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of seasonal signals becomes less important, and the power-

law character of the residuals starts to play a crucial role 

in the determined velocity uncertainties. With reference 

frame and sea level applications in mind, we argue that 7 and 

9 years of continuous observations is the threshold for white 

and flicker noise, respectively, while 17 years are required 

for random-walk to decrease GDP below 5% and to omit 

periodic oscillations in the GNSS-derived time series taking 

only the noise model into consideration.

Keywords GNSS · Seasonal signals · Noise analysis · 

General dilution of precision

Introduction

Today, Global Navigation Satellite System (GNSS) measure-

ments, in particular those from the Global Positioning System 

(GPS), are fundamental to many geodetic and geophysical 

investigations (Kreemer et al. 2014; Métivier et al. 2014) and 

are frequently used during the construction of kinematic refer-

ence frames, such as, for example, the International Terrestrial 

Reference Frame 2014 (ITRF2014) (Altamimi et al. 2016). 

From the processing or re-processing of the observables of 

permanently installed GNSS stations, daily or weekly geo-

centric coordinate solutions are obtained, from which position 

time series are formed. The primary product from the analysis 

of these time series is often the linear rate of change, or veloc-

ity, and the associated uncertainty (Zhang et al. 1997).

The velocities are assumed to represent the linear move-

ment of the earth’s crust due to tectonic plate motions 

(Larson et al. 1997; Drewes 2009; Altamimi et al. 2012) or 

the viscoelastic relaxation associated with glacial isostatic 

adjustment (Johansson et al. 2002; Bradley et al. 2009). In 

addition, almost all sites within the global network of GPS 

Abstract The velocity estimates and their uncertainties 

derived from position time series of Global Navigation Sat-

ellite System stations are affected by seasonal signals and 

their harmonics, and the statistical properties, i.e., the sto-

chastic noise, contained in the series. If the deterministic 

model in the form of linear trend and periodic terms is not 

accurate enough to describe the time series, it will alter the 

stochastic model, and the resulting effect on the velocity 

uncertainties can be perceived as a result of a misfit of the 

deterministic model. The effects of insufficiently modeled 

seasonal signals will propagate into the stochastic model 

and falsify the results of the noise analysis, in addition to 

velocity estimates and their uncertainties. We provide the 

general dilution of precision (GDP) of velocity uncertainties 

as the ratio of uncertainties of velocities determined from 

to two different deterministic models while accounting for 

stochastic noise at the same time. In this newly defined GDP, 

the first deterministic model includes a linear trend, while 

the second one includes a linear trend and seasonal signals. 

These two are tested with the assumption of white noise 

only as well as the combinations of power-law and white 

noise in the data. The more seasonal terms are added to the 

series, the more biased the velocity uncertainties become. 

With increasing time span of observations, the assumption 
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stations also show nonlinear periodic motions, which have 

been associated primarily with the seasonal effects on earth. 

However, some stations may also exhibit nonlinear and non-

periodic character motions (Shih et al. 2008; Bogusz 2015). 

This may be due to the elastic response of the earth’s crust 

from the rapid ice mass loss at the polar ice sheets or moun-

tain glaciers (Wahr et al. 2013), being located in the deform-

ing zones near plate boundaries (Wdowinski et al. 2004) or 

areas of oil, gas, or groundwater extraction (Munekane et al. 

2004). In this study, we will not deal with cases showing 

such nonlinear and non-periodic behavior.

Blewitt and Lavallée (2002) were one of the first to inves-

tigate the effect of periodic signals on GPS time series, and 

today it is widely acknowledged that such seasonal terms 

affect GPS and other geodetic time series (Bos et al. 2010; 

Davis et al. 2012; Bogusz and Figurski 2014). The causes 

are almost completely understood and can be grouped into 

categories suggested by Dong et al. (2002): real geophysi-

cal effects of atmospheric (Tregoning and van Dam 2005), 

hydrological (van Dam et al. 2001) or ocean loadings (van 

Dam et al. 2012) with thermal expansion (Romagnoli et al. 

