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ON THE COLLAPSING OF CALABI-YAU MANIFOLDS AND

KÄHLER-RICCI FLOWS

YANG LI AND VALENTINO TOSATTI

Abstract. We study the collapsing of Calabi-Yau metrics and of Kähler-
Ricci flows on fiber spaces where the base is smooth. We identify the collapsed
Gromov-Hausdorff limit of the Kähler-Ricci flow when the divisorial part of
the discriminant locus has simple normal crossings. In either setting, we also
obtain an explicit bound for the real codimension 2 Hausdorff measure of the
Cheeger-Colding singular set, and identify a sufficient condition from birational
geometry to understand the metric behavior of the limiting metric on the base.

1. Introduction

In this paper we study the collapsing behavior of Ricci-flat Kähler metrics on
Calabi-Yau manifolds, and of long-time solutions of the Kähler-Ricci flow. We first
describe in detail these two setups, which have been much studied recently, and
state the main open problems that we are interested in.

1.1. Calabi-Yau. Mm is a projective Calabi-Yau manifold with KM
∼= OM , with

a trivialization Ω of KM , equipped with a holomorphic line bundle L which is
semiample and with Iitaka dimension n := κ(L) that satisfies 0 < n < m. Then
there is some ℓ sufficiently divisible such that the linear system |ℓL| defines a fiber
space structure f : M → N (surjective holomorphic map with connected fibers)
onto a normal projective variety Nn with 0 < n < m. Let D ⊂ N denote the closed
subvariety given by the union of the singularities of N together with the critical
values of f on N reg, and write S = f−1(D) and D = D(1) ∪ D(2) where D(1) is
the union of all codimension 1 irreducible components of D and dimD(2) 6 n− 2.
The fibers My = f−1(y) for y ∈ N\D are Calabi-Yau (m − n)-folds. We will also
denote by N◦ = N\D,M◦ = M\S.

Given a Kähler metric ωN on N (in the sense of analytic spaces [48] if N is not
smooth) and a Ricci-flat Kähler metric ωM on M , we are interested in the behavior
of the Ricci-flat metrics ω(t) on M cohomologous to f∗ωN + e−tωN , t > 0, in the
limit as t→ ∞. To identify the limit, one solves [51, 55] the complex Monge-Ampère
equation on N◦

(1.1) (ωN + i∂∂̄ϕ)n = f∗(ωm
M )

∫
N
ωn
N∫

M ωm
M

,

where ωcan := ωN + i∂∂̄ϕ is a Kähler metric on N◦ and ϕ ∈ C0(N) (for continuity,
see [13, 17, 30]). After earlier work in [55, 26, 60, 35, 36], it was very recently shown
in [37] that ω(t) → f∗ωcan in C∞

loc(M
◦, gM ).

In [53] it was proved that the metric completion (Z, dZ) of (N◦, ωcan) is a compact
metric space and that (M,ω(t)) → (Z, dZ) in the Gromov-Hausdorff topology (see
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also [27, 62] for earlier results in this direction). The following questions, raised in
[56, 57, 58, 27], remain open in general:

Conjecture 1.1. In the Calabi-Yau setup, the Gromov-Hausdorff limit is homeo-

morphic to N . Furthermore, Z\N◦ has real Hausdorff codimension at least 2 inside

(Z, dZ).

The homeomorphism statement was proved in [53] when N is smooth, and the
full conjecture is known when N is a curve [27], or when M is hyperkähler [62], or
when N is smooth and D(1) has simple normal crossings [28].

We remark that the choice of path f∗[ωN ]+e−t[ωN ] in cohomology originates in
[29], and is quite analogous to what happens in the Kähler-Ricci flow setup below.
Choosing a different path that approaches f∗[ωN ] in general results in a different
behavior [20, §4.4.4], and the existing estimates mostly break down.

1.2. Kähler-Ricci flow. Mm is a compact Kähler manifold with KM semiample
and with Kodaira dimension n = κ(M) that satisfies 0 < n < m. Let f : M → N
be the Iitaka fibration of M , which is the fiber space determined by the linear
system |ℓKM | with ℓ sufficiently divisible, and Nn is a normal projective variety.
Define D,N◦,M◦ as in Setup 1.1, and again the fibers My, y ∈ N◦, are Calabi-
Yau (m − n)-folds. Let ωN = 1

ℓωFS|N so that f∗ωN is a smooth semipositive
representative of c1(KM ).

Given a Kähler metric ωM on M , consider the normalized Kähler-Ricci flow on
M

∂

∂t
ω(t) = −Ric(ω(t)) − ω(t), ω(0) = ωM .

The flow exists for all t > 0 (see e.g. [59]), and we are interested in the behavior as
t→ ∞. Observe that the metric ω(t) is cohomologous to (1 − e−t)f∗ωN + e−tωM .

In order to identify the limit of the flow, we fix a basis {si} of H0(M, ℓKM )
which defines the map f , and obtain a smooth positive volume form M on M by

M =

(
(−1)

ℓm2

2

∑

i

si ∧ si
) 1

ℓ

.

On then solves [51] the complex Monge-Ampère equation on N◦

(1.2) (ωN + i∂∂̄ϕ)n = eϕf∗(M),

where ωcan := ωN + i∂∂̄ϕ is a Kähler metric on N◦ and ϕ ∈ C0(N). After earlier
work in [51, 22, 60, 35, 21], it was recently shown in [12] that ω(t) → f∗ωcan in
Cα

loc(M
◦) as t→ ∞, for any 0 < α < 1.

Furthermore, in [38] it is shown that diam(M,ω(t)) 6 C, for all t > 0, and [53]
shows that the metric completion (Z, dZ) of (N◦, ωcan) is a compact metric space,
which is homeomorphic to N when this is smooth.

Conjecture 1.2. In the Kähler-Ricci flow setup, (M,ω(t)) → (Z, dZ) in the

Gromov-Hausdorff topology. Furthermore, Z is homeomorphic to N and Z\N◦

has real Hausdorff codimension at least 2 inside (Z, dZ).

The Gromov-Hausdorff convergence is known when N is a curve and the generic
fibers of f are tori [53].
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1.3. Our results. We can now state our results. In either the Calabi-Yau setup
1.1 or the Kähler-Ricci flow setup 1.2, assume that N is smooth and let (Z, dZ) be
the metric completion of (N◦, ωcan). Thanks to [53] this is a compact metric space
homeomorphic to N , and in the Calabi-Yau setup 1.1 it is the Gromov-Hausdorff
limit of (M,ω(t)) as t→ ∞.

Let S ⊂ Z be the singular set in the sense of Cheeger-Colding [8], namely the
set of all x ∈ Z such that there is some tangent cone to (Z, dZ) at x which is not
isometric to R2n. We always have S ⊂ Z\N◦, but this inclusion is strict in general
(see Remark 2.2). Our first result, proved in section 2, is an explicit Hausdorff
measure bound for S:

Theorem 1.3. In either the Calabi-Yau setup 1.1 or the Kähler-Ricci flow setup

1.2, assume that N is smooth and [ωN ] ∈ H2(N,Q), and let H2n−2 be the real

(2n − 2)-dimensional Hausdorff measure of the limit metric dZ on N . Then the

Cheeger-Colding singular set S satisfies

(1.3) H2n−2(S) 6 Cn

∫

D

ωn−1
N ,

where Cn is a dimensional constant.

This estimate would be expected if the Hausdorff measure could indeed be com-
puted cohomologically, as in the case when the limiting metric dZ is smooth. How-
ever, even the best pointwise estimate (1.4) below cannot by itself imply this mea-
sure bound, and one needs instead to appeal to the deep work of Liu-Székelyhidi
[47] on Gromov-Hausdorff noncollapsed limits of polarized Kähler manifolds with
Ricci bounded below. The idea is to use standard approximations ωj of ωcan and
study the singularities of the closed positive current Ric on N which is the weak
limit of the Ricci curvature of ωj. The results in [47] characterize S as the set of
points in N where the limiting Ricci curvature current has positive Lelong number.
At almost all points x ∈ S the tangent cone is R2n−2 ×Cθ(x), where Cθ(x) denotes
the standard conical metric in C with cone angle 2πθ(x) at 0. We are able to
relate θ(x) to the Lelong number of the limiting Ricci current at x, which can be
estimated thanks to the asymptotics of the volume form ωn

can proved in [28], and
we then estimate the Hausdorff measure using the scalar curvature integral.

Our next result deals with the general case when N is allowed to be singular.
We let π : Ñ → N be a resolution of singularities with Ñ smooth and π−1(D) =:
E = ∪iEi a simple normal crossings divisor. In [62] the second-named author and

Zhang conjectured that we can find such a resolution such that on Ñ\E we have
the estimate

(1.4) π∗ωcan 6 C

(
1 −

∑

i

log |si|hi

)C

ωcone,

where si is a defining section of Ei, hi is a Hermitian metric on O(Ei), and ωcone

is a Kähler metric on Ñ\E with conical singularities along E with cone angles
2παi(0 < αi 6 1) along Ei (we are assuming here without loss that |si|hi

6 1

on Ñ , so that the multiplying factor on the RHS of (1.4) is bounded away from
zero). Building upon [27], it was proved in [62] that the estimate (1.4) would
imply the Hausdorff dimension bound in Conjecture 1.1 in full generality (this was
slightly relaxed in [7] to allow for arbitrary small extra poles along E on the RHS
of (1.4)). The conjectured estimate (1.4) was proved in [27] when dimN = 1, in



4 YANG LI AND VALENTINO TOSATTI

[62] when M is hyperkähler, and in [28] when N is smooth and D(1) has simple
normal crossings, but it remains open in general. Our next result identifies an
algebro-geometric condition which is sufficient to prove (1.4), and which comes
from the canonical bundle formula in birational geometry: roughly speaking, to
any resolution π : Ñ → N as above (together with a resolution of the pullback of

f : M → N over Ñ), we associate a Q-divisor ΞÑ on Ñ , which is functorial in the
sense that passing to a higher model gives the pullback divisor. In section 3 we
then show:

Theorem 1.4. In either the Calabi-Yau setup in 1.1 or the Kähler-Ricci flow setup

in 1.2, the conjectured estimate (1.4) holds provided that there exists a resolution

π : Ñ → N as above such that ΞÑ is π-ample.

To prove this result, we refine the arguments in [28] and identify a key divisor

ΞÑ on the resolution Ñ with the property that whenever ΞÑ is π-ample then the
desired estimate (1.4) can be shown to hold. We then describe ΞÑ explicitly using
the canonical bundle formula and the recent results of Kim [40].

Our last result, proved in section 4, settles the Gromov-Hausdorff convergence
in Conjecture 1.2 under a log smoothness assumption:

Theorem 1.5. Assume the Kähler-Ricci flow setup 1.2, and suppose that N is

smooth and D(1) is a simple normal crossings divisor. Then (M,ω(t)) has converges
in the Gromov-Hausdorff topology to the metric completion of (N◦, ωcan), which by

[53] is homeomorphic to N .

This is the first time that this conjectural Gromov-Hausdorff convergence is
proved for base spaces N of dimension greater than 1 (as mentioned earlier, it was
only previously known under the stringent assuptions that N is a curve and the
generic fibers of f are tori [53]), and our assumptions that N is smooth and D(1) is
snc can be thought of as generic, since for example they are Zariski open in families.
One major difference between our result and those in [53] is that when N is a curve
then D is a discrete set, and in this case it follows from [27] that a small tubular
neighborhood of D has very small ωcan-diameter (which is used in [53]), while this
is clearly false when N is higher-dimensional. To prove our result, we make use of
the fact proved in [53] that (N◦, ωcan) is “almost-convex”, and the bulk of our work
lies in establishing an analogous statement for (M◦, ω(t)), uniformly in t. This in
turn requires new ideas, combining results of Perelman [49] with estimate (1.4) to
analyze the behavior of L-geodesics which have endpoints away from S = f−1(D)
but which may venture quite close to S.

