems, we may choose an element z ¢ H"(E, Z)
such that every element u ¢ H(E) can be expressed uniquely in the form

u = 7w + 2.7 u)
and

2" = 7*a) + z-7%(8)
where 8 ¢ H™(E, Z), o ¢ H*"(E, Z) are any elements such that

UThe author is indebted to N. C. AxkeNy for pointing out the existence of references
[19] and [20].
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6 = w2m(P2m(C)) mOd 27
da + B° = Puu(P2n(C)).

By the corollary to lemma 14, @,,(P.,(C)) = (Smm>ym’ hence we may choose

g8 = (i:bn)x'". By lemma 15, P, (P..(C)) = (—-1)'"(3;?)902"‘; hence

, 1 (3 3m\* | om

« = 1P — 01 = 1[0 (3) - (B) e
If we identify the generator z & H>(P,,(C)) with =*(z), then the structure of
the integral eochomology ring of I may be deseribed as follows: It is a commuta-

tive ring generated by the elements z and z of degrees 2 and 2m respectively,
and subject to the following relations:

x2m+l = 0,

21 nf3m 3m\* | om , (3M) a
2= Lo () - G Jem G
With this notation, H*(N) is the subring generated by x, since H*(N) ==
T H* (P, (C)).

We will now apply all this data to obtain a contradiction. H*"(E) and H*"(E)
are free abelian groups of rank 2 with bases {z”, 2} and {z*", 2™z} respectively,
while H*™(N) and H*"(N) are infinite cyclic groups generated by 2™ and z°"

respectively. If we apply (14.1) with ¢ = 2m and ¢ = 4m, we see that H*™(R)
and H*"(R) must also be infinite cyclic groups with generators of the form

(14.2)

u = A" + 2,
v = px'™ + 2™

respectively for appropriate integers \ and ». Since H*"(E) = 0, we must have
uw = 0. Using (14.2), we obtain

w = Qz™ + )@’ + 2™) = [}\ + v+ (i;n)]xz’”z
Since 2°"z is a generator of the infinite cyclic group H*"(E), this implies
(14.3) Mv - (37::> = (.

Next, since H*(R) is a subring, 4 must be an integral multiple of ». Again
computing using (14.2), we obtain

W= Q0" 42 = {)\2 -+ i [(—1)"‘(%;”) - (i;n)z:l}xz"' + [2)\ + (3n2n)]x'"z.
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Therefore if »* is a multiple of » = vz®" 4 2"z, we must have

wo i) - ()] Lo ()]

Now eliminate » between (14.3) and (14.4). The result is the following quadratic
equation for A:

(14.5) 3N+ 3(37;”>x + ;i [(—1)’"(%”) + 3(%")2] - 0.

The discriminant of this quadratic equation is (— 1)’"“3(37:%). As is well known,

if a quadratic equation has integral solutions, then the diseriminant is a perfect
square. Now if m is even, the discriminant is negative, and hence not a perfect
6n -+ 3
2n + 1
always a prime p such that 4n + 2 < p < 6n 4 3if n = 1 (see lemma 17),

. ‘ 6n + 3 B
it follows that 3(217, 1

square. If m is odd, m = 2n + 1, the discriminant is 3( ); since there is

) cannot be a perfect square for n > 1. Thus, form > 1,

(— 1)"“‘13(37’2?2) is never a perfect square. This is a contradiction. Hence theorem

VI(a) is proved.

Remarks: 1. Theorem VI(a) is false for m = 1. WHITNEY [17] has given a
differentiable imbedding of P,(C) in R'.

2. This theorem does not give the best possible result for all values of m.
For example, for m = 2, it can be proved using Stiefel-Whitney classes of the
normal bundle that P,(C) cannot be imbedded differentiably in R™, or more
generally that P,(C) cannot be imbedded differentiably in R*~* for k = 2"
I do not know whether or not theorem VI(a) gives the best possible results for
those values of m for which the Stiefel-Whitney classes are useless.

3. Tor most values of m, it does not appear possible to prove by this method
the analogue of theorem VI(a) for P,,..(C) (namely, that P,,..(C) cannot be
imbedded differentiably in R®™*®). An exception is the case m = 3: One can
prove that P,(C) cannot be imbedded differentiably in E*'. The details of the
proof are left to the reader. This example is especially interesting because
w(P;(C)) = 1, i.e., all Stiefel-Whitney classes of the normal bundle vanish.

Proof of theorem VI (b) in case n = 2m + 1, m > 0: Here again one assumes
the theorem is false, and that P,,.,(Q) can be imbedded in 8*"*". By exactly
the same method as in the proof of theorem VI (a), one chooses a positive number
¢ and constructs the spaces N, E, and R, and the projection = : £ — P,,..,(@).
Then (E, 7, Py,.1(Q), S**%, SO@m -+ 3)) is a sphere bundle which is an asso-
ciate of the bundle of normal vectors, and E is a hypersurface in S*“"*". One
may consider that H*(N) and H*(R) are subalgebras of H*(E), and we have
the analogue of (14.1):

{H“(E) = HR) + H'®N), 0<q<12m+ 6,
H12m+6(R) — H12m+6(N) — O.