2003; Xu et al. 2017) and numerical artifacts of navigation 

satellite systems. Penna and Stewart (2003) described ali-

ased periodic signals in the coordinate time series due to 

under-sampling of residual diurnal and semidiurnal tidal 

signatures. Griffiths and Ray (2013) extended this analysis 

for the largest waves in the International Earth Rotation and 

Reference Frame Service (IERS) Conventions 2010 diurnal 

and semi-diurnal tidal polar motion model, assuming 24-h 

sampling. The second technique-related error is associated 

with satellite orbits (draconitics). Agnew and Larson (2007) 

found that for daily sampling rates in GPS-derived coordi-

nates this period will alias to a frequency of 1.04333 cpy 

(cycles per year). Ray et al. (2008) compared harmonics 

obtained using techniques such as GPS, Very Long Baseline 

Interferometry, and Satellite Laser Ranging when they dis-

covered an anomalous peak in the GPS-derived time series, 

which was not present in other series. They explained it to be 

related to the interval required for the constellation to repeat 

its inertial orientation with respect to the sun (GPS year). 

Amiri-Simkooei (2013), analyzing Jet Propulsion Labo-

ratory (JPL) data, obtained a period of 351.6 ± 0.2 days. 

Abraha et al. (2017) proved that most of the power in dra-

conitic period is satellite induced. Finally, multipath (King 

et al. 2012), insufficient modeling of antennas (Sidorov 

2016), errors in the network, the adjustment that transfers 

from fiducial stations, or the inclusion of the scale (Tregon-

ing and van Dam 2005) contributes to constellation-specific 

periodic signals in the time series.

From the above, it is clear that the deterministic model of 

a GNSS position time series needs to include parameters for 

both the linear and periodic motions at a given station (Bevis 

and Brown 2014). Furthermore, in a true geodetic approach, 

the model must provide means to obtain the most realis-

tic uncertainties associated with the parameter estimates in 

order to provide confidence limits at a given significance 

level. In this respect, we model the time series, which have 

been pre-processed for outliers, offsets, and gaps, with least 

squares estimation (LSE) as:

where x0, v,  ACi,  ASi, n are the intercept, velocity, cosine, 

and sine terms of ith harmonic and the number of harmonics 

of the angular velocity ω of period T, respectively. The term 

ε(t) contains the residuals and all variations not explicitly 

modeled and, therefore, disregarded by this station motion 

model. It is now commonly known that the residuals do 

not follow a strict random behavior, i.e., a white noise with 

spectral index κ = 0, but follow that of a combination of 

colored and white noise, with the latter often being mod-

eled as a power-law process (Agnew 1992). This temporally 

correlated noise is of a form of flicker noise with spectral 

index κ = − 1 or of random-walk process with spectral 

index κ = − 2. Flicker noise is present in the GPS position 

time series due to mismodeling in GNSS satellites orbits, 

Earth Orientation Parameters, large-scale atmospheric or 

hydrospheric effects. It has been already described by Wil-

liams et al. (2004) or Amiri-Simkooei et al. (2007) who 

stated that a combination of flicker and white noise is the 

preferred noise model for GPS data. Teferle et al. (2008) 

emphasized that their time series showed evidence of power-

law noise close to the flicker. Caporali (2003) stated that 

the power spectral densities of time series prove that flicker 

noise is preferred for most stations to represent the data at 

frequencies below 6 cpy. For frequencies higher than 6 cpy, 

the spectrum tends to become a white noise. Santamaria-

Gomez et al. (2011) concluded that a combination of power-

law and white noise is the preferred one for a global data 

set. Klos et al. (2015) stated that this combination is valid 

also for weekly data. A random-walk process might be pre-

sent in GPS position time series due to local environment 

and monumentation. Johnson and Agnew (1995) were the 

first to state that the type of monument may have an impact 

on the long-term correlation present in GPS data. Beavan 

(2005) compared two monuments: a concrete pillar and a 

deep drilled braced monument and stated that there is no 

significant difference in the stochastic part of GPS position 

time series collected. However, the analysis was only per-

formed for 4.5 years of data. Even when a perfect monument 

is considered with the environment being transparent to the 

signal, the noise would be flicker and arise from low-fre-

quency fluctuations of the satellite clocks (Dutta and Horn 

1981). Beyond these features, there are also some seasonal 

features that add more correlated noise to GNSS data. As 

(1)
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stated by Johnson and Agnew (1995), if time series were too 

short, it is more difficult to detect any change due to correla-

tion than it is for long data. As is now widely acknowledged, 

the stochastic properties of the residuals significantly influ-

ence the magnitude of the uncertainties associated with the 

parameters (Zhang et al. 1997; Langbein and Johnson 1997; 

