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A method formally analogous to that developed by Bogoliubov, Tolmachev and Shirkov
to investigate the collective excitations in superconductors is applied to even-even spherical
nuclei in order to investigate the mechanism of the nuclear collective motion from the standpoint
of particle excitations. Our theory leads, in principle, to the same results as those obtained
by Belyaev. However, the method of description of the nuclear collective motion is quite
different from that of Belyaev’s paper in which the “cranking model” of Inglis is employed,
and the various physical parameters used by Belyaev can be derived uniquely from the
“first” principle. Thus, in so far as the vibrational motion is concerned, the physical
implication underlying the nuclear collective model proposed by Bohr and Mottelson is made
clear. . )

It is outside the scope of this paper to relate the effective inter-particle interactions used
in this paper with the nuclear forces known from the two nucleon problems.

§ 1. Introduction

The main purpose of this paper is to investigate the mechanism of collective
motion in even-even spherical nuclei from the standpoint of particle excitations.
It is not our purpose to go into detailed quantitative calculations, but rather to
develop the basic idea. The j-j coupling shell model is the starting point of our
theory, and the pairing correlation between two nucleons is taken into account by
means of the Bogoliubov transformation.”

Our theory leads, in principle, to the same results as those obtained by
Belyaev.¥ However, the method of description of the nuclear collective motion
is quite different from that of Belyaev’s paper” in which the * cranking model
of Inglis” is employed. It is attempted to propose a method which is more fun-
damental than the “ cranking model . The method is based on an extension of
the theory of Sawada et al.” of the plasma oscillation, and is formally analogous
to the method developed by Bogoliubov, Tolmachev and Shirkov® to investigate
the collective excitations in superconductors.

To take into account the pairing correlation for which the “short range’
part of the effective two-body interaction between particles plays an important role,

< >

the technique of the Bogoliubov transformation® used in the new theory of super- .

* The basic idea which will be developed in this paper corresponds', in some sense, to the
generalization of that proposed in our previous papers.l):®
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332 T. Marumori

conductivity will be adopted, and the results of the application of the transforma-
tion to even-even spherical nuclei will be recapitulated in §2, §3 and §4 in a
form especially suited for our purpose.*®

The fundamental idea and the physical basis of our method describing the nuclear
collective vibrations will be developed in §5, §6 and §7. In order to make clear
that the essential idea of the theory of Sawada et al.” can be applied to the
Jinite size nuclear system, the explicit relationship of this idea with that of the
“ time-dependent self-consistent field method ” underlying the ¢ cranking model ”’®
will be established in §5 and § 6, provided that the “long range” part of the
effective two-body interaction between particles plays an important role for the
collective vibration of even-even spherical nuclei. Thus it will be shown in §7
that a method formally analogous to that developed by Bogoliubov, Tolmachev
and Shirkov” to investigate the collective excitations in superconductors can describe
the collective motion of even-even spherical nuclei.

By using this method it will be shown in § 8 that there are two kinds of
quadrupole vibration-modes for even-even spherical nuclei. To display these . col-
lective modes, the “ method of auxiliary wvariables ”” will be employed in §9.
The relation between the collective variables thus obtained and the * deformation
variables ” used in the Bohr-Mottelson model® will be clarified in §10. In §11
and §12, the normal vibrations of even-even spherical nuclei will be discussed,
and the inertial parameter and the surface tension parameter for the quadrupole vibra-
tion will be uniquely determined. It will be shown that the results thus obtained
are essentially equivalent to those obtained by Belyaev” and are in agreement with
the observed trends.

It is hoped that our approach will be helpful to clarify the concept of the
nuclear collective motion and to give a further insight into the various aspects of
the unified model.

§ 2. The Bogoliubov transformation

An application of the Bogoliubov transformation® in the new theory of super-
conductivity to the nuclear system has been developed by Belyaev.” The close
connection between the basic idea of this method and Racah’s seniority concept
in the j-j coupling shell model has also been discussed by many authors.” In this
and next sections, we shall recapitulate the results in a form especially suited for
our purpose.

Let us consider a system of nucleons which are moving in a spherically sym-
metrical self-consistent potential-well V and choose the wave functions of a nucleon
in this well as the basic functions of the second quantization representation. If
we adopt the j-j coupling shell model, such single-particle states are characterized

* The reader who is familiar with the application of the Bogoliubov transformation to the
nuclear system need not read § 2 and §3 in full but the final results (3-14) and (3:15).
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On the Collective Motion in Even-Even Spherical Nuclei 333

by the quantum numbers (7, [, j, m). Hereafter we shall denote a set of the
quantum numbers (7,7, j) by N. The Hamiltonian for the system of interacting
nucleons is then

H=3"{Nm|T|N"m') @, axrm ——
Nm

NIm/!

é(g})<lvl 12y Ny m2lG] Afz’ my N/ m1,>

X ax& my a;\}g Mo AN, ma! aNl’ my! _)‘ }3 az.{’m ANm,
Nm
= Z {(GN_;‘) 61\"2\7/ ()mm’ —1'_ <le Vl N/ m,> } a;\;majwml
%7;;/
1 -

- ’_"2'—(%_..1”1)<N1 my 2\72 My I G[ Z\]?, m2’ M/ m1/> a;& my, a?\"z mg aA72/ ! ANY iyl s (2 ) 1)
where ¢y is the single-particle energy in N-state and 2 is the well-known chemical
potential. The sign of G and V is chosen to be positive for an attractive inter-
action and an attractive well respectively.

Now it is convenient for our purpose to divide the effective two-body interaction
G approximately into three parts: ’

G=GO+GV+G®, (2-2)

<

where G® the part mainly contributing to the “ pairing interaction ”, G® the part
mainly contributing to the spherically symmetrical self-consistent field, and G* is
the one that is responsible for the collective vibrations. The possibility of such
an approximate division of G will be discussed in § 3. Corresponding to (2-2),
the Hamiltonian (2-1) may be divided as follows :

H=H®+ [, (2-3a)
HO= 33 {(ex—2) 8w Oy +{ N[ VIN'm )} @ @1

Ntm!

et 3 Ny Noma| G- G NG ! N 1) i @yt vt @i
(2-3b)
HS) = — ~r1)—— (%}‘)(M iy Nymg| GBI NY ms” NY 111" ) @R,y @iy g Ayt gt Ayt -
2
(2-3c)

Following Belyaev’s,” let us introduce the new Fermi operators ay, by the
Bogoliubov transformation :»
ANy, = UNn CNm +vNWLdX’—WL > (2 : 4)

where wuy,, and vy, are real numbers which obey the conditions

UNm = UN—m ™= Uny

((—{—“ON‘, m>0
v=\ml, (2-5)

UNm ™= " ONem™ ( <0
—UNny m R
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334 T. Marumori

U+ Ok =1. » (2-6)
After the transformation (2-4), the Hamiltonian H® has the following structure :
HY=U+Hy+H,+H', (2-7)
where
U= %;] (ex—2) - 20%,— % Ay, v, + };;(Nu[V[Nu)vf‘vu, (2-8)