(14.6)
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By lemma 16,

2 2m+1
Ponss(Pannl@) = 3(6’" + 1).70

where z ¢ H*(P,,.1(Q)) is an appropriately chosen generator. For simplicity,

gz + 2) then Ps,.. = 4¢2"™*" and ¢ + 0. Making use of
theorem IV, one sees that the structure of H*(¥) may be described as follows:
It is a commutative ring generated by z ¢ H*(E) and z ¢ H*""**(E) subject to

the relations

2m+2
(14.7) {“’ =0

we will let ¢ = 4(

Furthermore, the subring H*(V) is the subring generated by z. From (14.6)
it follows that H****(R) is an infinite cyclic group generated by zz‘, where
i=k—m,m <k < 3m, while H'(R) = 0 for all other values of j > 0. However,
this leads to an immediate contradiction, since H*(R) is not closed under multi-
plication. For example, (22)° = 2°2° = ¢z"™*° by (14.7), and ¢2*"** ¢ H*(N),
gz™™*? % 0.

Proof of theorem VI (b) in case n = 2m, m > 1: The basic idea of the proof in
this case is the same as in the previous case. The details of the computations
are much the same as in the proof of theorem VI (a). As before, we assume
the theorem false and that P,,(Q) can be imbedded differentiably in §'*"**,
and then construct the spaces N, E, and R, and the projection = : E — P,,(Q)
as before. (B, w, P (Q), S*", SO(4m -+ 1)) is the normal sphere bundle. We
have the direct sum decomposition

(14.8) HYE) = H'N) + H'RB), 0<gq < 12m,
and
(14.9) H"™(N) = H*™(R) = 0.

By the corollary to lemma 14, %,,,(P,.,.(Q)) = <i§n)y’", where y is a generator

of H*(P,,(@)). By lemma 16, Py, (P,n(Q)) = [(6m2;‘n‘ 1) - 4<2m67_'f 1)]x2'",

where z is an appropriately chosen generator of H*(P,,.(Q), Z). If we identify
the generator x ¢ H*(P,,(Q)) and =*(x) ¢ H'(E), then, by using theorems III
and IV, we see that the structure of H*(¥) can be described as follows: H*(E)
is a commutative ring generated by x ¢ H*(E) and z ¢ H*"(E) subject to the
following relations:

2m+1 O

=3[0 - om ) - (e

(14.10)
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Also, H*(I) is the subring generated by z. We will now apply (14.8) for ¢ = 4m
and ¢ = 8m to determine H*"(R) and H*"(R). We see that H*"(E) and H*"(E)
are free abelian groups of rank 2 generated by {z™, 2z} and {2*", 22} respectively,
while H*"(N) and H®*"(N) are infinite cyclic groups generated by z™ and z*"
respectively. It follows from (14.8) that H*"(R) and H®*"(R) are also infinite
cyclie groups, and they must be generated by

u = A" + 2,
=y’ 4 272,

respectively, for appropriate choices of the integers A and ». By (14.9),
HY"(R) = 0; therefore uv = 0. If we compute using (14.10), we find that

w = [)\ 4+ v+ (%n)]x“z,

and since 2°"z is a generator of H*"™(E), we must have
(14.11) N+ (?;;") = 0.

Since H*(R) is a subring of H*(E), «* must be an integral multiple of ». Now it
follows from (14.10) that

w= {)‘2 + i [<6W2Z 1) - 4t<2m67-?-z 1) - (31::; )2]}“"% + [2)‘ + <37’:Ln)]xmz

If 2% is to be an integral multiple of v = »2®™ 4 2™z, we must have

a3 [ ) = o ) = G =+ G

Elimination of » between (14.11) and (14.12) gives the following quadratic
equation for A:

am o s 5[ ) = o, ) o) ] <o

6m — 1
2m — 2
a prime between 4m -+ 2 and 6m if m > 1 (see lemma 17), it follows that, for

6m — 1
m > 1, 9<2m — 9
have any integral solutions for m > 1, which is a contradiction. This completes
the proof of theorem VI (b).

Remarks. 1. Apparently the restriction that n > 2 is necessary in theorem
VI (b). Although there is apparently nowhere in the literature a deseription of
an explicit differentiable imbedding of P,(Q) in R', Dr. F. PrrersoN has
communicated to the author a method for a topological imbedding of P,(Q)
in R'. Presumably this imbedding could be “smoothed out” so as to obtain a
differentiable imbedding.

The discriminant of this quadratic equation is 9( >; since there is always

) cannot be a perfect square. Therefore (14.13) does not
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2. This theorem does not always give the best possible result. For example,
if n = 2*, then it can be proved that P,(Q) cannot be imbedded in R***. The
proof uses only Stiefel-Whitney classes mod 2.
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