1.4. Acknowledgments. This research was conducted during the period when the
first-named author served as a Clay Research Fellow. The second-named author
was partially supported by NSF grants DMS-1903147 and DMS-2231783, and part
of this work was carried out during his visit to the Department of Mathematics
and the Center for Mathematical Sciences and Applications at Harvard University,
which he would like to thank for the hospitality. The second-named author would
like to thank Henri Guenancia, Dano Kim and Yuguang Zhang for discussions. We
are also grateful to the referee for useful comments.
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2. Hausdorff measure bound for the singular set

In this section we prove Theorem 1.3. Throughout this section we assume that
N is smooth and furthermore that [ωN ] ∈ H2(N,Q) (this is automatic in the
Kähler-Ricci flow setup). By the Kodaira embedding theorem, this means that
[ωN ] = c1(L) where L → N is an ample line bundle, which is needed to apply the
results of [47].

2.1. The approximation procedure. For ease of notation, in the Calabi-Yau
setup 1.1 we denote by

(2.1) M =

∫
N ωn

N∫
M ωm

M

ωm
M ,

so that in both setups 1.1 and 1.2 we can write the Monge-Ampère equations (1.1)
and (1.2) on N◦ = N\D as

(2.2) (ωN + i∂∂̄ϕ)n = eλϕf∗(M),

where λ = 0 in the Calabi-Yau setup and λ = 1 in the Kähler-Ricci flow setup.
As shown in [28, Prop.3.1], ωcan extends to a smooth Kähler metric across D(2),

so without loss we may assume that D = D(1) is a divisor (not necessarily with
simple normal crossings).

Recall from the introduction that we have defined (Z, dZ) to be the metric com-
pletion of (N◦, ωcan), which by [53] is a compact metric space homeomorphic to N
(using here that N is smooth).

We then define a smooth positive function F on N◦ by

(2.3)
f∗(M)

ωn
N

= F ,

which as shown in [51] (see also [55], [59, Prop.5.9]) satisfies

(2.4) λωN + Ric(ωN ) − i∂∂̄ logF = ωWP > 0,

where ωWP is a semipositive form of Weil-Petersson type. As shown e.g. in [28,
Lemma 4.1] we have

(2.5) F > C−1,

on N◦, so by Grauert-Remmert [25], − logF extends to a quasi-psh function on
N , still denoted by − logF , which satisfies (2.4) weakly on N , and in general it
may have values −∞ along D. Also, as shown in [51, Proposition 3.2] (see also [19,
Lemma 2.1], [18, Proposition 4]) there is p > 1 such that F ∈ Lp(N,ωn

N ).
We can then apply Demailly’s regularization [14, Theorem 9.1] and obtain a

sequence of smooth functions vj on N which decrease pointwise to − logF as j →
∞, and satisfy vj 6 C for all j and

(2.6) λωN + Ric(ωN ) + i∂∂̄vj > −CωN ,

for all j. The lower bound here cannot be taken arbitrarily small in general because
− logF can have positive Lelong number at points in D. Furthermore, as the
construction of vj shows, we have vj → − logF smoothly on every given compact
subset of N◦.

By Yau’s Theorem [63] (and also Aubin [2] when λ = 1) we can find Kähler
metrics ωj = ωN + i∂∂̄ϕj on N which satisfy

(2.7) ωn
j = (ωN + i∂∂̄ϕj)

n = cje
λϕj−vjωn

N ,
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where 



cj = 1, if λ = 1,

cj =

∫
N
ωn
N∫

N
e−vjωn

N

, if λ = 0,

and by construction we have
∫

N

e−vjωn
N →

∫

N

Fωn
N =

∫

N

f∗(M) =

∫

M

M,

which is strictly positive when λ = 1 and equals
∫
N
ωn
N when λ = 0, so that in

particular cj → 1 as j → ∞. When λ = 0 we also normalize ϕj by supN ϕj = 0.
When λ = 1 we can apply the maximum principle to get

sup
N
ϕj 6 sup

N
vj 6 C,

independent of j. Also, in this case we have ωn
j 6 esupN ϕj−vjωn

N and integrating
this gives

esupN ϕj >

∫
N
ωn
N∫

N e−vjωn
N

> C−1 > 0.

We thus conclude that when λ = 1 we have | supN ϕj | 6 C independent of j. Then,
for λ = 0, 1, since as we said

∫
N
Fpωn

N 6 C for some p > 1, it follows that

(2.8) cpj

∫

N

ep(λϕj−vj)ωn
N 6 C,

for all j, and so Ko lodziej [43] gives us

(2.9) sup
N

|ϕj | 6 C,

for all j. When λ = 0 we have that cje
−vj → F in L1(N,ωn

N ), and so Ko lodziej’s
stability theorem [44] gives us that

(2.10) ‖ϕj − ϕ‖L∞(N) → 0,

where ϕ is as in (2.2). For λ = 1 we can still conclude that

(2.11) ‖ϕj − ϕ‖L1(N,ωn
N) → 0,

by arguing as in [6, Theorem 4.5].
The following proposition is contained in [23, Lemma 2.2] and [53, Prop. 2.3],

but we include the proof for convenience:

Proposition 2.1. The approximating metrics ωj on N satisfy

(2.12) Ric(ωj) > −Cωj,

(2.13) diam(N,ωj) 6 C,

(2.14) Volωj
Bωj

(x, r) > C−1r2n,

for all 0 < r 6 1, x ∈ N and j. The distance functions dgj defined by (N,ωj) satisfy

(2.15) dgj (p, q) 6 CdgN (p, q)α,

for some C,α > 0 and for all p, q ∈ N, j > 0. We also have ωj → ωcan locally

smoothly on N◦, and (N,ωj) → (Z, dZ) in the Gromov-Hausdorff topology.
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Proof. From (2.7) and (2.6) we get

(2.16) Ric(ωj) = Ric(ωN ) + i∂∂̄vj − λi∂∂̄ϕj > −CωN − λωj ,

so to prove (2.12) it suffices to show that

(2.17) ωj > C−1ωN .

This follows from the usual Schwarz Lemma argument: the Chern-Lu inequality
gives

∆ωj
log trωj

ωN >
1

trωj
ωN

(
gkℓj g

pq
j Ric(ωj)kq(gN )pℓ − gkℓj g

pq
j (Rm(ωN ))kℓpq

)
> −Ctrωj

ωN−λ,

using (2.16), and so taking A large enough but uniform we have

∆ωj

(
log trωj

ωN −Aϕj

)
> trωj

ωN − C,

and so the maximum principle and (2.9) give

trωj
ωN 6 C,

which proves (2.17).
Next, applying [23, Theorem 1.1] directly proves (2.13), and then Bishop-Gromov

volume comparison gives us (2.14). The Hölder estimate (2.15) for the distance
function of (N,ωj) follows from Ko lodziej’s uniform Hölder bound [45]

‖ϕj‖C2α(N,ωN) 6 C,

for some α > 0, together with the first-named author’s argument in [46, Theorem
4.1] that deduces (2.15) from this.

To prove locally smooth convergence, observe that for every given K ⋐ N◦ we
have in particular that supK(cje

λϕj−vj ) 6 CK for all j, and combining this with
(2.7) and (2.17) we see that on K we have

C−1
K ωN 6 ωj 6 CKωN ,

for all j, and by now standard local higher order estimates for (2.7) (on a slightly
larger open set) give us uniform estimates ‖ωj‖Ck(K,ωN ) 6 CK,k for all j, k. Thanks
to (2.10) and (2.11), this gives that ϕj → ϕ smoothly onK, and so ωj → ωcan locally
smoothly on N◦.

Lastly, the Gromov-Hausdorff convergence of (N,ωj) to (Z, dZ) follows by com-
bining the arguments in [53, Proof of Prop.2.3 Step 3] and [53, Proof of Prop.2.2
(3)]. �

2.2. The measure bound (1.3). In this section we still have as standing assump-
tion that N is smooth. Define S ⊂ Z as the singular set in the sense of Cheeger-
Colding [8], namely the set of all x ∈ Z such that there is some tangent cone at x
which is not isometric to R2n, and for 0 6 k 6 2n let Sk be the set of all x ∈ Z such
that no tangent cone at x splits off an Rk+1 factor. Then, thanks to Proposition
2.1, by [8] we have S = S2n−2 and dimH Sk 6 k. In particular, if we define

Σ = S\S2n−3 = S2n−2\S2n−3,

then for every point x ∈ Σ there is some tangent cone at x which splits off R2n−2,
and dimH(S\Σ) 6 2n− 3. Furthermore, thanks to [9] up to removing a subset of Σ
with zero 2n−2 dimensional Hausdorff measure (which we will do without changing
notation), the tangent cone at any x ∈ Σ is unique and isometric to R2n−2 ×Cθ(x),
where 0 < θ(x) < 2π denotes the cone angle at x. The function θ(x) can be
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interpreted as the monotone limit of the volume ratio at x, θ(x) = limr↓0
VolB(x,r)
ω2nr2n

,
whence it is upper-semicontinuous.

As in [8], for any ε > 0 we define Rε as the set of all points x ∈ Z such that the
Gromov-Hausdorff distance between B(x, r) and the r-ball in R2n is less than εr
for all sufficiently small r > 0. Then their complements

(2.18) Sε = Z\Rε,

are closed subsets and S =
⋃

ε>0 Sε.
Recall in [53, Prop. 2.3] it is shown the inclusion N◦ →֒ N extends to a home-

omorphism F : Z → N , which maps bijectively Z\ι(N◦) onto D ⊂ N (here
ι : N◦ →֒ Z is the canonical inclusion). We will use F to identify Z with N ,
suppressing F from the notation, so for example dZ will be a distance function on
N , etc. It is important to note that the Hausdorff measures and dimensions that
we will use on N are those of dZ (and not those of a smooth metric on N), unless
otherwise specified.

Remark 2.2. Since ωcan is a smooth Kähler metric on N◦ and ωj → ωcan locally
smoothly there, it follows that S ⊂ D. This inclusion is strict in general, as can be
seen for example in the case when f : M → N is an elliptic fibration of K3 surfaces
with 24 singular fibers of type I1, which is the setup considered by Gross-Wilson
[29]: in this case D is a finite set of points in N ∼= P1 and from their work it follows
that the metric ωcan has tangent cone C at all points of D (indeed, ωcan has an
explicit asymptotic behavior at points in D, see e.g. [34, Table 1]), so in this case
S is empty even though the metric is not smooth at the points in D. This was
extended in [27] to arbitrary elliptically fibered K3 surfaces, and the tangent cone
of ωcan at any point p ∈ D can be precisely determined from the Kodaira type of
the singular fiber f−1(p), see [34, Table 1] (in particular, the tangent cone is C if
and only if the singular fiber is of type Ib, b > 0).

Thanks to [47, Proposition 4.1], there is a weak limit Ric of Ric(ωj), which is
a closed (1, 1)-current on N , smooth on N◦, which locally differs from a positive
current by i∂∂̄ of a continuous function, hence its Lelong numbers are well-defined.
They also show that S is equal to the set of points x ∈ N where ν(Ric, x) > 0.
By [47, Theorem 4.1] this is an at most countable union of closed analytic subsets
of N , contained in the discriminant locus D, and so in particular the number of
divisorial components of S is finite. Passing to the limit in (2.12) on N◦ shows that

(2.19) Ric > −Cωcan,

holds pointwise on N◦ and weakly on all of N .
On the other hand, differentiating (2.7) gives

(2.20) Ric(ωj) = Ric(ωN ) + i∂∂̄(vj − λϕj),

where ϕj → ϕ uniformly on N and vj decreases pointwise to − logF , and thus
from the construction in [47] we see that we have

(2.21) Ric = Ric(ωN ) − i∂∂̄(λϕ + logF),

as currents on N , where recall that ϕ ∈ C0(N) ∩ C∞(N◦).
We write D =

⋃
iDi for the decomposition into irreducible components (which

are divisors, since as mentioned earlier we are assuming without loss that D = D(1),
as ωcan extends smoothly across D(2) by [28, Prop.3.1]), and consider a composition
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of smooth blowups π : Ñ → N such that E = π−1(D) has simple normal crossings.