Mao et al. 1999; Williams 2003), and the whiter the noise, 

the faster the velocity uncertainty decays with increasing 

time series length. Therefore, the noise character has the 

greatest impact on velocity uncertainty and errors of the 

deterministic model estimated at the same time.

We provide a general dilution of precision (GDP) of the 

velocity uncertainties being the ratio of uncertainties of veloci-

ties arising from two different assumptions of the deterministic 

model. The first of them assumes a linear velocity only, while 

the second is a combination of linear velocity and periodic 

components. Each of the assumptions is presented with certain 

noise models starting from white, moving on to flicker and 

end up with random-walk, the most extreme case for GNSS 

position time series. The determined errors of the velocities 

are being discussed along the two previous papers of Blewitt 

and Lavallée (2002) and Bos et al. (2010) which provided the 

first overview of this topic. Using simulated data we show 

that our approach has additional advantages to GNSS time 

series analysis in comparison to the ones mentioned before. 

We deliver the estimates of a combined effect of periodic sig-

nals and noise model assumed in residuals, to show how much 

one may underestimate the uncertainties of velocities when 

inappropriate assumptions were made prior to the analysis. 

Finally, we apply the newly developed formulae to real GNSS 

time series of selected ITRF2014 stations. Beyond the GNSS 

position time series, our conclusions are also valid for any 

other type of position time series, as those collected by Very 

Long Baseline Interferometry (VLBI), Doppler Orbitography 

and Radiopositioning Integrated by Satellite (DORIS), Satel-

lite Laser Ranging (SLR), or tide gauges.

Dilution of precision

Blewitt and Lavallée (2002) developed a model to calculate 

the bias level when one does not account for periodic signals 

of annual frequency. The velocity bias expressed in mm/year 

introduced by them was a zero-crossing oscillatory function 

of data span, tending to zero for infinitely long time series. 

According to this function they discovered the “zero-bias theo-

rem” for unbiased velocity near integer-plus-half years and 

introduced the ratio of uncertainties of velocities v1 and v2. 

They called it the dilution of precision (DP) and estimated its 

value as (Blewitt and Lavallée 2002):

where τ is the time span and f denotes the frequency of the 

periodic terms. Figure 1 shows the DP value which increases 

toward infinity when the time span is shorter than 1 year. A 

number of maxima of oscillations in DP can be noticed for 

integer years. These come from periodic terms in (1) defined 

by f. The time span of observations is given by τ. For cer-

tain epochs starting from 1.5 years with a step of 1-year the 

DP = 1. It results from the fact that the velocity uncertainties 

for a model with linear velocity and a model with seasonal 

terms added are equal to each other. Also, for a time span 

longer than 3.5 years, the DP < 1.05, which means that the 

difference between both variances is below 5%. However, 

Blewitt and Lavallée (2002) inputted only white noise, and 

as a consequence assumed that the character of a stochastic 

part ε has a little impact on the estimated uncertainties.

It is expected that when we add a power-law noise, the 

difference between both variances will need more time to 

fall below 5%, while the power-law noise process adds tem-

poral correlation to the time series. That is why Bos et al. 

(2010) discussed the results of Blewitt and Lavallée (2002) 

by empirically analyzing the effect of periodic signals using 

six stations, but assumed a combination of colored and 

white noise. They noticed that the way the stochastic part 

is described might be of greater importance than that of the 

seasonal part in the deterministic model. This is due to the 

fact that velocity uncertainty depends mostly on the spectral 

(2)
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index and amplitude of the power-law process. They con-

cluded that the knowledge of the noise characteristics of 

GNSS time series is crucial when velocities and their uncer-

tainties are determined. Furthermore, they observed a shift 

in the minimum of the DP from the integer-plus-half years 

toward integer-plus-a-quarter years position. We confirm the 

results found by Bos et al. (2010) and also deliver the math-

ematic formulae of DP for time series with power-law noise 

combined with white one.

