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ON THE COMMON DIVISOR OF
DISCRIMINANTS OF INTEGERS

By

Satomi OKA

Abstract. Let $F$ be an algebraic number field of a finite degree, and
let $K$ be an extension of $F$ of a finite degree. Denote by $\delta(K/F)$ the
greatest common divisor of the discriminants of integers of $K$ with
respect to $K/F$ . Then, $\delta(K/F)$ is divisible by the discriminant $d(K/F)$

of $K/F$ .
Let $p$ be an arbitrary prime ideal of $F$, let $p=q_{1}^{el}q_{2^{2}}^{e}\cdots q_{g^{g}}^{e}$ be

the decomposition of $p$ in $K$ into primes, and let $f_{i}$ be the degree
of $q_{l}$ . The set of indices $\{1, 2, \ldots, g\}$ is then divided into the union
of maximal subsets $I$ such that $f_{i}=f_{j}$ whenever $i$ and $j$ belong to
a common $I$. We write $f_{I}$ instead of $f_{i}$ for $i\in I$ , and denote by $gI$

the number of elements in $I$. Put on the other hand $c(I)=$

$\sum_{d|\int_{J}}\mu(f_{I}/d)Np^{d}$ , where $\mu$ is the Mobius function. Then, $p$ divides
$\delta(K/F)d(K/F)^{-1}$ if and only if there exists an $I$ such that
$c(I)<f_{I}g_{I}$ .

\S 1. Introduction

Let $F$ be an algebraic number field of a finite degree, and $K$ an extension over
$F$ of a finite degree. A basic theorem in the general theory of algebraic number
fields says that the greatest common divisor of differents of integers of $K$ with
respect to $K/F$ is equal to the different $\mathfrak{d}(K/F)$ of $K/F$ . Therefore, the greatest
common divisor $\delta(K/F)$ of discriminants of integers of $K$ with respect to $K/F$ , as
an ideal of $F$, is divisible by the discriminant $d(K/F)=N_{K/F}b(K/F)$ of $K/F$ . It
is known, however, that $d(K/F)$ is not always equal to $\delta(K/F)$ . In the present
paper, we will give a necessary and sufficient condition in a simple, elementary
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form for an arbitrary prime ideal $p$ of $F$ to divide $\delta(K/F)d(K/F)^{-1}$ . The main
theorem is in \S 4. A prime divisor of $\delta(K/F)$ which does not divide $d(K/F)$ was
called “Ausserwesentlicher Diskriminantenteiler” (Dedekind [1]).

\S 2. Preliminaries

1. Throughout the paper, we use standard terminology of number theory as
in [2] and [4].

Let $F$ be an algebraic number field of a finite degree, and $K$ be an extension
over $F$ of a finite degree $n$ . The different $\mathfrak{d}(\alpha, K/F)$ of an element $\alpha$ of $K$ with
respect to $F$ is then defined by $f^{\prime}(\alpha)=\mathfrak{d}(\alpha, K/F)$ where $f(X)$ is the characteristic
polynomial of $\alpha=\alpha^{(1)}$ with respect to $K/F$ . If $\alpha^{(1)},$ $\alpha^{(2)},$

$\ldots,$

$\alpha^{(n)}$ are conjugates of
$\alpha$ with respect to $K/F$ , the equality $\mathfrak{d}(\alpha, K/F)=\prod_{i\neq 1}(\alpha^{(1)}-\alpha^{(i)})$ holds. Fur-
thermore,

1 $\alpha^{(1)}$ . . . $\alpha^{(1)n-1}2$

1 $\alpha^{(2)}$ . . . $\alpha^{(2)n-1}$

$d(\alpha, K/F)=$

1 $\alpha^{(n)}$ . . . $\alpha^{(n)n-1}$

$=\prod_{i>j}(\alpha^{(i)}-\alpha^{(j)})^{2}$

$=(-1)^{n(n-1)/2}\prod_{i\neq j}(\alpha^{(i)}-\alpha^{(j)})$

$=(-1)^{n(n-1)/2}N_{K/F}\mathfrak{d}(\alpha,K/F)$

implies the relation

$d(\alpha,K/F)=(-1)^{n(n-1)/2}N_{K/F}\mathfrak{d}(\alpha, K/F)$

between the different of $\alpha$ and the relative discriminant $d(\alpha, K/F)$ of $\alpha$ with
respect to $K/F$ .