Write D̃ for the proper transform of D and E = π−1(D) = D̃ ∪ F where F is
π-exceptional. Then π∗ Ric has a Siu decomposition [50]

(2.22) π∗ Ric =
∑

i

ν(Ric, Di)[D̃i] +
∑

i

ν(π∗ Ric, Fi)[Fi] + R̃icsm,

where ν(Ric, Di) = ν(π∗ Ric, D̃i) and ν(π∗ Ric, Fi) are the generic Lelong numbers

(which may be zero), and R̃icsm is a closed (1, 1)-current on Ñ , smooth on Ñ\E,
which satisfies

(2.23) R̃icsm > −Cπ∗ωcan,

weakly on Ñ , and whose generic Lelong number along the Di’s and Fi’s vanish. In
fact we can say a lot more:

Lemma 2.3. For any x ∈ E there is a neighborhood U of x in Ñ and a constant

CU so that on U we can write

R̃icsm = i∂∂̄ψ,

where ψ satisfies

(2.24) − CU log(− log dgÑ (z, E)) 6 ψ(z) 6 CU ,

for all z ∈ U\E.

Proof. From (2.21) we have

π∗ Ric = π∗ Ric(ωN) − i∂∂̄(λπ∗ϕ+ log π∗F),

and since ϕ ∈ C0(N) ∩ C∞(N◦), it suffices to understand the singularities of π∗F
along E.

This is a consequence of results proved in [28] (generalizing earlier results in [27]
when n = 1) as follows. Define Jπ > 0 by

π∗ωn
N = Jπω

n
Ñ
.

Choosing defining sections sD̃i
, sFi

and metrics hD̃i
, hFi

for the line bundles corre-

sponding to the irreducible components of D̃ and F , we have that Jπ is comparable

to
∏

j |sFj
|2bjhFj

with bj ∈ N>0 (recall that N is smooth). Then [28, Theorems 2.3,

7.1 and Lemma 4.1] (also [40, Rmk 1.6]) give on Ñ\E

C−1

∏
j |sFj

|2βj

hFj∏
i |sD̃i

|2(1−γi)
hD̃i

6 Jππ
∗F 6 C

∏
j |sFj

|2βj

hFj∏
i |sD̃i

|2(1−γi)
hD̃i

(− log dgÑ (·, E))C ,

where βj ∈ R and 0 < γi 6 1, and we must also have bj > βj. Thus

C−1 1
∏

j |sFj
|2(bj−βj)
hFj

∏
i |sD̃i

|2(1−γi)
hD̃i

6 π∗F 6 C
(− log dgÑ (·, E))C

∏
j |sFj

|2(bj−βj)
hFj

∏
i |sD̃i

|2(1−γi)
hD̃i

,

which shows that we can take ψ equal to the sum of a local continuous function
plus

− log


π∗F

∏

j

|sFj
|2(bj−βj)
hFj

∏

i

|sD̃i
|2(1−γi)
hD̃i


 ,

and it satisfies (2.24) as claimed. �
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Next, recall that ωcan has continuous potentials on N , hence the Bedford-Taylor
products ωj

can, 2 6 j 6 n, are well-defined closed positive (j, j)-currents on N by

[5], whose cohomology class agrees with [ωj
N ] by [16, Corollary 9.3]. Also, since the

unbounded locus of the local potentials of Ric +Cωcan is contained in D, which has
gN -Hausdorff dimension at most 2n− 2, the wedge product

(Ric +Cωcan) ∧ ωn−1
can

is a well-defined positive Borel measure on N by [16, Theorem 2.5], whose total
mass equals ∫

N

(Ric(ωN ) + CωN ) ∧ ωn−1
N ,

again by [16, Corollary 9.3]. Furthermore, from (2.20), (2.21), and since ϕj → ϕ
uniformly and vj decreases to − logF , [16, Proposition 2.9] shows that

(2.25) (Ric(ωj) + Cωj) ∧ ωn−1
j → (Ric +Cωcan) ∧ ωn−1

can ,

weakly as measures on N .
The pullbacks currents π∗ Ric and π∗ωcan are defined in the usual way (pulling

back ∂∂-potentials), the measure π∗(Ric +Cωcan)∧ (π∗ωcan)n−1 on Ñ is defined as
above using [16, Theorem 2.5], and since π is a modification one easily checks that
we have

(2.26) π∗(π∗(Ric +Cωcan) ∧ (π∗ωcan)n−1) = (Ric +Cωcan) ∧ ωn−1
can .

Using (2.22), on Ñ we have

π∗(Ric +Cωcan) ∧ (π∗ωcan)n−1

=
∑

i

ν(Ric, Di)[D̃i] ∧ (π∗ωcan)n−1 +
∑

i

ν(π∗ Ric, Fi)[Fi] ∧ (π∗ωcan)n−1

+ (R̃icsm + Cπ∗ωcan) ∧ (π∗ωcan)n−1

=
∑

i

ν(Ric, Di)[D̃i] ∧ (π∗ωcan)n−1 + (R̃icsm + Cπ∗ωcan) ∧ (π∗ωcan)n−1,

(2.27)

because each term [Fi] ∧ (π∗ωcan)n−1 vanishes as Fi is π-exceptional.
Let now Ur ⊂ N be the r-neighborhood of D with respect to ωN . We then have

the following claim:

Lemma 2.4. For any continuous nonnegative function h on N we have

lim
r→0

∫

Ur

h(Ric +Cωcan) ∧ ωn−1
can =

∑

i

ν(Ric, Di)

∫

Di

hωn−1
can .

Proof. Let Ũr = π−1(Ur) (a shrinking family of open neighborhoods of E) and

h̃ = π∗h, then using (2.27) we have

lim
r→0

∫

Ur

h(Ric +Cωcan) ∧ ωn−1
can = lim

r→0

∫

Ũr

h̃π∗(Ric +Cωcan) ∧ (π∗ωcan)n−1

=
∑

i

ν(Ric, Di)

∫

D̃i

h̃π∗ωn−1
can + lim

r→0

∫

Ũr

h̃(R̃icsm + Cπ∗ωcan) ∧ (π∗ωcan)n−1

=
∑

i

ν(Ric, Di)

∫

Di

hωn−1
can + lim

r→0

∫

Ũr

h̃(R̃icsm + Cπ∗ωcan) ∧ (π∗ωcan)n−1,



COLLAPSING CALABI-YAU MANIFOLDS AND KÄHLER-RICCI FLOWS 11

and so, since h̃ is continuous, it suffices to show that (R̃icsm+Cπ∗ωcan)∧(π∗ωcan)n−1

puts no mass on E. Since ωcan has continuous potentials and R̃icsm has local
potentials with at worst log-log singularities (by Lemma 2.3), this is then a well-

known fact: let θ be a smooth form on Ñ cohomologous to R̃icsm + Cπ∗ωcan,

and write R̃icsm + Cπ∗ωcan = θ + i∂∂̄u > 0 where by Lemma 2.3 the function
u satisfies the bounds in (2.24). As a consequence of Demailly’s regularization
[15, Corollary 6.4], the cohomology class [θ] is thus nef, and so for any ε > 0 we
can find a smooth function ϕε such that θ + εωÑ + i∂∂̄ϕε is a Kähler metric on

Ñ . Since π∗ωcan has continuous potentials, it follows from Bedford-Taylor [5] that
ωÑ ∧ (π∗ωcan)n−1 puts no mass on E. Thus, to prove our claim it suffices to show
that (θ+ εωÑ + i∂∂̄u)∧ (π∗ωcan)n−1 puts no mass on E, and this follows e.g. from

[31, Theorem 1.3] since u−ϕε belongs to E1(Ñ , θ+εωÑ + i∂∂̄ϕε) as it has at worst
log-log singularities, e.g. by [32, Proposition 2.3]. �

The following Proposition uses similar ideas as in [47, Prop. 5.1]:

Proposition 2.5. For any continuous nonnegative function h on N ,

(2.28)

∫

Σ

h(2π − θ(x))dH2n−2 6 Cn

∑

i

ν(Ric, Di)

∫

Di

hωn−1
can .

Proof. Given a small ε > 0, we consider the closed subset Sε ⊂ S defined in (2.18)
and let Σε = Sε\S2n−3 (and again remove a further subset of vanishing H2n−2 so
that tangent cones at all points of Σε are unique). Given also a small δ > 0, it
suffices to prove∫

Σε

h(2π − θ(x))dH2n−2 6 Cn

∑

i

ν(Ric, Di)

∫

Di

hωn−1
can + Cδ,

where C does not depend on ε, δ but is allowed to depend on h, as taking the limit
δ → 0 and ε → 0 gives the claim. Given an arbitrarily small r depending on δ,
since Sε \ Σε has Hausdorff codimension at least 3, we can take a cover with

(2.29) Sε \ Σε ⊂
⋃

i

B(yi, r
′
i),

∑

i

r′2n−2
i ≪ δ, r′i < r,

where here and for the rest of this section, B(x, r) denotes the dZ-geodesic ball
centered at x with radius r, while Bj(x, r) will denote the ωj-geodesic ball, and
Uj,r will be the r-neighborhood of D with respect to ωj. Since Sε is compact, so is
the closed subset K = Sε \ ∪iB(yi, r

′
i).

For every x ∈ K, by semicontinuity we can find a small ball B(x, rx) with rx ≪ r
such that

2π − θ(y) 6 (2π − θ(x))(1 − δ), for all y ∈ B(x, 10rx).

Choosing rx sufficiently small, we can make the rescaled ball r−1
x B(x, rx) arbitrarily

close to the tangent cone at x in the Gromov-Hausdorff sense. Using [47, Prop.
3.3], for j sufficiently large depending on x,
∫

Bj(x,ηrx)

R(ωj)
ωn
j

n!
> ω2n−2(2π − θ(x))(1 − δ)(ηrx)2n−2, for all

1

10
< η < 10.

whence ∫

Bj(x,ηrx)

R(ωj)
ωn
j

n!
> ω2n−2(1 − 2δ)(ηrx)2n−2 sup

B(x,10rx)

(2π − θ).
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By compactness, we can cover K with finitely many such balls B(xi, ri) with ri =
rxi

, so that the inequalities hold for j large enough independent of xi ∈ K. Taking
a Vitali subcover, we may further assume that B(xi, ri/3) are mutually disjoint, so
for large enough j we have Bj(xi, ri/4) mutually disjoint. Using also the continuity
of h, for r sufficiently small depending on δ (and on h), and j large enough,

∑

i

ω2n−2(1 − 3δ)
(ri

4

)2n−2

sup
B(xi,ri)

h(2π − θ)

6
∑

i

∫

Bj(xi,ri/4)

h(R(ωj) + nC)
ωn
j

n!

6

∫

Uj,r

h(Ric(ωj) + Cωj) ∧
ωn−1
j

(n− 1)!

6

∫

Ur

h(Ric +Cωcan) ∧ ωn−1
can

(n− 1)!
+ δ.

using (2.25). Combining this with (2.29), and take the limit r → 0 using Lemma
2.4 gives

42−2n

∫

Σε

h(2π − θ(x))dH2n−2 6 lim
r→0

∫

Ur

hRic∧ ωn−1
can

(n− 1)!
+ Cδ

=
∑

i

ν(Ric, Di)

∫

Di

h
ωn−1
can

(n− 1)!
+ Cδ,

as required. �

Recall that the singular set satisfies

S = {x ∈ N | ν(Ric, x) > 0} ⊂ D,

is an at most countable union of closed analytic subvarieties of N . Write S =⋃
i′ Di′ ∪ S>2 where

⋃
i′ Di′ is the (finite) union of divisorial components of S

(which are necessarily also divisorial components of D, so equal to a subset of the
Di’s, which we have indexed by i′ for clarity) and S>2 is an at most countable union
of closed irreducible analytic subvarieties of N of complex codimension at least 2.

Lemma 2.6. If W ⊂ S is an at most countable union of closed irreducible analytic

subvarieties of N of complex codimension at least 2, then

H2n−2(W ) = 0,

where as usual H is the Hausdorff measure of dZ .

Proof. It suffices to show that H2n−2(V ) = 0 for any irreducible component V
of W , and we can also implicitly remove S2n−3 since it has vanishing Hausdorff
measure, so that we can pretend that V ⊂ Σ. Let hε > 0 be a family of smooth
cutoff functions, with hε supported in BgN (V, 2ε) and hε ≡ 1 on BgN (V, ε), and
applying Proposition 2.5 gives
∫

V

(2π − θ(x))dH2n−2 6

∫

Σ

hε(2π − θ(x))dH2n−2 6 Cn

∑

i

ν(Ric, Di)

∫

Di

hεω
n−1
can

6 Cn

∑

i

ν(Ric, Di)

∫

BgN
(V,2ε)

ωn−1
can → 0,
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as ε→ 0. This shows that ∫

V

(2π − θ(x))dH2n−2 = 0,

but since θ(x) < 2π for all x ∈ Σ, this gives H2n−2(V ) = 0. �

Proposition 2.7. Let x ∈ Σ be a point with tangent cone R2n−2 × Cθ(x). Then

the Lelong number of Ric at x is at most 2π − θ(x).