I{2O: ; {(61\7——;‘) : ZuNu vNu-ANu(u?\’u —v?\'u)} (a{;\—’v a;\}—‘v +a1\7—ua1\7u) > (2 : 9)

Hy= > {(ev—2) (i — %) + 4y, 2un, o} (af aw +ay_,ay_,).  (2-10)
H’ is a small perturbation term which will be neglected hereafter. 4, in (2-8)
—(2-10) 1is defined by
AN,:A;(N:J Ny|GO Nyvy Nyvi) sy, o, Uy oy s (2-11)
where a
(Nv Nv|GP| Ny Nyv)=(N +v, N —»|GON; —-», Ny +v1)
—(N +v, N —y|GOIN; +v,, N, —v;). (2-12)
The matrix elements ( Nv|V|N’Y) in (2-8) have the form |
(Ny|V|N"V)=(N +v|VIN" +v)0,,=(N —v|VIN' —V>d,,,. (2-13)
In deriving (2-8)—(2-10), we have made an approximation
{(Nv N'V|GO Nyv; Nyv;)={Nv N’'v|G | Nyv; Ny, )3,, ‘
~0 for N#N/, ' (2-14)
and used the relation
<Nle|N’x/>=A%]1 {N 4y, Ni —n|GPIN, —v, N +V)
—(N +v, Ny —=v;|GP|N" +v', Ny —v)+{N +v, Ny +v;|GY|N;+v,, N'+v')
—(N 45, Ny +n|GOIN' +V, Ny +)}vhi,, | (2-15)

which means the definition of the self-consistent field V.

§ 3. Ground- and excited-states of H®

Let us determine the transformation coefficients #y, and vy, in (2-4) by the
condition

<CplaN__”aN,,H(O)IC0>:O, (31)
where |c,) is the vacuum of the quasi-particles ay,,, i.e.
aNm/ICO>:O, <Cﬂla2—t’m:0' (32)

The vacuum state |c,) thus determined becomes the ground state of H® and cor-
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" On the Collective Motion in Even-Even Spherical Nuclei 335

responds to the “lowest seniority state” of even-even spherical nuclei.
The condition (3-1) means that Hy=0, i.e.

(62\'—«)‘) '2u1\7u‘va_de(uf\’v~—rU12\"u) :0' (3 ) 3)
Using (3-3), (2-6) and (2-11), we find the following equation for 4y, :

1 « {(Nv Nv|GP Nyv; Nyv,)
dyy == S) AT LM g (3-4)
RS AR VAN L A

A. Solutions of the equation for dy,
Eq. (3-4) has a trivial solution
dy,=0 or wuy,vy=0, (3-5)

which corresponds to the sharp Fermi surface. If G? is sufficiently weak, (3-5)
is the only solution of (3-4). However, if G satisfies the inequality

5 (Nv Nv|G [Ny Nywr)

1 ‘EI\E—'}‘!

VI

it

->1, (3-6)

2

then there exists also a non-trivial solution.
Hereafter we shall make the following approximations :
i) Since the most essential contribution to the sum in (3-4) is given by
the transitions between the states in the same shell,* we shall neglect the transi-
tions between different shells, i.e. we shall assume

{Nv Nv|G©| Ny, Nyvy) 2= { Nv Nv|G @ | Nvy Nvy ) O, (3-7)

i1) To simplify the problem, we shall assume further that the inequality
(83:6) under (3:7) may be fulfilled only for the outermost partially-filled shell (the
Ni-shell) ,** and the trivial solution (3-5) is the only solution for the other shells.***

iii) In order that the non-trivial solution exists for the Nj-shell, the matrix
elements { Ny Npvo| G| Npwo’ Novy' ) (““ pairing interaction ””) must have a same sign,
because otherwise there will occur a cancellation. So we shall approximate the
matrix element { Ny, Nowo|G”| Now’ Nvy') by an average over the my-statcs, i.e.

<M)”02V0V0|G(0)1Z\70V0’ Ny Vo’>5v—" <]\70V0MVOI@())IM’TU;VM;JS:W> 0. (3 -8)

* As discussed by Belyaev,? transitions between different shells lead simply to some renormali-
zation of GO, '
** Hereafter we shall denote the quantum numbers of the single-particle states in this outermost
partially-filled shell by adding the suffix 0.
*#k This assumption corresponds to that we are considering the spherical nuclei for which the
level distances |€y—€w,| satisfy the condition
Gy O Qy—GO2(1—n/2) <2(€y—€w,) for €y > €n,,
Gy 2y+ GO Q(1—n/2) <2(€x,—€y) for €y< €.
Here Gy© is an average of (NvNy|G©|Nv'Ny’) over the m-states and 2y=(2j+1)/2. GO and
£ are defined by (3-8) and (3-11) respectively, and 7 is the number of particles in the Ny-shell. For
the nuclei for which such a condition is not satisfied, we must take into account that the inequality
(3:6) under (3:7) may also be fulfilled for the shells near the Nj-shell.
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336 : : - T. Marumori

Under these approximations the non-trivial solution, wh1ch exists only for
the Nj-shell, is obtained by solvmg the equation

AND — Gi ) AN() ]/(EAY—“/)2+A§7(), ) (3'9)

and becomes _
dyy= (GO /1) — (ey,— 1)} (3-10)
where , 2=(25,+1)/2. (3-11)

B. Elimination of the chemical potential 2

The chemical potential 4 is determined through the following equation :
<C0[ Zba;{hro,moazv ”LO|CO> 27)1\0,‘,0“ X‘ {1 (GNO—/:)/V/(61\70_/:)2_{’“42‘30} =n,
(3-12)

where 7 is the number of particles in the Njshell, and is given by
I=ey,— (GYQ/2)(1—n/9). (3-13)

By the use of (3-13), / can be eliminated from all final results. The results
in which 7 is eliminated are summarized as follows :

(GPQ/2) {1—(1—n/2)%"* for the Nj-shell.
dy,=dy= » (3-14)
0 for the shells other than the Nj-shell.

UNm =UN-—m—UN

+vy m>0
= TN = {——vlv m <0,
(1—n/22)'"" for the Nyshell.
uy={ 0 for the closed occupied shells. (3-15)
1 for the open unoccupied shells. '
(n/22)'"* for the Nj-shell.
vy={ 1 for the closed occupied shells.
0 for the open unoccupied shells. /

C. Expression of H®Y and excited states
With the aid of (3-14) and (3-15), H® becomes
H(O): U+ }] ENaXTmaNma (3 : 16)
Nm,

where U is given by (2-8) and means the energy of the ground state (the vacu-
um state |¢)) and -

Ey=v"(ex—1)"+ 4y’

=V {ex— e, -+ (GVL2/2) (l—n/.Q)} 14,2 (3-17)
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On the Collective Motion in Even-Even Spherical Nuclei 337

The excited states of H® are characterized by those with the quasi-particles.
It is well known that the excited states of even-even nuclei contain an even number
of quasi-particles, e.g., for the ground state the number of quasi-particles is zero
(the vacuum state |c,)) and the first excited states are described in terms of two
quasi-particles in the Nj-shell, etc. The number of quasi-particles in the Nj-shell
is thus a generalized seniority number.