2. We insert here some elementary facts conceming finite fields.
Let $K_{1}$ be a finite field, and $K_{f}$ an extension of $K_{1}$ of degree $f$ . Then, the

Galois group $Z$ of $K_{f}/K_{1}$ is cyclic of order $f$ , and, for a divisor $d$ of $f$ , there is a
unique subfield $K_{d}$ of $K_{f}$ of degree $d$ over $K_{1}$ . Denote by $C_{d}$ the set of elements
$\gamma$ of $K_{f}$ such that $K_{1}(\gamma)=K_{d}$ , and by $c_{d}$ the number of elements of $C_{d}$ . Then,
$\bigcup_{d|f}C_{d}=K_{f}$ implies $\sum_{d|f}c_{d}=q^{f}$ , where $q=c_{1}$ is the number of elements of
$K_{1}$ . Thus, Mobius’ inversion formula yields

(1) $c_{f}=c(q,f)$ ,
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where $c(q,f)$ is defined by

$c(q,f)=\sum_{d|f}\mu(\frac{f}{d})q^{d}$

for any two natural numbers $q,f$ . Every $f$ elements of $C_{f}$ are mutually conjugate
under the action of the Galois group $Z$ . So, denoting the set of such conjugate
classes of $C_{f}$ by $\tilde{C}_{f}$ , the number of elements of $\tilde{C}_{f}$ is

$\frac{c_{f}}{f}=\frac{1}{f}\sum_{d|f}\mu(\frac{f}{d})q^{d}$ .

3. Let, as in 1, $F$ be an algebraic number field of a finite degree, and $K$ an
extension over $F$ of a finite degree $n$ . Assume that $\mathfrak{p}$ is a prime ideal of $F$, and $L$

is a normal extension over $F$ of a finite degree containing $K$. For instance, we
may take as $L$ the Galois closure of $K/F$ .

Put

$Gal(L/F)=G$ , $Gal(L/K)=H$ ,

and let $Z$ be the decomposition group of a prime factor $\mathfrak{P}$ of $p$ in $L$ . Then, $\mathfrak{P}^{\sigma}$

and $\mathfrak{P}^{\sigma^{\prime}},$

$(\sigma, \sigma^{\prime}\in G)$ , divide a common prime ideal $q$ of $K$ if and only if $\sigma$ and $\sigma$

‘

belong to a common double coset of $Z\backslash G/H$ . Fixing the representatives $\sigma_{1}=1$ ,
$\sigma_{2},$

$\ldots,$
$\sigma_{g}$ of the double cosets so that

$G=\bigcup_{i=1}^{g}Z\sigma_{j}H$

holds, the decomposition of $p$ in $K$ is of the form

(2) $p=q_{1}^{e_{1}}q_{2^{2}}^{e}\cdots q_{g}^{e_{g}}$ ,

where $q_{l}$ is the prime ideal of $K$ divisible by $\mathfrak{P}^{\sigma_{i}}$ . Since $\mathfrak{P}^{\sigma_{j}}=\mathfrak{P}^{\sigma_{j}\eta},$ $(\eta\in H)$ ,
is equivalent to $\sigma_{l}\eta\sigma_{i}^{-1}\in Z$ , the number of different prime factors of $q_{i}$ in $L$ is
$(H:\sigma_{i}^{-1}Z\sigma_{j}\cap H)$ . The product of the degree and the ramification exponent of
$\mathfrak{P}^{\sigma_{i}}$ over $K$ is $(\sigma_{i}^{-1}Z\sigma_{i}\cap H:1)$ . Therefore, the degree $f_{i}$ and the ramification
exponent $e_{j}$ of $q_{j}$ over $F$ is given by

$e_{i}f_{i}=(\sigma_{i^{-1}}Z\sigma_{j} : \sigma_{i}^{-1}Z\sigma_{j}\cap H)$

and

$e_{l}=(\sigma_{i}^{-1}T\sigma_{i} : \sigma_{i}^{-1}T\sigma_{i}\cap H)$ ,

where $T$ is the inertia group of $\mathfrak{P}$ .



72 Satomi $0KA$

\S 3. Isomorphisms between Residue Class Fields

In the investigation of the different, it is basically enough to treat one single
prime ideal of the extention field. But, in the investigation of the discriminant, it
is required to handle all those prime ideals of the extension field at the same time
which divide a prime ideal of the base field. Actually, the discriminant is of a
semi-local nature. From this point of view, we summarize in this article some
propositions; they are effectively used in the proof of the main theorem.