We believe that the Lelong number of Ric at x is actually equal to 2π − θ(x),
but this does not seem to follow from our arguments below.

Proof. We will write θ = θ(x). By assumption, the rescaled balls r−1B(x, r1/4)
converge in the pointed Gromov-Hausdorff sense to the tangent cone Cn−1

z1,...zn−1
×

(Cθ)zn as r → 0. The metric on the tangent cone is written as

g∞ =

n−1∑

i=1

|dzi|2 + |zn|−2(1−θ/2π)|dzn|2.

Using [47, Prop 3.2], we can find holomorphic coordinates w1, . . . , wn (depending
on r) on r−1B(x, r1/3) converging to z1, . . . , zn as r → 0. We can regard wi also as
holomorphic coordinates for the smooth approximating metrics ωj , because as we
know the Gromov-Hausdorff limit Z is homeomorphic to N .

Given any small δ > 0, our goal is to show the Lelong number of Ric at x ∈
r−1B(x, r1/2) is at most 2π− θ+ δ. By the monotonicity of the Lelong number, it
suffices that for r ≪ 1,

1

ω2n−2(n− 1)!

∫
∑

|wi|2<1

(Ric +Cωcan) ∧ ωn−1
Cn 6 2π − θ + δ,

where ωCn =
√
−1
2

∑n
i=1 dwi ∧ dw̄i. Since Ric(ωj) → Ric, ωj → ωcan weakly, and

Ric(ωj) + Cωj > 0, this reduces to showing for j ≫ 1 depending on δ, r,

(2.30)
1

ω2n−2(n− 1)!

∫
∑ |wi|2<1

(Ric(ωj) + Cωj) ∧ ωn−1
Cn 6 2π − θ + δ.

As in [47], we use the Cheng-Yau gradient estimate [10] for the holomorphic func-
tions zi, i = 1, · · · , n, which on {

∑
|wi|2 < 1} gives

(2.31) ωCn 6 Cr−2ωj.

Using (2.31) together with the Bishop volume comparison inequality Volωj
Bj(x, 10r) 6

Cr2n (for all 0 < r 6 1), we can bound
∫
∑

|wi|2<1

ωj ∧ ωn−1
Cn 6 C

∫

Bj(x,10r)

r2−2nωn
j 6 Cr2,

Thus, to establish (2.30), it suffices to show that as r → 0 and j → ∞ fast enough
(depending on r),

(2.32)
1

ω2n−2(n− 1)!
lim

∫
∑

|wi|2<1

Ric(ωj) ∧ ωn−1
Cn = 2π − θ.

We know r−2gj converge in the pointed Gromov-Hausdorff sense to Cn−1 ×Cθ,
and the coordinates wi converge to zi. Write sj = dw1 ∧ · · · ∧ dwn and s =
dz1 ∧ · · · ∧ dzn, so

Ric(ωj) =
√
−1∂∂̄ log |sj |2gj , Ric(g∞) =

√
−1∂∂̄ log |s|2g∞ .



14 YANG LI AND VALENTINO TOSATTI

From the proof of [47, Prop 3.3],

lim

∫
∑ |wi|2<10

| log |sj |gj − log |s|g∞ |(r−2ωj)
n = 0.

Using again (2.31),

lim

∫
∑

|wi|2<10

| log |sj |gj − log |s|g∞ |ωn
Cn = 0.

Given any smooth cutoff function h(z1, . . . , zn), we can regard it as a function of
w1, . . . , wn. Thus

1

ω2n−2(n− 1)!
lim

∫
∑

|wi|2<1

hRic(ωj) ∧ ωn−1
Cn

=
1

ω2n−2(n− 1)!
lim

∫
∑ |wi|2<1

log |sj |2gj
√
−1∂∂̄h ∧ ωn−1

Cn

=
1

ω2n−2(n− 1)!

∫
∑ |wi|2<1

log |s|2g∞
√
−1∂∂̄h ∧ ωn−1

Cn

=
1

ω2n−2(n− 1)!

∫
∑

|wi|2<1

h
√
−1∂∂̄ log |s|2g∞ ∧ ωn−1

Cn

=
2π − θ

ω2n−2(n− 1)!

∫
∑

|wi|2<1,wn=0

hωn−1
Cn

We let h approach the characteristic function on {∑ |wi|2 < 1} to obtain (2.32) as
required. �

Proof of Theorem 1.3. For each fixed i′, let hε > 0 be a family of smooth cut-
off functions supported in BgN (Di′ , 2ε) and hε ≡ 1 on BgN (Di′ , ε), and applying
Proposition 2.5 gives

∫

Di′

(2π − θ(x))dH2n−2
6

∫

Σ

hε(2π − θ(x))dH2n−2
6 Cn

∑

i

ν(Ric, Di)

∫

Di

hεω
n−1
can

6 Cn

∑

i

ν(Ric, Di)

∫

BgN
(Di′ ,2ε)∩Di

ωn−1
can ,

(2.33)

and since the RHS converges to Cnν(Ric, Di′)
∫
Di′

ωn−1
can as ε→ 0, this gives

(2.34)

∫

Di′

(2π − θ(x))dH2n−2 6 Cnν(Ric, Di′)

∫

Di′

ωn−1
can ,

for all i′. But recall that

Σ =

(
⋃

i′

Di′ ∪ S>2

)
\S2n−3.

Let D◦
i′ be points x of the irreducible component Di′ where ν(Ric, x) = ν(Ric, Di′),

so by Siu [50] we know that Di′\D◦
i′ is an at most countable union of closed irre-

ducible analytic subvarieties of N of complex codimension at least 2. Lemma 2.6
shows that H2n−2(S>2) = H2n−2(Di′\D◦

i′) = 0. Thus

(2.35) H2n−2(Σ) 6
∑

i′

H2n−2(D◦
i′ ),
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and

(2.36)

∫

Di′

(2π − θ(x))dH2n−2 =

∫

D◦

i′

(2π − θ(x))dH2n−2.

On the other hand, Proposition 2.7 gives for each i′

(2.37)

∫

D◦

i′

(2π − θ(x))dH2n−2 > ν(Ric, Di′)H2n−2(D◦
i′),

and combining (2.34), (2.36) and (2.37) we deduce that for each i′

H2n−2(D◦
i′) 6 Cn

∫

Di′

ωn−1
can = Cn

∫

Di′

ωn−1
N ,

and with (2.35) we finally deduce that

H2n−2(Σ) 6 Cn

∑

i′

∫

Di′

ωn−1
N 6 Cn

∫

D

ωn−1
N ,

where D is regarded as a reduced divisor. �

3. Collapsing and the canonical bundle formula

3.1. Volume form asymptotics. We now discuss the estimate (1.4). We again
work in the unified setting (2.2), where λ = 0 in the Calabi-Yau setup and λ = 1
in the Kähler-Ricci flow setup.

It was shown in [28] that estimate (1.4) holds if N is smooth and D is a simple
normal crossings divisor. We thus assume that this is not the case, and let π :
Ñ → N be a sequence of blowups with smooth centers such that Ñ is smooth and
E = π−1(D) is a divisor with simple normal crossings. Following the construction

in the proof of [28, Theorem 2.3], we consider a resolution of singularities M̃ →
M ×N Ñ (birational onto the main component of the target space) and obtain the
commutative diagram

M̃

f̃
%%❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

//

p

**
M ×N Ñ //

��

M

f

��

Ñ π
// N

where M̃m is smooth. Since M is also smooth, we can write KM̃ ∼ p∗KM + D̃

where D̃ is an effective p-exceptional divisor, which can be assumed to have simple
normal crossings support. The volume form M̃ := p∗M on M̃ is smooth and in
general has zeros along D̃. If we define ϕ̃ = π∗ϕ ∈ C0(Ñ) ∩ C∞(Ñ\E), then on

Ñ\E we have

π∗ωn
can = eλϕ̃f̃∗(M̃) = π∗ (eλϕf∗(M)

)
,

and the asymptotic behavior of the volume form π∗ωn
can was obtained in [28, The-

orems 2.3 and 7.1] using Hodge theory (and in [40] with a different method, which
also extends to the case when the morphism f is Kähler but not projective, see [40,

Rmk 1.6]): on Ñ\E we have

(3.1) C−1

p∏

j=1

|sj |2βj

hj
ωn
cone 6 π∗ωn

can 6 C

p∏

j=1

|sj |2βj

hj

(
1 −

µ∑

i=1

log |si|hi

)d

ωn
cone,
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where βj ∈ Q>0, and where ωcone is a Kähler metric with conical singularities
along the Ei’s with cone angles 2πγi, 0 < γi 6 1, which we will take of the form
ωcone = ωÑ + i∂∂̄η, where

(3.2) η = C−1
∑

i

|si|2γi

hi
,

for some C > 0 sufficiently large. In particular we have

C−1

∏
i |si|

2(1−γi)
hi

6
ωn
cone

ωn
Ñ

6
C

∏
i |si|

2(1−γi)
hi

.

Let us write

H =
∏

j

|sj |2βj

hj
,

and define a smooth function ψ on Ñ\E by

(3.3) ψ =
π∗ωn

can

∏
i |si|

2(1−γi)
hi

eλϕ̃Hωn
Ñ

,

which depends on the choice of Hermitian metrics hi, and which by (3.1) and the
boundedness of ϕ̃ satisfies

(3.4) C−1 6 ψ 6 C

(
1 −

µ∑

i=1

log |si|hi

)d

.

3.2. The canonical bundle formula. The exponents βj , γi in (3.1) can be de-
termined by applying the canonical bundle formula in birational geometry [1, 21,

24, 39, 40, 42, 21] to the map f̃ . Following the notation in [40], we define divisors

R̃ = −D̃ on M̃ and M = −KÑ on Ñ , so that we have the equality as Q-divisors

KM̃ + R̃ = f̃∗(KÑ + M).

We also define B̃ = π−1(D) ⊂ Ñ , and note that R̃ + f̃∗B̃ has snc support, and

f̃(SuppR̃) ⊂ B̃ (so in particular R̃ is vertical, with the terminology of [40]). It then

follows that f̃ satisfies the conditions in [40, Definition 4.3], and thus thanks to [40,

(16)], [42, Theorem 8.3.7] there is a well-defined Q-divisor B̃R̃ on Ñ supported on

B̃, the boundary part of the canonical bundle formula for f̃ , which satisfies

R̃+ f̃∗(B̃ − B̃R̃) 6 red(f̃∗B̃),

and is the smallest such divisor. Writing

(3.5) B̃R̃ =
∑

i

aiB̃i,

it follows from [40, (16)] that ai ∈ (−∞, 1).

Then M̃ is a volume form on M̃ with “poles along R” in the terminology of [40]

(i.e. zeros along D̃ = −R), so [40, Corollary 1.3] applies (beware that there is a
typo in [40, (4)], and the exponents ai there should be replaced by −ai) and shows
that

π∗ωn
can = eλϕ̃f̃∗(M̃),
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on Ñ\E satisfies

C−1
∏

i

|si|−2ai

hi
ψ 6

π∗ωn
can

ωn
Ñ

6 C
∏

i

|si|−2ai

hi
ψ,

(using again the boundedness of ϕ̃) where si is a defining section of O(B̃i), the
coefficients ai are given by (3.5) and ψ is as in (3.4). Comparing this with (3.1)
shows that the exponents βj in (3.1) are just equal to −ai for those ai < 0, and the
exponents (1 − γi) in (3.1) are equal to ai for those ai > 0.