§4. Phenomenological analysis of the two-body interaction G

We now come to the stage to discuss the possibility of the division of G into
(2-2). Recently discussions on this possibility ‘were made by many authors.”*
Here we shall follow Weisskopf’s argument.”

Let us expand the two-body interaction G(x,, x,) in spherical harmonics :*

G(xy, x5) = SL_]GL(TITZ) YL0(012) Z ZL-I—-I e G (1 73) 2 YJM(ﬁu 501)

X Y ¥u(ls, ¢3). (4-1)

There is a close connection between the above sum and the division in (2-2).
The spherically symmetrical self-consistent field V is determined mainly by the
L=0 term in (4-1). This means that G® corresponds to the L=0 term. On
the other hand, the inequality (3-6) under the approximation (3-7) suggests that
G® is mainly composed of the high harmonics in (4-1).¥ We may thus conclude
that the L=0 term corresponds to G® and the sum over L=1, 2 and 3 give
rise to G® and the sum over L=4,5, --- give rise to G®. We may call GV and
G® the “long range” part of G and call G the “ short range ” part of G, though
it is not really accurate.

The L=1 term is not really important, because its main contribution is only
a displacement of the center of mass. The interesting terms composing G, thus,
are those with L=2 and L=3.

It is the main purpose of this paper to investigate how such terms bring
about the quadrupole- and octupole-vibrations of spherical nuclei. In the following,
our main attention will be paid especially on the L=2 term. Then, H"®’ in
(2-3c) becomes
H(mq 0= -—EV ; <Mmlzv‘zm2|G 2)u\]2 2 M, m1’> aztrl m1 a1\+72 mog AN I mal ANy Iyt
L S SN N (= 1) #3501 (1) (1)~ G = [2M)

2 r=ls (¥

X (—1) 7" (fojd ma—my |2— M) afk, ., A%, o Anatma? Aytomy? > (4-2)
where

* For simplicity, we neglect the spin dependence of G.
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338 T. Marumort

<MN)W2]M/M/>E 1 (?_]}‘l’l)(z]l,—{—]_) (2]2+1)(2]2 +1)
& 2L+1 4x(2L+1)
X (jusil = 120) (sl =L 1L0) Cmtimatal Gl 8/ i 1)

(4-3)

Here {(n5in,0|G,|ny ' n/ 1) means the radial integral part of the L-th term in
(4-1) and (jj/m m'|LM) denotes the Clebsch-Gordan coefficient.

§ 5. Concept of nuclear collective motion
and the time-dependent self-consistent field method

In order to make clear the physical meaning of our method which will be
developed in the next section, we shall, in this section, start from the general
consideration of the nuclear collective motion.

As is well known, the remarkable success of the nuclear shell model has
suggested that the main part of the inter-nucleon interaction can be treated as a
spherically symmetrical self-consistent field V. The essential point of the nuclear
collective model is to assume that an additional self-consistent field may be ex-
tracted from the remaining part of the interaction. Bohr and Mottelson,” and
Hill and Wheeler™ have suggested that such an additional self-consistent field is
non-spherical and time-dependent, and have grasped the time-variation of the ad-
ditional self-consistent field as the nuclear collective motion.

Such a fundamental picture on the nuclear collective motion is dlrectly formu-
lated in the framework of the time-dependent self-consistent field method (the
TDSCF-method). The discussions of the nuclear collective motion in the frame-
work of the TDSCF-method were made by Nogami™ and Ferrell® for the vibra-
tional motion of closed shell nuclei and by Shono and Tanaka for the rotational
motion. In this section, we shall recapitulate the TDSCF-method in a form con-
venient for later discussions.

Let us consider the Hamiltonian (2-3a) in the case of G®=0

H=H® 4 [

_ 1 ;

—_ Bl p / / I

= S ex@im Anror — —— 2 LNy Nymao|G P NY my” NY 7"y @, oy @y g Ayt @yt 3y
Nom 2 (Nﬂl) 1 1 2 2 2 2 1 1

(5-1)
where the second term is given by (4-2). Here we omit the chemical potential
/. In the coordinate representation, (5-1) is

H= {9 @) (L #= V(@) | (@)da

- *; S‘\l"+ (z1) ‘l"+ (x3) {G2(7'1 73) Yoo (013) } "P‘(~752)1l"(x1)d$1 dx, 7* (5- 1/)

* The spin variable is assumed to be included in the coordinate .
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On the Collective Motion in Even-Even Spherical Nuclei 339

where Yr(x) = V‘amg)Nm(x) and ¢y, (x) are the single-particle wave functions in
the spherically symmetrlcal self-consistent potential V.
The time derivative of 4r(x) is expressed by

i (2) =[Y(x), H]=H(p, z) ¥(x), (5-2)
where
H(ps, V() — j Az, p (23, ) (Go(rirs) Yo (B:s)}
=L e V(z)—U(xy). (5-3)
2m

Here the density matrix operator p(z, 2’) is defined by

p(x, &) =" (@ (2) = 3} ainari fww(D)9Fa(2)  (5-4)

and the time derivative of p is gi&{én by

The expectation value of p at time ¢ is
p()={E@) | p P (1)), (5:6)

where |7 (1)) is a state vector of H at time ¢, (and is not that of H®). Using
(56-5) we have the equation of motion for p(z) :

200 ()| [, )17, 57
If we make an approximation which is essential to the Hartree method :
TDIH, plIFOY=[(FOHPD), p0)), (5-8)
we obtain the fundamental equation in the TDSCF-method:
2L —[H(), 0], | (5-9)
where
HO =(POHITW)=5 - § =V (2) = Ulz, ). (5-10)

In the TDSCF-method, Eq. (5-9) is s1rnp11ﬁed through the following proce-
dures.

i) p() is expanded in the form
0() =p 40D (1). (5-11)
Here p© is the unperturbed density matrix and is equivalent to

PP ={colplco) (5-12)
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340 T. Marumori

where ‘!Cg> is the ground state of H®, and ¢™ is the density matrix which should
be related to the time dependent self-consistent field Uz, 7) :

Uz, t) = dezf’m (29, X35 1) Go(7173) Yoo (013). (5-13)

ii) The first order self-consistent perturbation theory is used, which means
that the products of the type Up® are neglected. Under this approximation,
Eq. (56-9) is linearized and becomes ’

By

| A=V | -1 ). (5-14)

The main problem of the TDSCF-method is, as is well known, to solve
Eq. (6-14) and to find a characteristic frequency corresponding to the collective
vibration.

§ 6. Description of the nuclear collective vibration
in the framewcork of second quantization

In this section we shall develop a method describing the nuclear collective
vibration in the framework of second quantization. The essential idea of this
method is based on an extension of the theory of Sawada et al.” of the plasma
oscillation, and has been suggested by many authors.'®:*®.1.0-2

Keeping a direct comparison with the TDSCF-method, we shall develop this
idea in this section. In order to avoid unnecessary complications and to emphasize
the physical implication of the method, we shall, however, illustrate here the
fundamental idea by taking closed shell nuclei. The generalization of the method
will be discussed in § 7.