In order to estimate the DP, it is first necessary to obtain 

an expression for the covariance of the estimates in terms 

of the noise covariance. For this, let us consider the vector 

of residuals ε defined as the difference between the model 

parameters and the data fitted into (1):

where A is the model or design matrix, � is a vector with 

parameters of the model, x stands for the observational data 

or measurements, and ε is the vector of residuals.

When the parameters of the model are determined by 

means of maximum likelihood estimation (MLE; Langbein 

2012) and assuming a Gauss distribution for such estimates, 

they are computed as:

with Cεε being the covariance matrix for the residuals ε.

Then, using (3) to replace x in (4), and rearranging terms, 

it yields:

which can be used to compute the second moment or covari-

ance of the residuals in terms of the covariance noise as 

follows:

In general, the vector of the residuals ε is a linear combina-

tion of colored and white noise:

where the first term on the right side is a convolution of 

white noise, wi ∈ N
(

0, �pl

)

, and the second term is a white 

noise process, v
i
∈ N

(

0, �
wn

)

, with σpl and σwn standing for 

the amplitude parameters of the colored and white noise 

processes, respectively. N is the number of data, while h is 

defined by the recursive formula (Bos et al. 2008):
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h0 = 1

h
i
=

(
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i
, ∀i > 0

with κ being the spectral index ranging from −3 to 1, which, 

when appropriately assigned, may characterize the stochastic 

part of the time series (Mandelbrot and Van Ness 1968).

From (7) the covariance of the residuals is:

or, in matrix notation:

L is a lower triangular Toeplitz matrix with coefficients 

defined as follows:

where hi−j are the same coefficients as in (8) that depend on 

the spectral index κ. Finally, by inserting (10) in (6), we get 

the following expression for the covariance matrix of the 

estimated parameters, �̂:

where E is the part of the covariance matrix from the power-

law process that depends on the spectral index �:

Thus, the covariance of the estimates is expressed in terms 

of the spectral index � and the amplitudes of the colored and 

white noise processes, σpl and σwn, respectively.

Finally, note that the process defined by (7) and (8) is a 

fractionally differenced Gaussian noise process with spectral 

density (Hosking 1981):

which, as f → 0, yields a power-law:

Henceforth, we will refer to the color noise process as 

power-law throughout the paper.

Models

If we assume that the deterministic model of GNSS time series 

follows a linear trend with a vector of parameters built as:

where v is the slope or velocity and x0 is the intercept, the 

model matrix A is created as:

(9)�
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2
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Then, the variance of velocity estimate can be computed by 

inserting (17) into (12).

The proper modeling of the seasonal terms may directly 

influence on the reliability of determined parameters, such as 

the velocity. Indeed, as Blewitt and Lavallée (2002) already 

showed, the seasonal terms may influence the uncertainty of 

velocity. However, they did not consider the power-law char-

acter of residuals but assumed them to follow a white noise 

process. Bos et al. (2010) noticed that not only do the sea-

sonal terms affect the linear velocity when being improperly 

removed, but the noise properties are much more important 

for a reliable estimation of the velocity error. These directly 

affect the uncertainty of velocity due to different shapes of 

the covariance matrix, as in (9–10).

Let us assume now a deterministic model with linear 

velocity and annual term:

The vector of parameters is built here as:

where AC and AS are the annual cosine and sine terms, 

respectively. Similar to the previous model, substitution of 

(18) in (12) yields the covariance for the estimates in (19).