Given thus Hermitian metrics hi on O(B̃i) (which we will choose precisely later),
we define ψ as in (3.3) by

ψ =
π∗ωn

can

∏
i |si|2ai

hi

eλϕ̃ωn
Ñ

,

so that on Ñ\E

i∂∂̄ log(1/ψ) = Ric(π∗ωcan) − Ric(ωÑ ) +
∑

i

aiRhi
+ λπ∗i∂∂̄ϕ

= π∗ωWP − λπ∗ωcan − Ric(ωÑ ) +
∑

i

aiRhi
+ λπ∗i∂∂̄ϕ

= π∗ωWP − λπ∗ωN − Ric(ωÑ ) +
∑

i

aiRhi

> −λπ∗ωN − Ric(ωÑ ) +
∑

i

aiRhi
,

(3.6)

since ωWP > 0 on N◦. Observe that all terms on the last line of (3.6) are smooth

forms on all of Ñ , and the term
∑

i aiRhi
is cohomologous to B̃R̃.

3.3. Vanishing orders. In this section we will use repeatedly the notion of a
Kähler metric ωN on a singular (reduced, irreducible) compact complex analytic
space N , as in [48], see also [4, Chapter XII.3]. This has the property that if

π : Ñ → N is a resolution of singularities then π∗ωN is a smooth semipositive
(1, 1)-form on Ñ . Furthermore, the resolution Ñ can be chosen to be a Kähler

manifold and if ωÑ is any fixed Kähler metric on Ñ then

π∗ωn
N

ωn
Ñ

is a smooth semipositive function on Ñ which vanishes precisely along the excep-
tional locus Exc(π). We may assume without loss that Exc(π) =

⋃
k Fk is a simple

normal crossings divisor, and we can find real numbers bk ∈ R>0 such that the ratio

π∗ωn
N∏

k |sFk
|2bkhFk

ωn
Ñ

is a smooth strictly positive function on Ñ (for any smooth Hermitian metrics hFk

on O(Fk)). By Yau’s Theorem [63] we can pick our reference Kähler metric ωÑ

such that we have

(3.7)
π∗ωn

N

ωn
Ñ

=
∏

k

|sFk
|2bkhFk

.
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Observe that the coefficients bk are unchanged if we replace ωN by another Kähler
metric on N , since the pullbacks of these metrics to Ñ are uniformly equivalent:
indeed, given two Kähler metrics ωN , ω

′
N on N , given any x ∈ N we can find an

open set U ∋ x in N and embeddings ι : U →֒ CN , ι′ : U →֒ CN ′

and smooth strictly
psh functions ϕ, ϕ′ defined in some neighborhoods of the images ι(U), ι′(U ′) such
that ωN |U = ι∗i∂∂̄ϕ, ω′

N |U = ι′∗i∂∂̄ϕ′. Then [4, Lemma XI.1.3.2] shows that, up
to shrinking our neighborhoods, we may assume that the embeddings ι and ι′ are
equal, and then it is clear that i∂∂̄ϕ and i∂∂̄ϕ′ are locally uniformly equivalent,
and pulling back via ι and π shows that π∗ωN and π∗ω′

N are uniformly equivalent,

proving the claim. We can thus define a π-exceptional R-divisor on Ñ

IÑ/N =
∑

k

bkFk,

which does not depend on the choice of ωN . When N is smooth, we have that
IÑ/N = KÑ/N , but this equality does not hold in general (say when N is Q-

Gorenstein so that KN is Q-Cartier) since the discrepancies of π can be negative
while the vanishing orders bk are always positive).

If

N̂
π̂→ Ñ

π→ N

is a higher model, then fixing a Kähler metric ωN̂ on N̂ we have

π̂∗π∗ωn
N

ωn
N̂

= π̂∗
(
π∗ωn

N

ωn
Ñ

)
π̂∗ωn

Ñ

ωn
N̂

,

and so

(3.8) IN̂/N = π̂∗IÑ/N +KN̂/Ñ .

3.4. A functorial divisor. We then define a Q-divisor on Ñ by

ΞÑ := B̃R̃ + IÑ/N .

If we are now given a higher model π̂ : N̂ → Ñ , and construct f̂ : M̂ → N̂ as
above, then we have (see e.g. [40, Lemma 4.10])

(3.9) B̂R̂ = π̂∗B̃R̃ −KN̂/Ñ ,

and combining (3.8) and (3.9) we obtain the functorial relation

(3.10) ΞN̂ = B̂R̂ + IN̂/N = π̂∗B̃R̃ −KN̂/Ñ + π̂∗IÑ/N +KN̂/Ñ = π̂∗ΞÑ .

3.5. Collapsing. Having introduced the divisor ΞÑ , we now come to the proof of
Theorem 1.4, which we restate here:

Theorem 3.1. Suppose that there is a resolution π : Ñ → N as above such that

ΞÑ is π-ample. Then the conjectured estimate (1.4) holds on Ñ\E.

Proof. We start the proof by using the method of [28]. From (3.4), log(1/ψ) is
bounded above near E, so by Grauert-Remmert [25] it extends to a global quasi-

psh function on Ñ which satisfies (3.6) in the weak sense. Thanks to (3.4), the
extension has vanishing Lelong numbers, so we can approximate it using Demailly’s
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regularization theorem [14] by a decreasing sequence of smooth functions uj with
arbitrarily small loss of positivity, i.e.

(3.11) i∂∂̄uj > −λπ∗ωN − Ric(ωÑ ) +
∑

i

aiRhi
− 1

j
ωÑ ,

on all of Ñ . We use this to obtain a partial regularization of π∗ωcan, which we
denote by ωj = π∗ωN + 1

jωÑ + i∂∂̄ϕj . These are Kähler metrics on Ñ\E solving

(3.12) ωn
j = cje

λϕj−uj
ωn
Ñ∏

i |si|2ai
,

with the normalization supÑ ϕj = 0 if λ = 0, and where cj = 1 for λ = 1, while for
λ = 0 the constant cj is defined by integrating the equation, and satisfies cj → 1 as
j → ∞. This equation is solved via a standard approximation procedure (see e.g.

[28, §5]), and we obtain ϕj which is smooth on Ñ\E and continuous on Ñ , and as

in Section 2 we have the properties that ωj → π∗ωcan locally smoothly on Ñ\E,
and

sup
Ñ

|ϕj | 6 C,

and ‖ϕj − π∗ϕ‖L1(Ñ,ωn

Ñ
) → 0. Crucially, it is also shown in [28, Proposition 5.1]

that for each j there is a constant Cj such that on Ñ\E we have

(3.13) trωcone
ωj 6 Cj ,

so these partial regularizations are not worse than conical (the proof in [28, Propo-
sition 5.1] is written with λ = 0, but it extends immediately to the case λ = 1).

Also, differentiating (3.12) and using (3.11), we see that on Ñ\E we have

Ric(ωj) = −λi∂∂̄ϕj + i∂∂̄uj + Ric(ωÑ ) −
∑

i

aiRhi

> −λωj + λπ∗ωN +
λ

j
ωÑ − λπ∗ωN − 1

j
ωÑ > −λωj −

C

j
ωcone.

(3.14)

Our goal is then to show there are C,A > 0 such that on Ñ\E we have

(3.15) trωcone
ωj 6 Ce−Auj ,

holds for all j sufficiently large, since then passing to the limit in j this gives

trωcone
π∗ωcan 6 CψA,

on Ñ\E, which is our desired estimate (1.4).

First, following [33] we define Ψ = C
∑

i |si|
2ρ
hi
, for some small ρ > 0 and large

C > 0, which can be chosen so that on Ñ\E the curvature of ωcone satisfies

(3.16) Rm(ωcone) > −(Cωcone + i∂∂̄Ψ) ⊗ Id,

see [33, (4.3)].
To prove (3.15) we apply the maximum principle to

Q = log trωcone
ωj + nΨ +Auj −A2(ϕj − η/j) +Abη + ε log |sE |2,

where A is large (to be determined), b > 0 is small and 0 < ε 6 1
j , η was defined in

(3.2), and j will be taken larger than A (once the value of A is fixed). The terms

nΨ+Auj−A2(ϕj−η/j)+Abη are all bounded on Ñ (with bounds independent of j

except for uj), while the term log trωcone
ωj is bounded above on Ñ\E (depending on
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j) by (3.13). Since the term ε log |sE |2 goes to −∞ on E, the quantity Q achieves a

global maximum on Ñ\E. All the following computations are at an arbitrary point

of Ñ\E.
First, from [28, (5.17)] we have

∆ωj
(log trωcone

ωj + nΨ) > −Ctrωj
ωcone −

trωcone
Ric(ωj)

trωcone
ωj

,

while differentiating (3.12) gives

∆ωj
uj = λ∆ωj

ϕj + trωj
Ric(ωj) − trωj

Ric(ωÑ ) + trωj

(
∑

i

aiRhi

)

= λn− λtrωj
π∗ωN − λ

j
trωj

ωÑ + trωj
Ric(ωj) − trωj

Ric(ωÑ ) + trωj

(
∑

i

aiRhi

)

> λn− λtrωj
π∗ωN − C

j
trωj

ωcone + trωj
Ric(ωj) − trωj

Ric(ωÑ ) + trωj

(
∑

i

aiRhi

)
,

and as in [28, (5.20)] we observe that

− trωcone
Ric(ωj)

trωcone
ωj

+ trωj
Ric(ωj)

= −
trωcone

(Ric(ωj) + C
j ωcone + λωj)

trωcone
ωj

+ trωj

(
Ric(ωj) +

C

j
ωcone + λωj

)

+
trωcone

(Cj ωcone + λωj)

trωcone
ωj

− C

j
trωj

ωcone − λn

> −C
j

trωj
ωcone − λn,

using that Ric(ωj) + C
j ωcone +λωj > 0 by (3.14), so the quantity in the second line

is nonnegative. Therefore, using again (3.14),

∆ωj
(log trωcone

ωj + nΨ +Auj)

> −
(
C +

C

j

)
trωj

ωcone − λn+Aλn−Aλtrωj
π∗ωN − CA

j
trωj

ωcone

+ (A− 1)trωj
Ric(ωj) −Atrωj

Ric(ωÑ ) +Atrωj

(
∑

i

aiRhi

)

> −
(
C +

CA

j

)
trωj

ωcone −Aλtrωj
π∗ωN −Atrωj

Ric(ωÑ ) +Atrωj

(
∑

i

aiRhi

)
,

(3.17)

and taking i∂∂̄ log of (3.7) on Ñ\E gives

(3.18) Ric(ωÑ ) = π∗ Ric(ωN ) −
∑

k

bkRFk
.

To bound the term π∗ Ric(ωN ) we use the following lemma:
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Lemma 3.2. There is a constant C such that on Ñ we have

(3.19) Ric(ωÑ ) 6 Cπ∗ωN −
∑

k

bkRFk
.

Proof. In (3.18) the terms Ric(ωÑ ),
∑

k bkRFk
and π∗ωN are smooth on all of Ñ ,

so it suffices to show that on N◦ we have

Ric(ωN ) 6 CωN .

This is of course clear if N is smooth, while for singular N recall that by definition
we can cover N by open subsets Ui with embeddings Ui →֒ B ⊂ CN as analytic
subsets of the unit ball in Euclidean space, and on each Ui the metric ωN equals
the restriction of some Kähler metric on B. Since bisectional curvature decreases
in submanifolds, on Ui ∩N reg ⊃ Ui ∩N◦ we have that the bisectional curvature of
ωN is bounded above, and hence so is its Ricci curvature. �

Inserting (3.18) and (3.19) in (3.17) then gives

∆ωj
(log trωcone

ωj + nΨ +Auj) > −
(
C +

CA

j

)
trωj

ωcone − CAtrωj
π∗ωN

−Aλn+Atrωj

(
∑

k

bkRFk
+
∑

i

aiRhi

)
,

(3.20)

where the term
∑

k bkRFk
+
∑

i aiRhi
is the curvature of a Hermitian metric on

our divisor ΞÑ .
By assumption ΞÑ is π-ample, and so we can choose the metrics hFk

, hi so that

ω̂Ñ := A0π
∗ωN +

∑

k

bkRFk
+
∑

i

aiRhi

is a Kähler metric on Ñ for some (in fact all) A0 sufficiently large. We also choose
A in the quantity Q so that A > 2A0.