We shall, at first, begin with rewriting Eq. (5-14) in a form more suitable
for our purpose. Noting that for closed shell nuclei

(Nm|p®@|N"m")=0xws Op O, }
(Nm|p®|N"m'y=(1—0x)05 { Nm|o®|N'my+ (1 —03,) 05 Nm | 0@ | N’ m’ ), *
(6-1)
let us introduce the following quantities with a definite angular momentum

(L=2, M) : _
Cosr(NN') = 23 (=1) "™ (jj'm—m'|2M) (1 —0x) 05 { N'm'| 0P| Nim),

R (6-2)
CgM(NNl) = Z' (-—1)‘”"(jj’m—m’|2M) (1—0N)0N/<le,0(1>’N’m’>. }

mm

Here {Nm|po|N'm’) is given by

* In the TDSCF-method such a presupposition on the matrix elements of ¢® is usually made,
in order to solve Eq. (5-14) and to find a characteristic frequency corresponding to the collective
vibration.
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On the Collective Motion in Even-Even Spherical Nuclei 341

<Nﬂl|‘0]N/7’)’l/>: S ¢1>l\<7m(x)p(x, x')</JN/,,,,(x')'dxdx’

and 0y is defined as follow;s:

1 for the closed occupied shells. '
01\7" (63)

0 for the open unoccupied shells.
Using (6-1), (6-2) and (5-13), we find, after some -calculations, that
Eq. (5-14) becomes ' '
-2 CANN') = (ex—e) (NN

+ 2_' <NM|§/2]M NH(A— UN)(’A/{CM(M N) = (—=D¥Cy_y (N N},
(6-4)
where (N N|¢5| N/ NY) is given by (4-3) and has the property
(NL NG| 9o NG NY ) = NY Na| o Ny Ny = INL NY |9 Na NY ).+ (6-5)

The equation equivalent to (6-4) is also obtalned in the framework of second
quantization in the following way. ,
i)  We pick up the following particle-hole pair terms from H"™” in (5-1) :

HO =L P SYT(Nymy Nomig|G @I NY my’ Ny my" ) {(1—0x,) @,y Onyr @yt oyt
+ 03 @ (L=0m0) @y} {(1—=00,) @, 0y Oy @yt +0, 05010y (L—0x,0) v,y 1t}
= LS SN Nl N VY (N N = (=10 Coa (NN
X ACw (N, NY) — (=DM CHp (N NS} (6-6)
where

Coii(NN') = Z (=)™ (G’ m—m'\2M) (1 —0x) 0y as,. axru
mm/! (67)
C2M(NN/) = Y‘ ( 1) - (]J m— m/]2M) (1 01\7)0’\faN’m’ Anm -

m m’

ii) Commutation relations between C.;; and C,y, are approximated by the
Boson-like commutation relations

[Con (NI NY), Clar (N NS') 1= [ Cons (NI NY), Ciler (N2 NY) N[ )
P SIUP JUUP e T 0 v N 1 (6-8)
[Cons (N NY) s Coar (N N;') 1= [ Cang (N1 NY) 5 Clan (N, Ny ) ] =0.

Using (6-8), we find that
zﬁCW(NN') =[Cs(NN"), HO+ HV]|=(eyr—ey) Csu(NN")

4+ STINNM|G| NS N Y1 —03) 0030 {CHe(Ny NY) — (— 1Y Co_ e (Ny N} . (6-9)

Ny Nyt
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342 T. Marumori:

Now it is clear that Eq. (6-9) is equivalent to Eq. (6-4) in the TDSCEF-
method.* From this fact we may conclude that the approximations made in 1)
and ii) correspond to those of (5-8) and ii) of §5 in the TDSCF-method.

So far we have considered the simplified system with the Hamiltonian (5-1)
where G®=0 is assumed. A particular advantage of the present formulation in
the framework of second quantization is that the extension of the method to the
case of G50 is very easy. In the following, we shall use this method and
shall investigate the collective motion in the system with the Hamiltonian (2-3).

§ 7. Reduction of the Hamiltonian

Let us consider the Hamiltonian (2-3) and perform the Bogoliubov transfor-
mation (2-4). We then obtain the transformed Hamiltonian, H=H® + H""",
where H® is given by (3-16) while

1;.

( m

es ) @ .
H(VGS)_‘ <Mm11\[2m2‘G )!N/ﬂ22 M ny >{u1\71m1a1\‘-71m1 _]——.UNlml aNl—ml}

+
X {uz\rz Mo aN.Z Mo + ‘UN.-Z Mo aNé«m.z} {uN2’7/1,q’ aNg’mc,"
+vN2’n12' a —qu’} {uNﬂml/ lelmll + lelmlf aN 1! —ma! } > (7 ° 1)

tym and vy, being given by (3-15).
In order to extend the method developed in §6 to the present system, we
now introduce the operators
Czj‘_l(NN/) - E ( - 1) ! (j]/ nm— n2/|2M>uNm vNIm/ a;\;m al—,\—”—-m’
!
mamn (7 . 2)
C2lw(NN/) - Z ( _ 1) - (]:]., 7 — m,IZZ\/[) UNwm VNt m? &y —m! aNm 5
mm!

and pick up the following quasi-particle pair terms from (7-1) :

@

HO=— " 2 >3 (N NGl ga| N N 2{Ci(NLNY) — (=)™ Comae (NLNY)

X ACur(Ny NY) — (=D Cia (N N} (7-3)

For closed shell nuclei in the special case of G®=0, we get, with the aid of
(2-4) and (3-15),

UNm a;\"m = (1 - H;\’) a;\%an s UNm ag—f——m - 61\7 AN s

(7-4)

ul\'m,aNm: (1—01\7) AN, » ‘UNm,wN——m:(jNal—\(—”m’ .
and the operators in (7-2) are reduced to those in (6-7). The operators in
(7-2), therefore, corresponds to the generalization of those in (6-7), and the
generalization of (6-6) corresponds to (7-3).

* In the course of performing this work, it has come to the author’s notice that Ehrenreich
and Cohen!® have made a similar proof for the case of the many-electron system.

220z 1snbny |z uo1sanb Aq 99G6ZE81L/LEE/Z/vz/elone/did/woo dnoolwepede//:sdyy woly papeojumoq



On the Collective Motion in Even-Even Spherical Nuclei 343

Now we decompose C,;; and C,y in the following way :

Ciy(NN)=C@"(NN") +CEP (NN, (7.5)
-5

C§(1)+(NN,)_C2M(NN)5NN/, C(nd)—*_(NN/)EC;};[(NN’) (1'—82\71\7‘/).