In this article, as before, $F$ is an algebraic number field of a finite degree, and
$K$ is an extension over $F$ of a finite degree $n$ . In addition, we employ same
notation and symbols as in 3 of \S 2. Let now $0_{L},$ $0_{K}$ and $0_{F}$ be the ring of integers
of $L,$ $K$ and $F$, respectively, $\mathfrak{p}$ a prime ideal of $F$, and $\mathfrak{P}$ a prime ideal of $L$

dividing $\mathfrak{p}$ . Moreover, let $Z$ be the decomposition group of $\mathfrak{P}$ . Then, corre-
sponding to the decomposition (2) of $p$ in $K$, we put

$0_{F}/p=K(p)$ , $0_{K}/q_{i}=K(q_{j})$

and

(3) $G(q_{j})=Gal(K(q_{i})/K(\mathfrak{p}))$ ,

so that

$(K(q_{i}):K(p))=f_{i}$ , $Nq_{l}=q^{f_{i}}$ , $q=Np$ .

For every divisor $d$ of $f_{i}$ , the finite field $K(q_{i})$ has a unique subfield of degree $d$

over $K(\mathfrak{p})$ , which will be denoted by $K(q_{j})_{d}$ . In particular, $K(q_{i})=K(q_{i})_{f}i$ and
$K(q_{j})_{1}=K(\mathfrak{p})$ . We denote by $C(q_{j})$ the set of elements $\gamma$ of $K(q_{i})$ such that $\gamma$

generates $K(q_{j})$ over $K(p)$ , and by $c(q_{i})$ the number of elements of $C(q_{i})$ . The
elements of $C(q_{j})$ are divided into conjugate classes under the action of $G(q_{j})$ ,
and every conjugate class consists of $f_{i}$ elements. The set of such conjugate classes
will be denoted by $\tilde{C}(q_{i})$ . Considering $K(q_{j}),$ $K(q_{i})_{d},$ $f_{i}$ , and $q=Np$ as to be $K_{f}$ ,
$K_{d},$ $f$ , and $q$ in 2 of \S 2, we have $c(q_{i})=c(q,f_{i})$ , or

(4) $c(q_{i})=\sum_{d|f_{j}}\mu(\frac{f_{i}}{d})Np^{d}$

by (1). Accordingly, the number of elements of $\tilde{C}(q_{i})$ is $\frac{1}{f_{i}}c(q_{i})$ .

We write an element of $K(q_{i})$ in the form $\alpha$ mod $q_{j},$ $(\alpha\in 0_{K})$ , and we say
that $\alpha$ mod $q_{i}\in K(q_{i})$ and $\beta$ mod $q_{j}\in K(q_{j})$ are weakly conjugate, if there is an
element $\sigma$ in $\sigma_{i}^{-1}Z\sigma_{j}$ such that

(5) $\alpha^{\sigma}\equiv\beta(mod \mathfrak{P}^{\sigma_{J}})$ .
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Here, $\alpha^{\sigma}$ need not belong to $K$. This definition of weak conjugation does not
depend on the choice of $\sigma_{l}$ . In fact, suppose

$\sigma_{j^{\prime}}=\xi_{j}\sigma_{j}\eta_{i}$ , $\sigma_{j^{\prime}}=\xi_{j}\sigma_{j}\eta_{j}$ , $(\xi_{l}, \xi_{j}\in Z,\eta_{l}, \eta_{j}\in H)$ ,

and put $\sigma^{\prime}=\eta_{i}^{-1}\sigma\eta_{j}$ . Then, $\sigma$

‘ belongs to $\sigma_{i^{\prime-1}}Z\sigma_{j^{\prime}}$ , and $\mathfrak{P}^{\sigma_{j^{\prime}}}=\mathfrak{P}^{\sigma_{j}\eta_{j}}$ . Hence, it
follows from (5) that

$\alpha=\alpha\sigma\eta_{j}\sigma^{\prime}\eta_{J^{- 1}=\alpha}\sigma^{\prime}\eta_{J^{- 1}\equiv\beta}(mod \mathfrak{P}^{\sigma_{J}})$ ,

which implies

$\alpha^{\sigma^{\prime}}\equiv\beta(mod \mathfrak{P}^{\sigma_{J^{\prime}}})$ .