Using (3.20) we can then compute

∆ωj
Q > −

(
C +

CA

j

)
trωj

ωcone − CAtrωj
π∗ωN +Atrωj

(
∑

k

bkRFk
+
∑

i

aiRhi

)

−Aλn+A2trωj

(
π∗ωN +

1

j
ωcone

)
+Abtrωj

i∂∂̄η −A2n− εtrωj
RE

> −
(
C +

CA

j

)
trωj

ωcone +Atrωj

(
∑

k

bkRFk
+
∑

i

aiRhi

)
−Aλn

+
A2

2
trωj

π∗ωN +
A2

j
trωj

ωcone +Abtrωj
i∂∂̄η −A2n− C

j
trωj

ωcone

> −Ctrωj
ωcone +Atrωj

(
A0π

∗ωN +
∑

k

bkRFk
+
∑

i

aiRhi
+ bi∂∂̄η

)
−Aλn−A2n,

assuming without loss that A is large so that A2

2 > CA and also that j > A. Then

we choose b > 0 small so that ω̂Ñ + bi∂∂̄η = ω̂cone is a conical Kähler metric with
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ω̂cone > cωcone for some c > 0, so that

Atrωj

(
A0π

∗ωN +
∑

k

bkRFk
+
∑

i

aiRhi
+ bi∂∂̄η

)
> Ac trωj

ωcone,

and finally we can choose A sufficiently large so that

Ac trωj
ωcone > (C + 1)trωj

ωcone,

and so we obtain

∆ωj
Q > trωj

ωcone − C.

Therefore at a maximum of Q (which is not on E) we have

trωj
ωcone 6 C,

and so also

trωcone
ωj 6 CHe−uj ,

hence

log trωcone
ωj +Auj 6 C logH + (A− 1)uj 6 C,

and so also Q 6 C, which must hold everywhere on Ñ\E. The constants do not
depend on ε, so we can let ε→ 0 and this gives

trωcone
ωj 6 Ce−Auj ,

which is (3.15). �

4. Collapsing of the Kähler-Ricci flow

In this section we give the proof of Theorem 1.5. The setup was described in
detail in section 1.2 in the Introduction, and we will not repeat it here.

4.1. Review of some recent results. We first collect some recent results from
the literature that will be used in the course of our proof.

First, by [60, Theorem 1.2] we have that

(4.1) ω(t) → f∗ωcan,

in C0
loc(M

◦), while [52] shows that the scalar curvature of ω(t) is uniformly bounded,
i.e.

(4.2) sup
M

|R(ω(t))| 6 C,

for all t > 0, and also that the volume form of ω(t) satisfies

(4.3) C−1e−(m−n)tωm
M 6 ω(t)m 6 Ce−(m−n)tωm

M ,

on M× [0,∞), as well as the “parabolic Schwarz Lemma” estimate [52, Proposition
2.2] (and also [61, (3.5)] for the case when N is singular)

(4.4) ω(t) > C−1f∗ωN ,

on M × [0,∞).
Next, using the results in [3], in [38, Theorem 1.1] it was very recently proved

that

(4.5) diam(M, g(t)) 6 C,
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uniformly for all t > 0. Also, in [38, Corollary 1.1] it is shown that there is a
uniform C such that for all x ∈M, 0 < r < diam(M, g(t)), t > 0 we have

(4.6) C−1e−(m−n)t
6

Volg(t)B
g(t)(x, r)

r2n
6 Ce−(m−n)t.

We also have information about the collapsed limit space (N◦, ωcan). Thanks to
our assumptions that N is smooth and D(1) has simple normal crossings, we can
apply [28, Theorem 1.4] which gives us that

(4.7) C−1ωcone 6 ωcan 6 C

(
1 −

µ∑

i=1

log |si|hi

)A

ωcone,

holds on N\D(1), where ωcone is a Kähler metric with conical singularities along
D(1) =

⋃
iDi. Also, in [28, Prop.3.1] it is shown that ωcan extends to a smooth

Kähler metric across D(2), so without loss we may assume that D = D(1) is a simple
normal crossings divisor.

If we denote by dcan the associated distance function on N◦, then it is shown in
[28, Theorem 6.1] (using [62, (2.7)]) and also in [53, Proposition 2.2] that (N◦, dcan)
has finite diameter, and so its metric completion (Z, dZ) is a compact metric space
which by [53, Proposition 2.3] is homeomorphic to N (here we use that N is
smooth). Also, [53, Proposition 2.2] shows that for every p, q ∈ N◦ and δ > 0
there is a path γ in N◦ joining p and q with

(4.8) Lgcan(γ) 6 dZ(p, q) + δ.

We can call this the “almost convexity” of (N◦, dcan) inside its metric completion.
There is also a more localized version of this almost convexity. Let us introduce

the following notation: for any ε > 0 let Uε ⊂ N be the ε-neighborhood of D
with respect to the fixed metric ωN on N , and let Ũε = f−1(Uε) ⊂ M . Then in
[53, Proposition 2.2] it is shown that given any δ, ε′ > 0 sufficiently small, there is
0 < ε < ε′ such that for every p′, q′ ∈ N\Uε′ there is a path γ in N\Uε joining p′

and q′ such that (4.8) holds. But thanks to the upper bound in (4.7) it follows that
for every p ∈ N\Uε there is p′ ∈ N\Uε′ which can be joined to p by a path which
is contained in N\Uε and with gcan-length at most δ. Concatenating this path, the
path γ, and the analogous path joining q and q′ insider N\Uε we conclude that
given δ > 0 there is ε > 0 such that for every p, q ∈ N\Uε there is a path γ in
N\Uε joining them such that (4.8) holds. We will call this the almost-convexity of
(N\Uε, dcan).

It is also possible to avoid using (4.7) as follows: using (2.15) and passing to
the limit on N\Uε shows that dcan has a local Hölder bound there (with respect
to gN), and we conclude the localized almost convexity statement since the gN -
distance from p to ∂Uε′ is O(ε′).

4.2. Reduction of Theorem 1.5 to Proposition 4.1.

Proof of Theorem 1.5. From the volume form bound (4.3) we see that for any given
δ > 0 there are ε = ε(δ) < δ, T > 0 such that for all t > T we have

(4.9)
Vol(Ũε, ω(t))

Vol(M,ω(t))
6 δ.

We can also assume that ε is small enough so that the above-mentioned almost-
convexity property of N\Uε holds, and we fix this value of ε(δ) for the rest of the



24 YANG LI AND VALENTINO TOSATTI

proof. Also, in all of the following, δ′ > 0 will be a positive number that depends
on δ and satisfies δ′(δ) → 0 as δ → 0, which may change from line to line.

Claim 1. For every p ∈ Uε we have

(4.10) dZ(p, ∂Uε) 6 δ′.

Recall here that (Z, dZ) denotes the metric completion of (N◦, dcan). Claim 1
follows easily from the upper bound for ωcan in (4.7), however we can also argue in a
different way without using (4.7), as follows. We employ the family of metrics ωj in
Proposition 2.1 that regularize ωcan and have the property that (N,ωj) → (Z, dZ) in
the Gromov-Hausdorff sense. Thanks to Cheeger-Colding’s extension of Colding’s
volume convergence theorem [8, Theorem 5.9], the volume noncollapsing bound in
(2.14) implies that there is C such that for all x ∈ Z and 0 < r < diam(Z, dZ) we
have

(4.11) H2n(BdZ (x, r)) > Cr2n,

where here H2n denotes the 2n-dimensional Hausdorff measure. By definition we
have an isometric embedding ι : (N◦, dcan) →֒ (Z, dZ) and it is shown in [62, p.758]
that

(4.12) H2n(Z\ι(N◦)) = 0.

On the other hand, on N◦ the renormalized limit measure ν is proportional to ωn
can

by [62, p.758], and since this is proportional to eϕf∗(M) with ϕ bounded, it follows
that

(4.13)

∫

Uε\D
ωn
can 6 C

∫

Ũε

ωm
M 6 δ′,

and so if we identify Uε with its image in Z under the homeomorphism N ∼= Z, it
follows from (4.12) and (4.13) that

(4.14) H2n(Uε) 6 δ′,

and Claim 1 follows from (4.11) and (4.14).

Claim 2. We have

dGH((Z, dZ), (N\Uε, dcan)) 6 δ′, where δ′(δ) → 0 as δ → 0.

We emphasize that here (N\Uε, dcan) denotes the restriction of the metric dcan from
N◦ to the subset N\Uε. However, by the almost-convexity property of N\Uε, this
differs from the distance induced by the metric ωcan on N\Uε by at most δ, so these
two distances on N\Uε can be safely interchanged in our arguments.

To prove Claim 2 we use Claim 1 that allows us to define a map F : Z ∼= N →
N\Uε (in general discontinuous) which is the identity on N\Uε and inside Uε it
maps p to a point q ∈ ∂Uε with dZ(p, q) 6 δ′ (which is not unique, but we just
choose any one of them). Let G : N\Uε → N ∼= Z denote the inclusion. It is
elementary to check that F and G are a 3δ′-GH approximation, using the almost
convexity property (4.8) and the fact that replacing p by q only distorts the dZ -
distance function by δ′. For the reader’s convenience we spell out the details, since
a similar argument will also be used later: we need to show the following properties

(4.15) dZ(x,G(F (x))) 6 δ′, x ∈ N,
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(4.16) dcan(y, F (G(y))) 6 δ′, y ∈ N\Uε,

(4.17) |dZ(x, x′) − dcan(F (x), F (x′))| 6 3δ′, x, x′ ∈ N,

(4.18) |dcan(y, y′) − dZ(G(y), G(y′))| 6 δ′, y, y′ ∈ N\Uε.

Estimate (4.15) is trivial when x ∈ N\Uε, and follows from (4.10) when x ∈ Uε.
Estimate (4.16) is trivial. Next, given any x, x′ ∈ N\Uε using (4.8) we see that

(4.19) dZ(x, x′) 6 dcan(x, x′) 6 dZ(x, x′) + δ′.

This immediately implies (4.18), so it remains to check (4.17), and for this we
consider three cases. First, if x, x′ ∈ N\Uε then (4.17) follows from (4.19). Second,
suppose x ∈ N\Uε, x

′ ∈ Uε. Then using the almost-convexity in (4.10) we have

(4.20) dZ(x′, F (x′)) 6 δ′,

and using this and (4.19) we obtain

dZ(x, x′) 6 dZ(x, F (x′)) + δ′ = dZ(F (x), F (x′)) + δ′ 6 dcan(F (x), F (x′)) + δ′,

and also

dcan(F (x), F (x′)) 6 dZ(F (x), F (x′))+δ′ 6 dZ(x, x′)+dZ(x′, F (x′))+δ′ 6 dZ(x, x′)+2δ′,

proving (4.17) in this case. Thirdly, suppose x, x′ ∈ Uε, and use again (4.19) and
(4.20) to bound

dZ(x, x′) 6 dZ(x, F (x)) + dZ(x′, F (x′)) + dZ(F (x), F (x′))

6 dZ(F (x), F (x′)) + 2δ′ 6 dcan(F (x), F (x′)) + 2δ′,

and

dcan(F (x), F (x′)) 6 dZ(F (x), F (x′)) + δ′

6 dZ(x, F (x)) + dZ(x′, F (x′)) + dZ(x, x′) + δ′ 6 dZ(x, x′) + 3δ′,

completing the proof of (4.17) and of Claim 2.

Next, recall from (4.1) that away from S we have locally uniform convergence of
ω(t) to f∗ωcan. Since f : M◦ → N◦ is a C∞ fiber bundle it follows easily that, up
to making T larger, we have

(4.21) dGH((N\Uε, ωcan), (M\Ũε, ω(t))) 6 δ,

for all t > T , see e.g. [59, Theorem 5.23]. But as a consequence of almost-convexity,
the distance function given by (N\Uε, ωcan) differs from (N\Uε, dcan) by at most
δ, so we also have

(4.22) dGH((N\Uε, dcan), (M\Ũε, ω(t))) 6 2δ,

for all t > T . Lastly, we have the following claim:

Claim 3. Up to making T larger, we have

dGH((M\Ũε, ω(t)), (M,ω(t))) 6 δ′, where δ′(δ) → 0 as δ → 0,

for all t > T .

Combining Claims 2 and 3 with (4.22) we conclude that

(M,ω(t)) → (Z, dZ),



26 YANG LI AND VALENTINO TOSATTI

in the Gromov-Hausdorff topology as t → ∞, which will complete the proof of
Theorem 1.5.