It follows from (3-15) that C§* and C§j} exist only for the partially filled*
Ni-shell and vanish for the other shells. It is also clear from (3-5) that, in the
absence of the pairing interaction (G®=0), C{¥* and C§ vanish. Thus we are
able to rewrite H® in (7-3) as

H<:>:_éM§iZ<MM|921MM>{ SO (NN — (— D)™ CER (N, N}
X ACHD (N, NY) — (— 1>Mc<"d>+<N2Nz>}
- z Ny Nolgl No Nop {C83* (No N) — (— 1) CE2% (N, No))}
X ACEH(N, Np) — (— 1) C$2% (Ny Ny}
_%M‘;ﬁ__ SN NIgal N' Nop {C 835 (NoNo) = (1) CE0, (N, N}

X ACHP (NN — (=1 CEY (NN')) +herm. conj.].  (7-6)

In order to investigate the collective motion in the system with the Hamiltonian
(2-3), we shall hereafter use the reduced Hamiltonian

Hy=H"+H®, (7-7)

where H” is given by (3:16) and H™ is given by (7-6). Furthermore we shall
hereafter employ the following commutation relations corresponding to the generali-
zation of (6-8) :

[CHP (N NY), CHIT (NN )= [CHP (N NY), CHRT (NaNy') o)

= 5MM/ 5N1 N, 0N1/ Ny (uzzvl 7’?\5/) (1 - 31\’1 Nyt ) (7 : 83)

[ (,",)(MM) éB?)(MM)__LC(nd)P(MM/) 2(1;}1/)+(MM/)] 0,

[CER(Na o), CEF (No No) 1= [CER(No N), CE2 (No Np) 1| o)
= ZaMM/ (uz\ro ‘UNO) > (7 : Sb)
[CEH(NoNo) s CH (N N)]=[CHF (N INy), CH2F (N, No) ] =0,

[CER(NINy), CEHR* (NN J=[C{H(Ny No), CHP?(NN')]=0,

_ ) (7-8¢c)
[CET (N INo), CHER (NN ]=[CEr" (N N), CH7* (NN') |=0.

§ 8. Two modes of collective motion

The commutation relations (7-8) suggest that there exist two modes of col-

* It is easily seen from (3:15) that Cop®+ and Cem(® vanish when the Np-shell is closed.
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344 T. Marumori

lective motion: One mode is connected with C§°* and C§"*, and another is
connected with C§? and C§?*. In this section we shall discuss these two modes
separately. For this purpose we now rewrite the reduced Hamiltonian (7-7) as

HR:HE;O)”FI*I[Q (8-1)
where '
+2
Hi= == 51 SN NIl NN {CH) (Na o) — (= 1) T2 (N Ny}
XACHP(NN') — (=1 CL%N% (NN”)} +herm. conj.], (8-2)

and consider the system with the Hamiltonian H{ for the moment. The term
H, will be taken into account later on in §9.

A. Collective mode connected with C$y> and C&H+
Using (7-8a) and (7-8c), we get the equation corresponding to Eq. (6-9) :
[CHP (NN, H]|=— (Ey+Ey) CHP* (NN)
+N§;1,<NM|921M N')(uyvw) (1—0wx) {CHPT(NNY)
— (—D)¥CEUN N}, BENCH

where Ey is given by (3-17).
Now let us introduce an operator

By = }ja(NN’)Céi{?”(NN’) b(NN’)( DY CHYN(NNT), (8-4)

. where a(NN’) and b6(NN’) are determined by the following simultaneous equa-
tions :

(E—E)a(NN") = (Ex+Ey)a(NN') = 33 a(N: N)NN|g:| N N')
X (2t Vi) (1= 0 ) 4 31 BN N (NN NN (2t 03 ) (1= 0 ),
(E—E)B(NN') == (Ey+Ex)b(NN') = 3} a(N: N)(NNilgs| NI N')
X (et V) (L= Ow) + 31 6(N, M’)<NNI|§/2! N N') (i vl ) (1= 0, ),
(8-5)

and ‘the normalization conditionv:
(Burs Biul=1= 3] a(NN")* (o) (1= dw.)
— STBONND (o) (L—duw). -6)
Then it is easily shown with the aid of (8-3) that By satisfies
[H, Bsy]=(E—E,)Bsfy.

This means that Bj;, is the operator which creates an eigenstate |?7) with energy
E from the ground state |7,) of H{ with energy E,:

220z 1snbny |z uo1sanb Aq 99G6ZE81L/LEE/Z/vz/elone/did/woo dnoolwepede//:sdyy woly papeojumoq



On the Collective Motion in Even-Even Spherical Nuclei 345

|0y =By ?:).

We do not discuss here Eq. (8-5) in detail, and note only the following. If
{NN,|g5| N/ N") are separable, i.e. {(NNi| 7| N/N")={(N|gs| N'){(Ni| 9| NY),* we

obtain the eigenvalue equation from (8-5) :"

) 1 . 1 1 2 2 N
=>4 - - - (unvy) (1—0xm
! &N}{ (E—E0) + (Ew+Ey)  (E—E0)— (Ew +Ey) | (ravew) )
X (NN|gs|N'N'). (8:7)

This equation has a root (F—E,) which is real and positive and is smaller
than the smallest pair (quasi-particle) excitation energy (En +Ey) with N N/,
provided that the condition

1> 312 (NNI|95|N' N") (uvon,) (1—Owwr)

(8-8)
y Ey +Ex

is satisfied. The state with such a lowest excitation energy, (E—F;) nin==fwg, can
be regarded as that of the collective motion connected with C§;” and C°*. In

this case, a(NN’) and b(NN’) are given by

K{N|g:|N") K{NI|gs|N")

a(NN'") =- , b(NN") = , (8-9)
ha)ﬁ'—— (EN_l_ENI) h(l)ﬁ“‘" (EN+EN,)
where the normalization constant K is determined by (8-6), i.e.
| k=1 [ 35 NN Nt 0= )
NNT {ﬁ(!)/g""(E_N—‘"EN;)}2
. (NN|gs| N’ N/>‘u§v‘01€7r(1—0“zvzv/) \Jm_ (8-10)
NN {wg+ (Ex+Ex)}?

B. Collective mode connected with C$y vand Cit
In this case, we obtain the following equation corresponding to Eq. (6-9) :
[CE (No Ny, HE|=—2Ex, Cii" (Ny Ny)
2N, N7l N Nod (aey k) {CE* (N No) = (= 1) CE0 (N, NDY. (8+11)

Now let us consider the matrix element, (¥’|(E'—H)C5" (NoNo) |7,
where [7') is an eigenstate of HY’ with energy E’ and |¥,) is the ground state of
HY. This vanishes, but can also be written as

0= (E"=E) (#"|CE5 " (No N | Uo) — (W |LH R, CEiyt (No No) 1| o). (8-12a)

Similarly, we find

* The “quadrupole-quadrupole interaction” adopted by Elliott?® and Moszkowski2® is an
example of such a type.
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346 . T. Marumori

0= (E'—E){ ¥ (—=1)Y C52u (N N) | To) — (¥ [[HE, (—1)" C5L0(No No) 1| o).
(8-12b)

Using (8-11) and combmlng (8- 12a) and (8-12b), we are led to the
eigenvalue equation

1 1 | 2 2
s g 2NN N Ny v, (8113
{ h(Uﬂ+2EN0 hwﬂ__ZENO} < 0 0! 2] 0 0> No UN, )

where #iw,=F’'—F, and ENOZV/“(‘E&;—/])2_~.f2;f:%m@m Q.
Solving Eq. (8-13), we obtain

fim, =G99y1—6 /0 ' (8-14)

where
={1—(1—n/0)%, ' . (8-15a)
01,=G " /4 Ny Ny| 92| No Ny ). (8-15b)

6, is the occupation factor used by Belyaev (see ref. 4), Eq. (67)) and 6, rep-
resents a ratio of the strength of G to that of G¥.
For the collective mode under consideration, the creation operator B$}*, which
leads to
Ty =B |0, (8-16)
is easily obtained in the same way as that in the subsection A. The result is .
By =a(No Np) C§i (No Np) —b(Ny N,) (— 1) C{2(Ny Ny),  (8-17)

where

fw,+G 9 fiw,— GO L

a(M)M):: ‘/2@7&670)!“)%(”17 5 b(MM)Z \/2@7;(7(0)‘!)%(0” .