The weak conjugation determines a relation between the residue classes $\alpha mod$

$q_{i}$ and $\beta mod q_{j}$ , which proves to be an equivalence relation. Firstly the self-
equivalence is clear by $\alpha\equiv\alpha(mod \mathfrak{P}^{\sigma_{i}})$ for any $\alpha\in 0_{K}$ . To see the reflectivity,
we note that $\mathfrak{P}^{\sigma_{j}\sigma^{- 1}}=\mathfrak{P}^{\sigma_{i}}$ , if $\sigma^{-1}\in\sigma_{j^{-1}}Z\sigma_{i}$ . From this and from (5) follows
$\beta^{\sigma^{- 1}}\equiv\alpha(mod \mathfrak{P}^{\sigma_{j}})$ . Assume now

$\alpha^{\sigma}\equiv\beta(mod \mathfrak{P}^{\sigma_{J}})$ , $\beta^{\tau}\equiv\gamma(mod \mathfrak{P}^{\sigma_{k}})$ , $(\alpha,\beta, \gamma\in 0_{K})$ ,

with $\sigma\in\sigma_{i}^{-1}Z\sigma_{j},$ $\tau\in\sigma_{j^{-1}}Z\sigma_{k}$ . Then, $\sigma\tau\in\sigma_{i}^{-1}Z\sigma_{k}$ and $\mathfrak{P}^{\sigma_{j}\tau}=\mathfrak{P}^{\sigma_{k}}$ . Thus, we get
the transitivity

$\alpha^{\sigma\tau}\equiv\beta^{\tau}\equiv\gamma(mod \mathfrak{P}^{\sigma_{k}})$ .

An isomorphism between $K(q_{i})$ or their subfields will be called a weak con-
jugating isomorphism, if it maps each residue class to a weakly conjugate one.

PROPOSITION 1. Every element of $G(q_{l})$ in (3) is a weak conjugating iso-
morphism of $K(q_{j})$ onto itself.

PROOF. By definition, a weak conjugating isomorphism of $K(q_{j})$ is an
automorphism of $K(q_{j})/K(p)$ induced by an element of $\sigma_{i}^{-1}Z\sigma_{i}$ . Put here
$K(\mathfrak{P}^{\sigma_{l}})=0_{L}/\mathfrak{P}^{\sigma_{j}}$ . Then, $\sigma_{i}^{-1}Z\sigma_{j}$ is the Galois group of $K(\mathfrak{P}^{\sigma_{i}})/K(p)$ , and $K(q_{i})$

is a subfield of $K(\mathfrak{P}^{\sigma_{j}})/K(\mathfrak{p})$ . Therefore, every element of $G(q_{j})$ is induced by an
element of $\sigma_{i}^{-1}Z\sigma_{l}$ , and is a weak conjugating isomorphism. (q.e. $d.$ )

PROPOSITION 2. If two elements $x\in K(q_{i})$ and $y\in K(q_{j})$ are weakly conju-
gate, then $x$ belongs to $K(q_{i})_{d}$ and $y$ belongs to $K(q_{j})_{d}$ , where $d$ is the $g.c.d$ of
$f_{i}=$ $(K(q_{l}) : K(p))$ and $f_{j}=(K(q_{/}\cdot) : K(p))$ .
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PROOF. The fields generated by $x$ and $y$ over $K(\mathfrak{p})$ have a common degree
$d^{\prime}$ over $K(p)$ . So, $d^{\prime}|d$ , and the both fields must be contained in $K(q_{j})_{d}$ and
$K(q_{j})_{d}$ , respectively, because a finite field has a unique extension field with a
given degree. (q.e. $d.$ )

PROPOSITION 3. Notation being as in Prop. 2, there exists a weak conjugating
isomorphism from $K(q_{j})_{d}$ onto $K(q_{j})_{d}$ , and the number of different such isomor-
phism is $d$.

PROOF. The element $\sigma_{i}^{-1}\sigma_{j}$ of $G$ maps $K(\mathfrak{P}^{\sigma_{j}})=0_{L}/\mathfrak{P}^{\sigma_{l}}$ onto $K(\mathfrak{P}^{\sigma_{j}})=$

$0_{L}/\mathfrak{P}^{\sigma_{j}}$ . The image by $\sigma_{i}^{-1}\sigma_{j}$ of the subfield $K(q_{i})_{d}$ of $K(\mathfrak{P}_{i})$ must coincide with
$K(q_{j})_{d}$ , because a finite field has a unique extension field with a given degree.
This proves the first assertion. The second assertion follows now from Prop. 1.

(q.e. $d.$ )

Under the equivalence relation determined by the weak conjugation, the
union $\bigcup_{i^{g}=1}K(q_{j})$ as well as the union $\bigcup_{i^{g}=1}C(q_{i})$ is divided into equivalence
classes, which will be called weak conjugate classes.