The proof of Claim 3 relies heavily on the following statement, which can be
thought of as an almost-convexity of (M\Ũε, ω(t)) inside (M,ω(t)) uniformly in t >

T . Denote by dt the distance function of (M,ω(t)) and by d̂t the distance function

of (M\Ũε, ω(t)), so that we trivially have dt(x, x
′) 6 d̂t(x, x

′) for all x, x′ ∈M\Ũε.
Then we have:

Proposition 4.1. Given δ > 0 there are δ′, T > 0, with δ′(δ) → 0 as δ → 0, such

that for all x, x′ ∈M\Ũε and all t > T we have

(4.23) dt(x, x
′) 6 d̂t(x, x

′) 6 dt(x, x
′) + δ′.

Indeed, assuming Proposition 4.1, the proof of Claim 3 is completely analogous
to the proof of Claim 2, and we briefly outline it. First, we have the analog of
Claim 1, namely that, up to enlarging T , for all t > T and x ∈ Ũε we have

(4.24) dt(x, ∂Ũε) 6 δ′, where δ′(δ) → 0 as δ → 0.

To see this we use the volume estimates (4.3) and (4.6) which imply that for all
x ∈M, 0 < r < diam(M, g(t)), t > 0,

Vol(Bg(t)(x, r), ω(t))

Vol(M,ω(t))
> C−1r2n,

and so (4.24) follows from this together with (4.9).

Using (4.24), for each t > T we define a discontinuous map Ft : M → M\Ũε

which is the identity on M\Ũε and inside Uε it maps p to some point q ∈ ∂Ũε with

dt(p, q) 6 δ′. One defines then G : M\Ũε → M to be the inclusion, and using
(4.23) one checks exactly as in Claim 2 that Ft and G give a 3δ′-GH approximation

between (M,dt) and (M\Ũε, d̂t), thus proving Claim 3. The proof of Theorem 1.5
is thus reduced to proving Proposition 4.1.

4.3. Proof of Proposition 4.1. The only nontrivial inequality to prove is d̂t(x, x
′) 6

dt(x, x
′) + δ′. For this, we first observe that given any p, q ∈ M\Ũε we know from

the almost-convexity property of (N\Uε, dcan) that their images f(p), f(q) ∈ N\Uε

can be joined by a path γ in N\Uε with

Lgcan(γ) 6 dcan(f(p), f(q)) + δ′.

Since f is a smooth fiber bundle over N\Uε, we can easily find a path γ̃ in M\Ũε

joining p and q with f ◦ γ̃ = γ, see e.g. [59, Theorem 5.23]. Thanks to the uniform
convergence in (4.1), and the fact that dcan(f(p), f(q)) 6 C for some C independent
of p, q, we see that (up to increasing T ) for all t > T we have

dt(p, q) 6 Lgt(γ̃) 6 Lf∗gcan(γ̃) + δ′ = Lgcan(γ) + δ′ 6 dcan(f(p), f(q)) + 2δ′,

so to complete the proof of (4.23) we are left with proving the following:

Claim 4. Up to making T larger, we have

(4.25) dcan(f(p), f(q)) 6 dt(p, q) + δ′,

for all t > T and all p, q ∈M\Ũε.
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We will sometimes tacitly replace δ′ by Cδ′, and without loss we may assume
that dcan(f(p), f(q)) > δ′. The rough idea to prove Claim 4 is to first replace
the distance by a version of Perelman’s reduced distance, and then use a smearing
argument to show these two are roughly the same.

First, we shall reparametrize the flow. Let T be a given large time, whose precise
value will be determined at the end of the argument. Recall that our Kähler metrics
satisfy the Kähler-Ricci flow

∂

∂t
ω(t) = −Ric(ω(t)) − ω(t), ω(0) = ωM .

If as usual we let g(t) denote their associated Riemannian metrics, then the Rie-
mannian metrics

g̃(s) = et−T g(t− T ), s =
1

2
(et−T − 1),

solve the standard Ricci flow

∂

∂s
g̃(s) = −2 Ric(g̃(s)), s > s0 :=

1

2
(e−T − 1),

with g̃(0) = g(T ), and we can convert back from g̃(s) to g(t− T ) by

g(t− T ) =
g̃(s)

1 + 2s
, t = T + log(1 + 2s).

The scalar curvature bound (4.2) translates to

(4.26) sup
M

|R(g̃(s))| 6 C

1 + 2s
,

for all s > s0.
As in [49], we let τ = −s, and letting g̃(τ) be the metrics g̃(s) with parameter

s = −τ , then these solve the backwards Ricci flow

∂

∂τ
g̃ = 2 Ric(g̃), g̃

∣∣
τ=0

= g(T ).

We will work with 0 6 τ 6 τ̄ ≪ 1, where the choice of τ̄ depends on δ, to be
specified. In particular, since τ is small, it follows from (4.1) that g̃(τ) is uniformly

close to f∗gcan on M\Ũε for 0 6 τ 6 τ .
Following Perelman [49, §7] the L-length of a curve γ(τ) in spacetime is defined

by

L(γ) =

∫ √
τ (R(g̃(τ)) + |∂τγ|2g̃(τ))dτ.

The L-distance between two points in spacetime is the infimum of such, and given
p, q ∈ M\Ũε following Perelman we will denote by L(q, τ) the L-distance between
(p, τ = 0) and (q, τ = τ̄ ).

To start, using the almost-convexity of (N\Uε, dcan) we can join f(p) and f(q)
by a path γ inside N\Uε with length

Lgcan(γ) 6 dcan(f(p), f(q)) + δ′,

and let γ̃ be a lift to a path in M\Ũε joining p and q.
We then parametrize γ̃ by τ ∈ [0, τ ] so that |∂τ γ̃|g̃(τ) = A

2
√
ττ

for all 0 6 τ 6 τ ,

where

A =

∫ τ

0

|∂τ γ̃|g̃(τ)dτ 6 dcan(f(p), f(q)) + δ′,
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using that g̃(τ) is close to f∗gcan onM\Ũε for 0 6 τ 6 τ , and that dcan(f(p), f(q)) 6
C by the diameter bound for (N◦, dcan). Then, using the scalar curvature bound
(4.26), we can estimate

L(q, τ) 6 L(γ̃) =

∫ τ

0

√
τ ((R(g̃(τ)) + |∂τ γ̃|2g̃(τ))dτ 6 Cτ

3
2 +

∫ τ

0

√
τ |∂τ γ̃|2g̃(τ)dτ

= Cτ
3
2 +

A2

2
√
τ

6 Cτ
3
2 +

1

2
√
τ

(dcan(f(p), f(q)) + δ′)2,

and we can absorb the term with τ
3
2 into the term with δ′ by choosing τ̄ ≪ δ′, thus

obtaining

(4.27) L(q, τ ) 6 L(γ̃) 6
1

2τ̄1/2
(dcan(f(p), f(q)) + Cδ′)2.

The same is true if q is replaced by any point q′ with f(q′) ∈ Bgcan (f(q), δ′).
We wish to show the almost matching lower bound

(4.28) L(q, τ ) >
1

2τ̄1/2
(dcan(f(p), f(q)) − Cδ′)2.

By the triangle inequality, and up to a small modification of τ̄ to τ̄ (1 + O(δ′)), it
is enough to prove

(4.29) L(q′, τ ) >
1

2τ̄1/2
(dcan(f(p), f(q)) − Cδ′)2

for some q′ with f(q′) ∈ Bgcan(f(q), δ′). The main enemy is that the L-geodesics

can go into the region Ũε where we do not have much control of the metric.
On any minimal L-geodesic γ from (p, 0) to (q′, τ̄), thanks to (4.27) (applied

with q replaced by q′) and the diameter bound for (N◦, dcan) we see that

(4.30) L(γ) = L(q′, τ) 6 Cτ̄−1/2(dcan(f(p), f(q′)) + Cδ′)2 6 Cτ̄−1/2.

Fix a gcan-ball B ⋐ N\Uε centered at f(p) of some radius r > 0 (which depends

only on ε), let B̃ = f−1(B), and let 0 < τ ′ 6 τ be the first time when the curve

γ exits B̃. Since g̃(τ) is uniformly close to f∗gcan along γ(τ) for 0 6 τ 6 τ ′, using
(4.30) we have

r 6 C

∫ τ ′

0

|∂τγ|g̃(τ)dτ

6 C

(∫ τ ′

0

√
τ |∂τγ|2g̃(τ)dτ

) 1
2
(∫ τ ′

0

1√
τ
dτ

) 1
2

6 Cτ ′
1
4

(
Cτ ′

3
2 +

∫ τ ′

0

√
τ(R(g̃(τ)) + |∂τγ|2g̃(τ))dτ

) 1
2

6 Cτ ′
1
4

(
Cτ ′

3
2 + Cτ̄−

1
2

) 1
2

6 Cτ ′
1
4 τ−

1
4 ,

i.e.

(4.31) τ ′ > C−1τ.
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Perelman [49, §7.1] showed that

(4.32) τ−m exp(−l(τ))J(τ)

is nonincreasing in τ along an L-geodesic, where l(q, τ) = 1
2
√
τ
L(q, τ) is the reduced

length and J is the Jacobian of the L-exponential. Thanks to (4.30) we have

(4.33) l(q′, τ ) 6
C

τ
.

Thus, Perelman’s monotonicity together with (4.31) and (4.33) gives that for τ ′ 6
τ 6 τ we have

(4.34) J(τ) >
(τ
τ

)m
el(τ)−l(τ)J(τ ) > C−1e−

C
τ J(τ ),

on M .
Consider the set Γ of all the minimal L-geodesics from (p, 0) to (q′, τ̄ ) with q′

such that f(q′) ∈ Bgcan(f(q), δ′), and consider the subset E ⊂ [τ ′, τ ] ×M defined
by

E =
⋃

γ∈Γ

{(τ, γ(τ)) | τ̄ ′ 6 τ 6 τ̄}.

Writing Eτ = E ∩ ({τ} ×M) (viewed as a subset of M), the spacetime volume of
the region E is defined by

Vol(E) :=

∫ τ

τ ′

∫

Eτ

ω̃(τ)mdτ.

Let Lexpp,τ : TpM → M be the L-exponential map based at p with parameter τ .
Then Eτ = Lexpp,τ (F ) where F ⊂ TpM is a τ -independent open subset, and up
to sets of measure zero Lexpp,τ is a diffeomorphism between F and Eτ , see the
discussion in [41, §17] or [11, §8]. Equipping TpM with the Euclidean metric g̃p(0),
and letting dv be its volume element, we can write

∫

Eτ

ω̃(τ)m =

∫

F

J(τ)dv,

and thanks to (4.34), for all 0 6 τ 6 τ we can estimate
∫

F

J(τ)dv > C−1e−
C
τ

∫

F

J(τ )dv = C−1e−
C
τ

∫

Eτ

ω̃(τ )m,

but up to sets of measure zero, Eτ equals f−1(Bgcan (f(q), δ′)), whose volume with
respect to ωm

M is at least C−1δ′2n. Using the volume form bound (4.3) we thus see
that ∫

Eτ

ω̃(τ)m > C−1e−
C
τ δ′2ne−(m−n)T ,

and using (4.31) we conclude that

(4.35) Vol(E) > C−1τe−
C
τ δ′2ne−(m−n)T .

Next, for 0 < η ≪ 1, to be chosen later depending on δ′, τ , and for τ ′ 6 τ 6 τ ,
we have using (4.3)

∫

Ũη

ω̃(τ)m 6 C

∫

Ũη

ω(T )m 6 Ce−(m−n)T

∫

Ũη

ωm
M

6 Cηe−(m−n)T ,
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where we used that the gM -volume of Ũη is at most Cη. Thus the subset of E given

by (τ, γ(τ)) with γ(τ) ∈ Ũη has spacetime volume bounded above by

Cτηe−(m−n)T 6 Cηδ′−2neC/τ̄Vol(E),

using (4.35). In particular, on a typical minimal L-geodesic in Γ, the τ -time spent

inside Ũη is less than Cτ̄ηδ′−2neC/τ̄ . For each such L-geodesic γ we split [0, τ ] into

the subset I defined by the property that τ ∈ I ⇔ γ(τ) ∈ Ũη, and its complement
J = [0, τ ]\I. Then we have

|I| 6 Cτ̄ηδ′−2neC/τ̄ ,

and thanks to (4.31) we know that every τ ∈ I satisfies τ > C−1τ . The same
argument that we used to prove (4.30) shows that

(4.36) L(γ) 6 Cτ−
1
2 .