- (8-18)

Here it should be noted that the collective mode under consideration vanishes
in the absence of the pairing interaction (G”=0).

C. Derivation of collective variables
Now let us introduce the following two kinds of collective coordmates

(g5, ¢i) and their conjugate momenta (pf, p("))
q»,:_iv 2[h,, (Bp+— (— 1)MB(B)W) g =(— 1)Mq<m
BWpg
— (8-19)
(ﬁ‘) J ﬁIﬂ(’)B (B§§I>+(__1)M32(§)+) P(B)(—__( 1)MP(,5')
g =i «5—?—--— (BSY — (—1)"BEy), gf* = (—1)" g,
w
(8-20)

(n)_ﬁa/ hlli) (B(yl) | ( 1)1WB(W) ) Pﬁf)+_( 1)Mp(7i
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which satisfy the commutation relations
[q&g), wa@ = Zﬁ {)‘M{Mf ’ {Qinz), 5122] - iﬁ (?.MMI . (8 ' 21)

B$®* is the creation operator of the collective state with the excitation energy
fiwg and is given by (8-4) with the corresponding solution (a(NN’), b(NN’))
of Eq. (8-5). I and I, are the inertial parameters of the two kinds of collective
modes, which will be determined in § 10.

§9. Use of the “ methed of auxiliary variables ”

In the preceding section, we have found the collective variables of the system
with the Hamiltonian H{’. In this section we shall take H}, (8-2) into account,
which contains the coupling term between two modes (¢§, ¢i). For this pur-
pose, we shall employ the “ method of auxiliary variables ”,” which makes it pos-
sible to display the dependence of the Hamiltonian on the collective variables.

Let us consider the Hamiltonian (8-1) and start with the Schrédinger equa-
tion

Hy |0y = (H + ) |0)=E 0. EERRCEY!

Here we introduce two kinds of auxiliary variables, (8y, #§) and (x4, ), which
satisfy the commutation relations

[Bu, 7S |=1#i Orparr (a5 750 =0T O panr - (9-2)

Corresponding to (g5, p§i”) and (¢$, p$), they have the conjugate relations
Bia= (=18 y, 20 =(—1)"n",,
= (—=1)"7_y, 2P =(=1)"=".

To compensate the mtroductlon of the auxiliary variables, we impose on W)> the
supplementary conditions

(9-3)

Bul®@)=0, 7u|®)=0. (9-4)

Now let us successively perform the following unitary transformations :
[02)=Uw|®), Us=exp{i >} (n0 ¢’ + 75 aP) /%y, (9 5a)
0y =Ugo), U<2>=exp{-zg: WP Bt 297 (B, (9-5b)
|@.)=Ug|@%), Uy =exp i >0 (=50 g +57 9P /) (9 5¢)

Then thé transformed Hamiltonian and the supplementary conditions become
HK=UnUgUgH, Uy Uy Uy, (9-6)
ai710.)=0, qfP|0)=0. (9:7)

This representation is the so-called “ collective representation ”, in which Bohr
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and Mottelson® have developed the nuclear unified model.
It should be noted that the Hamiltonian (9-6) contains neither (¢, p§) nor
(57, p§f), i.e. it satisfies

6, ¢iP1=[)6, piP1=0, [X, ¢?1=[X, p§P|=0. (9-8)

This implies that the collective variables (¢§f°, p§; ¢i’, p$7°) in the original
Hamiltonian F/, are completely replaced by the auxiliary variables (3y, 7§ ; 7a7$’) .
In this representation, therefore, the collective modes of our system can be visu-
alized through the auxiliary variables.

Employing the operator identity
exp(iS) O exp(—iS) = O+il3S, OJ~%-[S, [S, O]+,

and using the commutation relations (7-8) and (9-2), we obtain the explicit form
of X of the following structure :

%:%uull. '+' %intr. —I'—%cu'ml b : (9 : 9)
Kon= oo 18P+ Cal Bul'} + 3 {28 P Clm P}
w21, M\ 2] 2
— e Bzt (9-10)
I =y — {\ wery 1 o om } ' o C o }
tr i ‘ o1, P+ 2 5] gir %[ 1 2 ’+ 5 g7 [*

LV I G506, ST N Njg N N (C (NN)
/] o NA '
__( 1)Mc(nd>+(NN/)} (n) (911)

Ko = 32| kg — iV I/ GO 06, 57 ¢ Ny Niga N' Ny
WL #i N

X {CHP (NN') — (—1)™ CEyr (NN’)}J (9-12)
where |

CﬁEIﬂ(Ulgz, C EI (()2 (9'13)

><<Nongle’No>- ' (9-14)

Here JC.,. represents the energy of collective motion, and X can be interpreted
as the energy of the intrinsic (particle) motion. J6..,. represents the interaction
between the collective and the intrinsic moticns.
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For the spherical nuclei under consideration, we can safely treat JC..,,. as a
small perturbation term. Therefore, we shall neglect this term hereafter. In this
case the Schrodinger equation in the “ collective representation ” becomes

(%(>(>l].+%i11tr.)[d)c>zg l(])<> ' (915)

with the supplementary condition (9-7).
Let us write |@.) as

o) = |Yinse. ) Boon. )- | (9-16)
Then |X..> satisfies the equation ”
I e | Linte. ) =Erre | Linse. ) (9-17)
with the supplementary condition ¢$7|%iuw.)=¢%|%iw.»=0, and |d..,.) satisfies
Koo [Bean.) =Eeun.|Beun - (9-18)

The total energy of our system thus becoms E=F, ~+Eeu
The Schodinger equation (9-18) describes the collective motion of our system.
In the following sections, we shall investigate the properties of Eq. (9-18).

§ 10. Mass quadrupole moments and * surface deformation variables ”

Prior to discussing Eq. (9-18), we shall, in this section, clarify the connec-
tion between our variables (%4, 7)) and the “surface deformation variables ” ay
used in the Bohr-Mottelson model.¥ For this purpose, we consider the mass
quadrupole moment operator.

In the Bohr-Mottelson model,” as is well known, the quadrupole moment
operator is givan by

L= Q5™+ 25, (10-1)

the first part of which is associated with the intrinsic structure.* The second part
is due to the surface deformation and is given by
D570 =3 _ AR aty =0ty (10-2)

/b7

where A is the atomic number and R, is the nuclear radius.