PROPOSITION 4. The weak conjugate classes of $C(q_{j})$ are same as classes in
$\tilde{C}(q_{i})$ .

PROOF. This follows immediately from Prop. 1. (q.e. $d.$ )

If $I$ is a maximal subset of indices $\{1, 2, \ldots, g\}$ in (2) such that $f_{i}=f_{j}$ for
every $i,$ $j\in I$ , then we write $f_{I}$ instead of $f_{i}$ for $i\in I$ , and will denote by $g_{I}$ the
number of indices in $I$. We call $I$ a component of indices. Clearly, $\sum_{J}gI=g$ .

PROPOSITION 5. Let I be a component of indices. Then, the number of
weak conjugate classes in the union $\bigcup_{i\in I}C(q_{j})$ is given by $c(I)/f_{I}=$

$(1/f_{I})\sum_{d|f},$ $\mu(f_{I}/d)Np^{d}$ , which is equal to the number of elements in $\tilde{C}(q_{i}),$ $(i\in I)$ .

PROOF. This follows from Prop. 3, Prop. 4, and (4).

\S 4. Application of the Local Theory

To prove our main theorem, it is convenient to apply some properties of
local fields.
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Notation being as in 3 of \S 2, we denote by $K_{(i)}$ the $q_{j}$-completion of $K$, by
$L_{(i)}$ the $\mathfrak{P}^{\sigma_{j}}$ -completion of $L$ , and by $F_{\mathfrak{p}}$ the p-completion of $F$. Moreover, we
denote by $0_{(i)},$ $\mathfrak{O}_{(i)}$ , and $0_{p}$ the rings of integers of $K_{(i)},$ $L_{(i)}$ , and $F_{p}$ , respectively.
Since no confusion is possible, the maximal ideal of $0_{(l)}$ will be denoted by $q_{i}$ .
Similarly, $\mathfrak{P}^{\sigma_{i}}$ and $p$ will stand for maximal ideals of $\mathfrak{O}_{(i)}$ and $0_{p}$ , respectively.

We have isomorphisms

$o_{(i)}/q_{j}\cong 0_{K}/q_{l}=K(q_{i})$ , $0_{p}/\mathfrak{p}\cong 0_{F}/\mathfrak{p}=K(p)$

and

$\mathfrak{O}_{(i)}/\mathfrak{P}^{\sigma_{l}}\cong 0_{L}/\mathfrak{P}^{\sigma_{j}}=K(\mathfrak{P}^{\sigma_{l}})$ ,

where the meanings of $K(q_{l}),$ $K(p)$ , and $K(\mathfrak{P}^{\sigma_{i}})$ are same as in \S 3. Accord-
ingly, every terminology conceming $\alpha$ mod $q_{j},$ $(\alpha\in 0_{K}),$ $\alpha$ mod $p,$ $(\alpha\in 0_{F})$ , or
$\alpha mod \mathfrak{P}^{\sigma_{i}},$ $(\alpha\in 0_{L})$ can be used for $\alpha$ mod $q_{j},$ $(\alpha\in 0_{(i)}),$ $\alpha$ mod $p,$ $(\alpha\in 0_{\mathfrak{p}})$ ,
or $\alpha mod \mathfrak{P}^{\sigma_{i}},$ $(\alpha\in \mathfrak{O}_{(i)})$ , without change. In particular, the notion of weak
conjugation introduced in \S 3 makes sense also for residue classes $\alpha_{j}$ mod $q_{l}$ ,
$(\alpha_{j}\in \mathfrak{o}_{(l)})$ and $\alpha_{j}$ mod $q_{j},$

$(\alpha_{j}\in \mathfrak{o}_{(j)})$ .
As is known in the theory of local fields, $K_{(i)}/F_{p}$ has a unique unramified

maximal intermediate field, which we will denote by $K_{(i),0}$ . The extension
$K_{(i),0}/F_{p}$ is cyclic, cyclotomic, and $K_{(i)}/K_{(i),0}$ is fully ramified, so that

$(K_{(i)} : K_{(i),0})=e_{j}$ , $(K_{(l),0} : F_{p})=f_{i}$ .

Denoting by $0_{(i),0}$ the ring of integers of $K_{(i),0}$ , we have furthermore

$o_{(i)}/q_{i}\cong 0_{(i),0}/q_{j}\cap \mathfrak{o}_{(i),0}\cong 0_{(i),0}/p$ .