Simulated series

In order to test the general dilution of precision formulas 

derived above, we carried out a number of evaluations. For 

these, we simulated time series of up to a maximum length 

of 25 years, which is at the time of writing the longest term 

of available GNSS time series. Synthetic data were created 

based on two approaches for the deterministic part: The first 

included annual and semiannual terms, and the second 

included all significant periods, i.e., all tropical and draco-

nitic terms up to ninth harmonic, plus fortnightly and the 

Chandlerian period since the latter may be present at some 

stations at island and coastal sites (Richard Gross, private 

communication, 2015); see Bogusz and Klos (2016) for 

more details. Then, we added temporal correlation in the 

form of a combination of power-law and white noise, built 

a noise covariance matrix as in (9) and transferred it to 
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(19)� =

[

x0, v, AC, AS
]T

,

estimate the variances of the estimated parameters as in (12). 

We assumed four different spectral indices equal to 0, − 1, 

− 1.5, and − 2 that indicate pure white, pure flicker, frac-

tional Brownian motion, and pure random-walk noise, 

respectively, with �2

pl
= 1 and �2

wn
= 1. White noise was 

added to flicker, fractional Brownian motion, and random-

walk when assumed.

Figure 2 shows the error of the velocity for white, flicker 

and random-walk noise. For time series shorter than 70 days, 

the error of velocity is much higher for white and flicker 

noise assumptions than for random-walk noise. This situ-

ation changes when the data becomes longer than 70 days. 

The error of velocity is the smallest for the white noise 

assumption. Random-walk noise delivers the greatest errors 

of parameters. The longer the data is, the greater is the dif-

ference between errors delivered for random-walk noise and 

flicker or white noise assumptions. Having assumed white, 

flicker and random-walk noises, for 20 years of data one will 

obtain an error of velocity equal to  10−3,  10−2, and  10−1 mm/

year, respectively.

We estimated the relative differences in velocity variances 

for two deterministic models: with linear velocity denoted 

as �2

v1
 and with linear velocity plus seasonal terms denoted 

as �2

v2
, as

(20)Δ�
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Adding seasonal terms results in oscillations in the estimated 

velocity error when the length of time series changes. The 

velocity variances are computed from the diagonal terms of 

the covariance matrix (12). These oscillations, of course, are 

not so obvious any more when the spectral index of power-

law dependencies increases, as was also noticed in Bos 

et al. (2010). The largest differences between two models 

are being observed for the random-walk noise assumption. 

As the spectral index was shifted from 0 toward − 2, the 

differences between velocity uncertainties will, of course, 

enlarge much more. Due to the above, the largest differences 

between two models are being expected for badly monu-

mented stations (Langbein and Johnson 1997; Beavan 2005; 

Klos et al. 2016).

The uncertainties estimated will differ when seasonal 

terms are included or are not included. This difference is 

computed as a ratio between both values. We called it the 

general dilution of precision (GDP) in accordance with 

Blewitt and Lavallée (2002) and as in (2), but taking into 

consideration a power-law noise in the stochastic part, as 

was underlined in (15). We have adopted two approaches to 

estimate the seasonal part. First, the widely used annual and 

semiannual terms were subtracted from the GPS position 

time series. Then, the approach, which is consistent with 

Bogusz and Klos (2016), was assumed: tropical and dra-

conitics up to their ninth harmonics, plus Chandlerian and 

fortnightly terms were modeled. Figures 3 and 4 show a 

GDP for white, flicker, random-walk and fractional Brown-

ian motion of spectral indices equal to 0, − 1, − 2, and − 1.5, 

respectively.

We computed the GDP values for harmonics of 1 year. 

They increased the local maxima in the GDP plot. It can be 

noticed that in comparison to Blewitt and Lavallée (2002) 

who considered the annual term, the semiannual signal also 

increases the local minimum of GDP with a white noise 

assumption. It means that adding the power-law noise to the 

annual curve or adding a semiannual term to white noise 

causes an increase in the velocity uncertainty even at those 

points where the estimated velocity should not be biased. 