Now let us consider the quadrupole moment operator of our system. In the
original representation the quadrupole moment operator is

QM:/\/ 1271. j\r§] <ZV7%]?”2 YngN,m/>azﬂ\L7maN/ m!

N7l

=i STUN|GIN'Y ST (—1) " (G m—|2M) @iy i, (10-3)
NNt

.

* For the even-even nuclei under consideration, (x50, 105" x{. > =0, where £}, is the ground

ntr.
state of Juwe. .
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where

<NIC12]N’>:,\/ 1§7r 4/ (2j+12)0(fj/+1) (]'j/"'“;"“—~~~é~—[20> (nl|r®|n'l"). (10-4)

Performing the Bogoliubov transformation (2-4) with (3-15) and making use of
the approximations discussed in § 6 and § 7, we have

Qu=—i 31(N|g|N") {CE"* (NN) = (= 1)" CL£%(NN")}

—i{ Nolga| No) {C52 (Ng Ng) — (—= 1) C{2s (Ny No) } - (10-5)
In the “ collective representation ”, (10-5) changes into
Lu=Un Uz Uy OQu Uy U Uny =L + L5, (10-6)
L5 =Qy— Fr g50 — by g % (10-6a)
8% =k, By + ka7 (10-6b)

where

kzz*;v/zxzvotqzuvow/ G796,

Comparing (10-6b) with (10-2), we can find the connection between (8, 7x)
and ay :

ay= (07 k) Fn+ (Q k). (10-7)

If we determine the inertial parameters (Ig, I,) introduced in (8-19) and (8-20)
as :

L= 29 [ 53 NIGI N (a(NNY) — NN} (2udod) (1—du) T,

(I)I@
I=7Q%/ GYLRO,(N,|q|N,)?, (10-8)
Eq. (10-7) becomes
Ay =By +%u . (10-9)

Now the physical meaning of the variables 3y and 7, is clear. 7, represents
the deformation associated with the configuration of the nucleons in the Nj-shell,
and vanishes when the Njshell is closed. Thus, [ represents the deformation
of the core mainly, and itself becomes @, when the Nj-shell is closed. :

With the aid of (10-9), the polarizability of the core by the outside nucleons

* Using the supplementary condition ¢$[7{%, >=¢$? 2%, >=0, and making use of the approxi-

mation |30 > == Icod, we find (x$D 1" {0 >=0, where |7 > is the ground state of JG .
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[1

can be obtained in the following way. Let us pick up the ‘“ potential energy ”

term for the collective motion from J€ .. :

2U= §M] {Cs|Bul* + C,|7u P — Byt +7u831) }

= >za;' {Colanl’— (Cs+r) (puar+ayyiy) +(Cs+C,+2k) |7x4|% . (10-10)

For a fixed value of 74, the equilibrium deformation a is determined from
(10-10) and is given by

) (gu) = {1/ (1= &)} -7, - (10-11)
where
E=r/(Catrc). (10-12)
With the aid of (10-2), (10-11) is written as
§20= (1—&) &i0 (10-13)

where a@ﬁz):o_:zé'q u—o 1s the quadrupole moment associated with the outside nucleons.
Eq. (10-13) means that the quantity & defined by (10-12) describes the polari-
zability of the core by the outside nucleons.

§ 11. Normal vibrations of even-even spherical nuclei

The lower excited states of even-even spherical nuclei are described by
Eq. (9-18). In order to investigate the energy spectrum, we shall transform the
Hamiltonian (9-10) into that of the normal vibrations :

X eoon. =—;~ > {laff P+ odd|aff P+ &P | + oglaP | . (11-1)

Here the normal coordinates afy and aff are defined through

P U B iy

(1)
T 2 2 2 sy
VILY (0 —wd)+ (v —wd)
1 o (wiy—w,?) g
e (2) 7 o 'wz(u)
VIEY (0d—0)+(0d—aw) ’
_ - (11-2)
1 wg — wa
TP S - ( L (1>)2 o
VI, (0, —way) + (0" —wd)
1 T (wiy—wg’
— @® @) ey

‘/]: ((')é) - (0772) + ((U(g) —_ (Uﬁ2)

while the corresponding eigenfrequencies are given by

= (0 07) = (0 ;)
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dog* GOQP#
x[1~ ’ 0t — " [ 31 {a(NN') —b( NN’
- ((U/gz—l-(l)f)z {()” 2%2 h({ﬂ [NN’ <N ) ( )}
5152
X (20 04 (1= )N NIl N NP | (11-3a)
2 1. 9 2 1 2 .2\
woy=-"(wg' +w,)+-"-(wg’+w,')
2 2
i ”.40) ? { G(O 926, S
X|1—— 258 7 £ NN') —b(NN'
- (wg+w,?)? (“ o ﬁ(oﬁ [ { ( )= )}
/2
X (2uk vk (1= ) (N NIl N N P [ | (11-3b)
If fiwg>fiw,, then (11-3a) and (11-3b) become
fiwe, =~ GO0y 1—0n/()”0, ‘ (11-4a)
flwe == fiwg, | (11-4b)
where
1 —-*.,_, 7 ) AN 4
=T [ 4N Mol Ny NG+, s, (S 1ACNND —BNN]

X (u v) (1= ) (N, Nmz|N'NO>}2J

G—O;EJL4<MMI(/2IMM>+Q‘2{”(1 )12 Co{Nylga| No)?]. (11-5)
Eq. (11-4a) should be compared with Eq. (163) in Belyaev’s paper,” which has
been obtained by the use of the “cranking model ” of Inglis.”
As has been pointed out by Belyaev,” the normal vibration of the ﬁrst type
(fiww) preserves the equilibrium relation between 8y and 7. Indeed, the condi-
tion a$?=0 can be rewritten as

I —wid) K .
9 :J 7 7 M) . ~ . 11 : 6
Pu I, (gt — 0)(1%) Nm C, i3 ( )

With the aid of (10-9), (11-6) becomes

I ((U M1 )
ay =1+ . ) ~ 1/(1—8)}y 11-7
M < | “/Iﬂ(w,g "“’m) 7~ {1/( } ( )
which is equivalent to (10-11). In the vibration of the first type the core thus
adjusts itself adiabatically to the deformation of the outside nucleons.

By the use of (11-6), the normal coordinate of the first type, «f?, becomes

— ! R RN = .
a{ﬁ}’zv/lﬁ/\(mﬁ ()(1))4—(() ”Qz,),‘.??M:]/] Tnt - (11-8)

((Ulg —(!)(1))

Using (11-7), we can rewrite (11-8) as
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w%})zl/lﬁ I V(0 — o) + (0, —od3) cay=(1—&) v/ Lay. (11-9)
1/13((4)3 ——m(l)) +v' 1, (o, ")(1)>

This indicates that the normal vibration of the first type, characterizing the lower

excited states of even-even spherical nuclei, corresponds to that of a used in the

Bohr-Mottelson model.¥ It should be noted, however, that for closed shell nuclei

7w vanishes as discussed in § 10 and the vibration of the first type disappears.