Splitting ∫ τ̄

0

|∂τγ|g̃(τ)dτ =

∫

I

|∂τγ|g̃(τ)dτ +

∫

J

|∂τγ|g̃(τ)dτ,

we can then estimate using (4.26), (4.31) and (4.36)

∫

I

|∂τγ|g̃(τ)dτ 6 Cτ−
1
4

∫

I

τ
1
4 |∂τγ|g̃(τ)dτ

6 Cτ−
1
4

(∫

I

√
τ |∂τγ|2g̃(τ)dτ

) 1
2

|I| 12

6 Cτ−
1
4 τ̄

1
2 η

1
2 δ′−neC/τ̄

(
Cτ

3
2 +

∫

I

√
τ(R(g̃(τ)) + |∂τγ|2g̃(τ))dτ

) 1
2

6 Cτ
1
4 η

1
2 δ′−neC/τ̄

(
Cτ

3
2 + Cτ−

1
2

) 1
2

6 Cη
1
2 δ′−neC/τ̄ ,

(4.37)

and combining this estimate with (4.4) we see that the gN -distance traversed by
f(γ) inside Uη is bounded above by

(4.38) Cη
1
2 δ′−neC/τ̄ ≪ ηβ ,

for small enough η and some fixed small positive exponent β < 1
2 .

The issue now is how to use these bounds to estimate from above the gcan-length
of the curve f(γ). Outside of Ũη we have that g̃(τ) is uniformly close to f∗gcan (up
to enlarging T , depending on our choice of η, which itself was chosen depending
ultimately on δ), so we have

(4.39)

∫

J

|∂τγ|g̃(τ)dτ >

∫

J

|∂τf(γ)|gcandτ − Cδ′,

which will give us the desired bound for the gcan-length of the portion of f(γ)
outside Uη (i.e. when τ ∈ J). On the other hand, to estimate the the gcan-length
of the portion of f(γ) inside Uη (i.e. when τ ∈ I), we employ the metric bounds
(4.7) as follows.

Consider the following events: f(γ) enters Uη and reaches Uη/2 before returning
to the boundary of Uη. On the one hand, by definition, the gN -distance traversed
during this whole event is at least η, and on the other hand we have shown in (4.38)
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that it is also less than ηβ , the discussion is local: the event takes place in a local
coordinate chart exhibiting D as a simple normal crossings divisor. Let f(γ(τentry))
and f(γ(τexit)) be the entry and exit points of one event, so that their gcan-distance
is at most ∫ τexit

τentry

|∂τf(γ)|gcandτ.

By the explicit control (4.7) on gcan, we have that

(4.40) C−1ωcone 6 ωcan 6 C

(
1 −

µ∑

i=1

log |si|hi

)A

ωcone.

For simplicity suppose first that D has only one component, which in our local
chart is given by {z1 = 0}. Then we can assume without loss that in this chart the
boundary of Uη is given by {|z1| = η}, and in our chart (4.40) reads

C−1


 idz1 ∧ dz1

|z1|2(1−γ)
+

n∑

j=2

idzj ∧ dzj


 6 ωcan 6 C (1 − log |z1|)A


 idz1 ∧ dz1

|z1|2(1−γ)
+

n∑

j=2

idzj ∧ dzj


 .

The entry and exit points are both on {|z1| = η}, have gcan-distance at most∫ τexit
τentry

|∂τf(γ)|gcandτ , and hence their gcone-distance is at most C times that. There-

fore there exists another path joining these entry and exit points, which is con-
tained in the boundary of Uη (in particular, it does not come into Uη/2) and whose

gcone-length is also at most C
∫ τexit
τentry

|∂τf(γ)|gcandτ , and hence whose gcan-length is

bounded above by

C| log η|C
∫ τexit

τentry

|∂τγ|g̃(τ)dτ.

The general case when in our chart we see several components of D is dealt with
similarly. We perform this construction for all the events (which are disjoint). This
gives a replacement γ′ of f(γ), staying outside Uη/2, agreeing with f(γ) between

the events, and whose gcan-length traversed in each event is at most C| log η|C times
the corresponding integral of |∂τγ|g̃(τ). Thus, using (4.37), (4.38) and (4.39),

dcan(f(p), f(q)) 6 Lgcan(γ′) 6

∫

J

|∂τf(γ)|gcandτ + C| log η|C
∫

I

|∂τγ|g̃(τ)dτ

6

∫

J

|∂τγ|g̃(τ)dτ + Cδ′ + C| log η|Cηβ

6

∫ τ

0

|∂τγ|g̃(τ)dτ + Cδ′,

(4.41)

choosing η small enough. Since γ here is a minimal L-geodesic from (p, 0) to (q′, τ ),
arguing as before we see that

∫ τ

0

|∂τγ|g̃(τ)dτ 6

(∫ τ

0

√
τ |∂τγ|2g̃(τ)dτ

) 1
2
(∫ τ

0

1√
τ
dτ

) 1
2

6
√

2τ
1
4

(
Cτ

3
2 +

∫ τ

0

√
τ (R(g̃(τ)) + |∂τγ|2g̃(τ))dτ

) 1
2

=
√

2τ
1
4

(
Cτ

3
2 + L(q′, τ)

) 1
2

,

(4.42)
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and so from (4.41) and (4.42) (again we can absorb the term with τ
3
2 ) we get

L(q′, τ ) >
1

2τ̄1/2
(dcan(f(p), f(q)) − Cδ′)2

as desired, for some q′ with f(q′) ∈ Bgcan(f(q), δ′), which establishes (4.28) and
(4.29). As explained above, up to small modification to τ̄ this implies that the
same statement (4.29) holds for all q′ with f(q′) ∈ Bgcan(f(q), δ′).

The main difference between this statement and Claim 4 is that we wish to
compute distance with respect to a fixed time metric, rather than evolving metrics.
Again following [49] we consider L̄(q′, τ) = 2

√
τL(q′, τ). As τ → 0+, the function L̄

tends to dg̃(0)(p, q
′)2 (see [11, Lemma 7.47]), and according to [49, (7.15)] we have

(4.43)

(
∂

∂τ
+ ∆g̃(τ)

)
L̄ 6 4m.

Recall that (4.28) gives

(4.44) L̄(q′, τ̄) > (dcan(f(p), f(q)) − Cδ′)2,

for q′ with f(q′) ∈ Bgcan(f(q), δ′), and (4.27) gives

(4.45) L̄(q, τ) 6 C,

for all 0 < τ 6 τ̄ .
Let χ be a smooth (time-independent) cutoff function onN supported in Bgcan(q, δ′)

and equal to 1 on Bgcan(q, δ′/2), and denote by the same symbol its pullback to M
via f . Then by (4.4) we have

(4.46) sup
M

|∆g̃(τ)χ| 6 Cδ′−2,

for 0 6 τ 6 τ . Integrating the τ -time evolution of
∫
M χL̄(·, τ)ω̃m(τ) with respect

to τ ∈ [0, τ ] we obtain

∫

M

χL̄(·, 0)ω̃m(0)

=

∫

M

χL̄(·, τ )ω̃m(τ̄ ) +

∫ τ̄

0

∫

M

L̄(·, τ)∆g̃(τ)χω̃
m(τ)dτ − 2

∫ τ

0

∫

M

χL̄(·, τ)R(g̃(τ))ω̃(τ)mdτ,

and employing (4.3), (4.26), (4.45) and (4.46) we can bound

∫

M

L̄(·, τ)∆g̃(τ)χω̃
m(τ) > −Cδ′−2

∫

f−1(Bgcan (q,δ′))

ω̃m(τ)

> −Cδ′−2e−(m−n)T

∫

f−1(Bgcan (q,δ′))

ωm
M

> −Ce−(m−n)T δ′2n−2,

and similarly

−2

∫

M

χL̄(·, τ)R(g̃(τ))ω̃(τ)m > −Ce−(m−n)T δ′2n,
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and so, using also (4.44),
∫

M

χL̄(·, 0)ω̃m(0)

>

∫

M

χL̄(·, τ )ω̃m(τ̄ ) − Cτ̄δ′2n−2e−(m−n)T

> (dcan(f(p), f(q)) − Cδ′)2
∫

M

χω̃m(τ ) − Cτ̄δ′2n−2e−(m−n)T

>
(
(dcan(f(p), f(q)) − Cδ′)2 − Cτ̄δ′−2

) ∫

M

χω̃m(τ ),

where in the last line we used that
∫
M
χω̃(τ)m > C−1δ′2ne−(m−n)T , which again

comes from (4.3). By choosing τ̄ 6 C−1δ′3 we can ignore the term with τ̄ δ′−2.
Now, integrating the τ -time evolution of

∫
M
χω̃m(τ) with respect to τ ∈ [0, τ ]

we obtain∫

M

χω̃m(τ ) −
∫

M

χω̃m(0) = 2

∫ τ

0

χR(g̃(τ))ω̃(τ)mdτ > −Cτδ′−2e−(m−n)T ,

and so ∫

M

χL̄(·, 0)ω̃m(0)

> (dcan(f(p), f(q)) − Cδ′)2
∫

M

χω̃m(0) − Cτδ′−2e−(m−n)T .

(4.47)

Now using C0 metric convergence in the regular region, the g(T )-distance be-
tween q and q′ is bounded by Cδ′ in the support of χ, so∫

M

χL̄(·, 0)ω̃m(0)

=

∫

M

χdg̃(0)(p, ·)2ω̃m(0) =

∫

M

χdg(T )(p, ·)2ω̃m(0)

6 (dg(T )(p, q) + Cδ′)2
∫

M

χω̃m(0).

(4.48)

Combining (4.47) and (4.48) and dividing by
∫
M χω̃m(0) > C−1δ′2ne−(m−n)T gives

(dg(T )(p, q) + Cδ′)2 > (dcan(f(p), f(q)) − Cδ′)2 − Cτδ′−2n−2,

and taking τ 6 C−1δ′2n+4 we obtain

(4.49) dg(T )(p, q) > dcan(f(p), f(q)) − Cδ′.

This fixes our choice of τ , and hence of η, which finally also fixes how large T has
to be. In summary, we have shown that (4.49) holds for sufficiently large T , and
this finally concludes the proof of Claim 4, and hence of Proposition 4.1. �

Remark 4.2. There is only one point in the proof of Theorem 1.5 where it was
essential to use estimate (4.7) (which is where we use the assumption that N is
smooth and D is snc), which is to prove (4.41). In the proof of (4.41) we had to deal
with the rather artificial possibility that the minimal L-geodesic γ there wanders in
and out of the neighborhood Ũη/2 an unbounded number of times (what we called
“events” in the proof). Here we want to remark that if one can find such γ such
that the number of events is bounded above by a uniform constant A, then one
can prove (4.41) (and hence Theorem 1.5) dropping the snc assumption on D(1).
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Indeed, for each event as above, we can estimate the dcan-distance between the
entry point P := f(γ(τentry)) and the exit point Q := f(γ(τexit)) by using that on
N\Uη/2

dcan(P,Q) 6 CdgN (P,Q)α,

for some uniform α > 0, by passing (2.15) to the limit. Since

dgN (P,Q) 6

∫ τexit

τentry

|∂τf(γ)|gNdτ,

we see that we can join P and Q with a path whose gcan length is at most

C

(∫ τexit

τentry

|∂τf(γ)|gNdτ
)α

6 C

(∫ τexit

τentry

|∂τγ|g̃(τ)dτ
)α

,

and using this path to replace the portion of f(γ) with τentry 6 τ 6 τexit, and
repeating this for all the A events, we obtain a new path γ′ joining f(p) and f(q)
for which we have

Lgcan(γ′) 6

∫

J

|∂τf(γ)|gcandτ + C

A∑

i=1

(∫ τexit,i

τentry,i

|∂τγ|g̃(τ)dτ
)α

6

∫

J

|∂τγ|g̃(τ)dτ + Cδ′ + CA1−α

(∫

I

|∂τγ|g̃(τ)dτ
)α

6

∫ τ

0

|∂τγ|g̃(τ)dτ + Cδ′ + CA1−αηαβ

6

∫ τ

0

|∂τγ|g̃(τ)dτ + Cδ′,

by choosing η sufficiently small, which proves (4.41).
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