The more seasonal terms are added to the series, the more 

biased is the velocity uncertainty, especially for short time 

scales. Having compared Figs. 3, 4, and 5, it is clear that the 

type of deterministic model affects the velocity uncertainty 

and makes GDP to reach the value of 5% (we adopted this 

number following Blewitt and Lavallée 2002) after 9 years, 

rather than 4, as was expected for annual plus semiannual 

terms (a case of white and flicker noise). The value of 5% 

means an increase in velocity uncertainty of 0.025 mm/year 

when a typical error of velocity of 0.5 mm/year is consid-

ered (Bruyninx et al. 2013). However, with the increasing 
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model containing a linear velocity plus annual and semiannual oscil-

lations
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Fig. 4  General dilution of precision (GDP) for white noise (blue), 

flicker noise (red), fractional Brownian motion of spectral index equal 

to − 1.5 (orange), and random walk (black) plotted for a determinis-

tic model containing a linear velocity plus extended model of perio-

dicities of all tropical and draconitic terms up to ninth harmonic plus 

fortnightly and the Chandlerian period, according to Bogusz and Klos 

(2016)
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demand on velocities from reference frame (0.1 mm/year, 

Plag and Pearlman 2009) and sea level applications, we 

argue that even lower changes than 5% of GDP could be 

considered as significant. All the above shows is that peri-

odic terms affect the velocity uncertainty much more at 

short timescales than they do for long-term data, leaving 

the values of velocity unbiased at the same time. With the 

increasing time span of observations, the assumption of sea-

sonal signals becoming less important is validated. Here, 

the power-law character of the residuals plays a crucial role 

in determining the velocity uncertainty. In this way, 7, 9, 

and 17 years are enough for white, flicker, and random-walk 

noise, respectively, to decrease GDP below 5%, to omit peri-

odic oscillations in the GNSS-derived time series and to take 

only noise model into consideration. So, providing a long 

time series, the periodicities we assumed will not influence 

the velocity uncertainty as much as noise would. This is 

why we should focus on obtaining the best estimate for the 

spectral index of each geodetic time series such as position, 

sea level, or zenith total delay.

Real GNSS time series

In order to confirm our theoretical approach with real data, 

we used position time series of continuous GPS stations. 

The time series we chose contributed to the newest Inter-

national Terrestrial Reference Frame (ITRF2014). The 

GPS measurements were processed in the network solution 

named “repro2” by the International GNSS Service (IGS) 

(Rebischung et al. 2016, http://acc.igs.org/reprocess2.html). 

In this study, we picked 898 stations with time series of 

different lengths from 3 to 23 years that showed no spe-

cific or unusual behavior regarding long-term nonlinearity 

or earthquakes. This is to ensure that our results are not 

compromised by stations, which, for example, did not fol-

low the assumption of a linear evolution in the coordinates. 

The station distribution is indicated in Fig. 6. The daily 

time series of the North, East, and Up components were 

pre-processed for outliers, offsets, and gaps if necessary and 

then analyzed with the reformulated maximum likelihood 

estimation (MLE) as implemented in the Hector software 

(Bos et al. 2013). We generated two different models to be 

fitted to GPS position time series. In the first case, the sto-

chastic model was assumed to be a pure white noise with 

just linear velocity in the deterministic part. In the second 

case, a combination of power-law and white process with 

the full deterministic model was employed. To generate the 

GDP values, we estimated the ratio between (a) and (b), 

meaning that we fit (a) the appropriate noise model which 

has been already found to be preferred for GPS data and 

the most proper deterministic model taking all periodicities 

into account against (b) which is a simple linear fit with 

white noise assumption. The above exercise shows a clear 

combined effect of periodicities and power-law noise on the 

uncertainties of linear velocities.

The median amplitudes of the annual term are at the level 

of 1.65, 1.78, and 4.22 ± 0.20 mm for the North, East, and 

Up components, respectively. Almost all median amplitudes 

of the second, third, and fourth harmonics of the annual 

term fall below 1 mm with errors varying between 0.10 and 

0.25 mm for horizontal and vertical changes.

Figure 6 presents a stochastic character: a power-law 

spectral index of examined stations. A clear spatial depend-

ence may be noticed for few areas. In general, spectral indi-

ces estimated for ITRF2014 stations vary between − 1.6 and 

− 0.3, meaning we deal with different spectral characters of 

residuals. Spectral indices higher than − 0.5 were found for 

the shortest time series examined, confirming the findings 

of Williams et al. (2004) who emphasized, that white noise 

may cover a power-law character of residuals when time 

series are not long enough. For the North and East compo-

nents, no spatial dependencies were found, expect for the 

area of Europe, for which the spectral indices we found are 

much more consistent than for any other part of the world. 