In this case, therefore, the vibration of a; becomes that of the second type (#img).

§ 12. Determination of the inertial parameter
and the surface tension parameter

The relation (11-9) uniquely determines the inertial parameter, B, and the
surface tension parameter, C, for the quadrupole vibration of even-even nuclei.
With the aid of (11-Y), the Hamiltonian for the normal vibration of the first

type,

1S
fon. = DUl P od a1, (12-1)
2 “u
can be rewritten as
Bh= 37 { '+ Clawl?) (12-2)
where 7, is the momentum conjugate to @, and satisfies |7y, ay|= —ili0ys. B

and C are the inertial parameter and the surface tension parameter respectively,
and are uniquely determined as

((l)/g (')(1)) + ((I) (’)(1))
B=1Is1 — ~(1-&)°1, (12-3)
? 1/13(0)5 ——(e)(l)) +v I (m "’(1))}

C=I 1, 0 . rmomtloi=0n) Lo _epred (124
B @ {‘/ ((l)ﬁ "“(l)(l))+v I ((!) (I)(l))} ( ) ?7()(1) ( )

- Inserting (10-8) in (12-3), we get

B~ (1—é&)? Q"
G © 06, Ny|gu| N;)?
_ 9 (q_gp PARNEE-D@LIDL 1  a2.5)
8 G<°)Tt<nolol7‘2|nglo>2(52 1) (!2+1) n(28—n)

where n is the number of nucleons in the Nj-shell and £= (2]0+1)/2 ((3-11)).

Thus the ratio between (12-5) and B, becomes

7t AR -1 (eL+1L 1
COmnly 7 ol (2—1)*(L£+1) n(20—mn) ~

(12-6)

B/Bix'mt. = 3<1 - 8)2
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where B, is the inertial parameter for the oscillations of an irrotational liquid
drop ¥

Birm,=8iAmR02 (m : the nucleon mass).
m

The formula (12-6) should be compared with Eq. (155) in Belyaev’s paper,”
which has been obtained by using the ‘ cranking formula ”

Now let us remember that &, the polarizability of the core by the outside
nucleons, is expressed as

K

Co+k
= QN Ny [ la(NN') —B(NN'D} (20 ) (1= ) Ny NI N 5]

&—._

X {/Q'I;ﬁw;'wﬁ+§<M|CI2IM>—I[§I{CI(NN’) —b(NN")} (2uy’vnr)
X (1—6NN/)<M)N[g2IN/M>]} -

This indicates that & is determined mainly by the properties of the core and does
not depend appreciably on the pairing interaction (G®) and on the number of
nucleons in the partially-filled Nj-shell. Neglecting such a dependence of &, we
can empirically estimate the value from the data of nuclei with one particle outside
closed shells. The rough estimates of (12-6) with (ml|r*|nele) =23 R, R,=
1.4AX 10" % cm, GP=50 Mev/A* and €=0.8** are given in Table I together
with experimental values. Though the estimation is very rough, the calculated
values are in qualitative agreement with observed trends.

With the aid of (12-5) and (11-4a), the surface tension parameter (12-4)
can be written as

Q*G9Q

C~(1—e)y L —6,/6,}, 127
T Nlganore, T 4D

where Q==(3/,/57) AR, and {Ny|g|No) is given by (10-4). 6, is given by
(11-5) and represents a ratio between the strength of G® and of G®. Formula
(12-7) should be compared with Eq. (114) in Belyaev’s paper.”

As (1—8)°Q* GYQ/{ Ny|q,| N;)*6,,> 0, the stability of the spherical shape of
even-even nuclei is determined by the sign of {1—6,/6,}. If 0, >1, the nucleus

* The value of G©® is determined approximately from the equation
G© 2~ P(jo)exp.,
where P(jo)exp. is the experimental value of pairing energy. In 1gye- and 2dgy-shell, P(jg)exp. =
25(2j,+1)/A Mev.
** The E2-transition rate in gPb207 implies that the effective charge, eer. =¢&/(1—¢&) - Z/A-e, of Pb207
is 1.1e. From this fact, we get £€=0.73. Note that Pb207 is the nucleus with one neutron hole inside
the double magic closed shell.
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Table I.

Inertial parameter of even-even nuclei

a) P. H. Stelson and T. K. McGowan, Phys. Rev. 110 (1958). 489
b) K. Alder, A. Bohr, T. Huus, B. R. Mottelson and A. Winther, Rev. Mod. Phys. 28 (1956), 432.
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nucleus proton neutron B/ Birror (exp.) B|Birvot.
configuration configuration Ref. a) Ref. b) (cal.)
32Ge™ (2p3/2)% : closed (Lgo/2)? 10 14
35GGET6 (2p319)% : closed (1gy/o)* 9.3 9.7
Mo% (1gy/5)? (2d5/5)8 : closed 13 20
4Rul00 (1go/2)* (2dy/5)8 : closed 9.6 14
46Pd110 (1gy/2)° (1d5/5)® (1g7/5)% : closed 9.9 8.5 16
15Cd112 (1gy/5)8 (1dy/5)® (Lgy/5)8 : closed 10.5 12 23
5Cd14 (1gy/9)8 (351/9)% : closed 10.5 11 23
505n116 (1g9/5)10: closed (1hqy)5)2 14 19
5Sns v (1hy9)* 13 12
50Sn120 o (Lhy1/9)0 14 11
soSni22 ” (Lhy1/9)8 13 13
soSniz P | (Lhyq/5)10 16 20

remains spherical for any occupation. If 6, <6,(<1), however, the spherical
nucleus is unstable and becomes the deformed nucleus. With the aid of (8-15a),
the condition 6,,< 6, can be rewritten as '

1o <n<(28—ny). (12-8)

Here 7, is the * characteristic number ” of nucleons in the Nj-shell, which has
been stressed by Weisskopf,'”” and is given by

n=81—1'1-6,,). (12-9)

Thus a sharp transition from the spherical nuclei into the deformed nuclei occurs
at the “ characteristic number ” 7, provided that 6, <1.

§ 13. Concluding remarks

Assuming the possibility of the division, into three parts, of the effective in-
teraction between particles as in Eq. (2-2), we have investigated the mechanism
of collective motion in even-even spherical nuclei from the standpoint of particle
excitations. In so far as the vibrational motion is concerned, the physical impli-
cation underlying the nuclear collective model proposed by Bohr and Mottelson®
has been made clear.

Our method of description of the nuclear collective motion is quite different
from that of the “cranking model . The method is more fundamental than
that of the “cranking model ” in the sense that it is developed by using the

effective interaction between particles explicitly. Indeed, with the aid of the method,
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the various physical parameters used by Belyaev? can be derived uniquely from
the “first ” principle.

In this paper, we have neglected effects of the coupling between collective
and intrinsic (particle) motions. Such effects will be considered in a subsequent
paper. It is outside the scope of this paper and remains to be investigated to
relate the effective interaction used in this paper with the nuclear force known
from the two-body problems.
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Note added in proof: Very recently R. Arvieu and M. Vénéroni made an attempt similar to ours
[Comptes rendus 250 (1960), 992 ; preprint].
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