For the Up component, a clear spatial dependence may be 

found for Europe, indicating a strong impact of a Baltic Sea 

on the residuals of GPS position time series. That has been 

already also noticed by Klos and Bogusz (2017), explain-

ing lower indices found for the coastal areas of the Baltic 

Sea by the impact of the sea. Also, stations situated within 
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Fig. 5  Comparison between GDPs estimated for white noise (blue), 

flicker noise (red), fractional Brownian motion of spectral index equal 

to −  1.5 (orange) and random walk (black) plotted for determinis-

tic model containing (1) linear velocity plus annual and semiannual 

oscillations (dashed lines) and (2) linear velocity plus extended model 

of periodicities from Bogusz and Klos (2016) (solid lines)
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Fig. 6  Spectral indices of power-law noise estimated for selected ITRF2014 GPS stations for the North, East, and Up components
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the areas of tundra and tropics are characterized by lower 

spectral indices than the rest of the stations. However, the 

detailed description of possible causes of such a character 

falls outside the scopes of this study.

Figure 7 presents GDP values for a globally distrib-

uted set of stations of series of different lengths from 3 

to 23 years. From these figures, we can easily notice, that 

the GDPs for all components remain between 1 and 10 for 

a majority of stations with medians of 3.1, 3.2, and 2.8, 

respectively, for the North, East, and Up components. For 

20, 17, and 19 North, East, and Up components, respec-

tively, the GDP fall within 5%, as indicated by Blewitt and 

Lavallée (2002). For 5, 8, and 2 North, East, and Up compo-

nents, respectively, the GDP values are equal to 1, meaning 

that there was no difference in velocity uncertainty when 

only white noise with a linear velocity was assumed and 

when a full deterministic model was employed along with 

the preferred noise model. The GDP estimates vary between 

1 and 10 for a set of 756, 739 and 696 stations for the North, 

East, and Up components, respectively, of the ITRF2014 

GPS position time series.

The results delivered for real GPS position time series 

are in good agreement with the theoretical formulae derived 

above. No spatial dependencies were found for the North 

and East components. The greatest deviations from 1 were 

observed for stations with large gaps within the data or sig-

nificant variations in the amplitudes of seasonal signals, 

which were not modeled and therefore transferred to the 

stochastic part and also, for those, where the noise charac-

ter was estimated to vary between flicker and random-walk 

noise. This means that the character of the noise, which 

affects the residuals of GPS data, influences the value of 

GDP for time series of sufficient length. For short series, 

the seasonal signals which were added to the determinis-

tic model affect the GDP more than the character of the 

residuals, as was shown for the synthetic dataset. For a few 

stations, the GDP estimates are higher than 10. This was 

noticed for stations with large gaps inside the time span of 

observations. A clear influence of the Baltic Sea was noticed 

for the GDPs estimated for the Up component. All values are 

higher than 10, meaning that the uncertainties of estimates 

are highly affected by the type of noise by which time series 

are characterized.

Conclusions and discussion

Not accounting for the seasonal signals results in an increase 

in the autocorrelation or temporally correlated noise within 

the time series. This, in turn, influences the stochastic model 

when the periodic signals are not properly modeled. In this 

way, if we were certain about the presence of seasonal 

signals in the GNSS time series and did not model them, the 

residuals would resemble more a flicker noise. This would 

lead to increased uncertainties for all parameter estimates. 

Again, when the seasonal signals are properly modeled, 

another issue that may cause an artificial increase in the 

velocity uncertainty is an improperly assumed noise model 

itself. When flicker and random walk are being compared to 

a fractional Brownian motion, there may be an underestima-

tion of the error bounds by a factor of two.

Some points can be easily noticed and raised for deeper 

discussion from the presented results. As long as the spec-

tral index increases, the amplitudes of oscillations also 

increase. This arises from the fact that any power-law pro-

cess with κ < 0 brings a correlation between amplitudes 

of seasonal terms and velocity. In this way, the GDP value 

is much higher for any time series length considered. The 

strong peaks of oscillations as seen in the GDP are indicated 

for short time scales, especially for the random-walk case. 

The applied oscillations play a significant role, even much 

more important than the a priori assumed noise character. 

The noise character starts to become important for time 

series longer than 9 years. The local minima and maxima 

of GDP are also being enlarged together with a change 

of the spectral index from 0 to − 2. This shows that the 

GDP may differ from integer-plus-half years as found by 

Blewitt and Lavallée (2002), who considered only white 

noise. This is clearly noticed in the case of random walk 

and has already been empirically confirmed by Bos et al. 

(2010). In this research, we provided mathematic formulas 

for the findings of Bos et al. (2010) and confirmed their 

correctness with synthetic and real GPS data and focused 

on power-law plus white noise, which is generally regarded 

as the best estimate for the stochastic model of GNSS time 

series. We showed that periodic signals are more important 

for short time scales, whereas the stochastic noise plays a 

significant role when the length of the time series increases. 

Also, with increasing spectral indices, the GDP decreases 

more slowly. We discussed a previously published approach, 

which indicated that 3.5 years of data are enough for the 

GDP to fall below 5%. When more seasonal signals and 

their harmonics were added to the deterministic model that 

include periodicities of all tropical and draconitic terms 

up to ninth harmonic plus fortnightly and the Chandlerian 

period, the GDP requires 9 years to fall below 5% for a white 

and flicker noise model. We have also discovered that the 

noise character starts to become more important than the 

periodic signals for time series longer than 9 years. And 

finally, Blewitt and Lavallée (2002) used the value of 5% to 

calculate the minimum velocity bias. However, this value is 

disputable. With the increasing demand on velocities, we 

argue that even smaller change in GDP could be considered 

as significant. This means that 7 and 9 years of continuous 

observations could be considered as the threshold for white 



 GPS Solut (2018) 22:1

1 3

1 Page 10 of 13

North

GDP

0 10

East

GDP

0 10

Up

GDP

0 10

Fig. 7  General Dilution of precision (GDP) for the North, East, and 

Up components. GDP means here a ratio between two assumptions 

of models being fitted into position time series: (1) a linear velocity 

plus a pure white noise, (2) a linear velocity, all seasonal terms and a 

combination of power-law and white noise model
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and flicker noise, while 17 years for random walk to make 

the GDP to decrease to below 5% and to omit periodic sig-

nals in the GNSS-derived time series, taking only the noise 

model into consideration.

For real GPS data, the GDP values vary between 0 and 

20, when a full deterministic model plus a proper noise 

model are considered against the assumption of linear veloc-

ity plus a white noise model. This clearly shows the com-

bined effect which different assumptions for the mathemati-

cal model have on the uncertainties of the estimates. When 

the more realistic model is used, the closer to the truth and 

proper uncertainties are obtained.

Naturally, these assumptions are also valid for other kinds 

of data, such as VLBI, SLR, DORIS, or tide gauges. VLBI 

and SLR position time series are both characterized by the 

stochastic part being quite close to white noise (Feissel-Ver-

nier et al. 2007; Botai et al. 2011), meaning that the type of 

noise would not have much impact on the uncertainties of 

the estimates. In these cases, a number of seasonals being 

fitted into position time series play a crucial role in the GDP 

estimates. As was shown by Collilieux et al. (2007) that the 

VLBI and SLR position time series are characterized by a 

number of significant oscillations, which have to be taken 

into account when a realistic model is to be employed. Rid-

dell et al. (2017) found that the uncertainties of X, Y, and Z 

translations increase of 0.10 mm/year at a minimum, when 

a power-law noise is employed to describe them. The uncer-

tainties of parameters delivered from DORIS series with 

the preferred noise model described as white plus flicker 

noise (Williams and Willis 2006; Khelifa et al. 2012) will be 

influenced much more by the character of noise than VLBI 

and SLR position series.
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