To go forward, we quote here a basic theorem in the theory of local fields
without proof. We state it in the form of next proposition fitting to the present
situation.

PROPOSITION 6. Notation being as above and as in 3 of \S 2, let $\pi_{j}$ be a prime
element of $q_{i}$ in $0_{(i)}$ . Then, the $q_{j}$-exponent of the different $\mathfrak{O}(K/F)$ of $K/F$ is equal
to the $q_{j}$-exponent of

$\prod_{\sigma}(\pi_{i}-\pi_{i}^{\sigma})$ , $\sigma\in\sigma_{i}^{-1}T\sigma_{j}\cap H\backslash \sigma_{i}^{-1}T\sigma_{i}$ , $\pi_{i}^{\sigma}\neq\pi_{j}$ .

PROPOSITION 7. Notation being as in Prop. 6 and in \S 3, let an element $\alpha_{i,0}$ of
$o_{(l),0}$ be given for each $i,$ $(i=1,2, \ldots, g)$ , such that

a) $\alpha_{i,0}$ mod $q_{j}$ belongs to $C(q_{l})$ ,
and that
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b) $\alpha_{i,0}$ mod $q_{j}$ and $\alpha_{j,0}$ mod $q_{j},$
$(i\neq j)$ , are not weakly conjugate.

Put

$\alpha_{i}=\alpha_{i,0}+\pi_{i}$ ,

and let $\sigma$ be an element of $G$ which does not belong to the union $\bigcup_{j}H\cdot\sigma_{i}^{-1}T\sigma_{i}$ .
Then, a conguruence of the form

(6) $\alpha_{i}^{\sigma}\equiv\alpha_{j}(mod \mathfrak{P}^{\sigma_{J}})$

can not hold for any $i,$ $j$.

PROOF. Fix one arbitrary $i$, and assume first $\sigma\in\sigma_{i}^{-1}Z\sigma_{i}$ . Then,
$\pi_{i}-\pi_{i^{\sigma}}\equiv 0(mod \mathfrak{P}^{\sigma_{j}})$ . On the other hand, we see by the local theory
that $\sigma_{i}^{-1}Z\sigma_{j}/\sigma_{i}^{-1}T\sigma_{j}$ is the Galois group of $K_{(i),0}/F_{p}$ . This means that $\sigma$ induces
a non-trivial automorphism of $K(q_{i})$ unless it belongs $\sigma_{i}^{-1}T\sigma_{j}$ . So,
$\alpha_{i,0}^{\sigma}-\alpha_{i,0}\equiv 0(mod \mathfrak{P}^{\sigma_{j}})$ can not hold by the assumption. Hence, (6) can not
hold.

Assume next $\sigma\not\in\sigma_{i}^{-1}Z\sigma_{i}$ . Then, $\mathfrak{P}^{\sigma_{j}\sigma}=\mathfrak{P}^{\sigma_{J}\eta}$ with some $\sigma_{j}$ and $\eta\in H$ . In this
case, $\pi_{i}^{\sigma}-\pi_{j^{\eta}}\equiv 0(mod \mathfrak{P}^{\sigma_{J}\eta})$ , and $\sigma^{f}=\sigma\eta^{-1}\in\sigma_{i}^{-1}Z\sigma_{/}\cdot,$ $(\sigma\eta^{-1}\neq 1)$ . Accordingly,
$\pi_{i}^{\sigma^{\prime}}-\pi_{j}\equiv 0(mod \mathfrak{P}^{\sigma_{j}})$ , and therefore (6) would imply $\alpha_{i,0}^{\sigma^{\prime}}-\alpha_{j,0}\equiv 0(mod \mathfrak{P}^{\sigma_{j}})$ .
But, this is impossible by the definition of the weak conjugation and by the
assumption of the proposition. (q.e. $d.$ )

The converse statement of Prop. 7 is also valid. For the sake of convenience,
we state it separately.

PROPOSITION 8. Notation being as in Prop. 7, assume either that
$a^{\prime})\alpha_{i,0}$ mod $q_{i}$ does not belongs to $C(q_{i})$ ,

$or$

$b^{\prime})\alpha_{i,0}mod q_{i}$ and $\alpha_{j,0}$ mod $q_{j},$
$(i\neq j)$ , are weakly conjugate. Then, (6) holds

with some $\sigma\in\sigma_{i}^{-1}Z\sigma_{j}$ , and, if $a^{\prime}$ ) is the cases, with $i=j$ and $\sigma\not\in H\cdot\sigma_{i}^{-1}T\sigma_{i}$ .

$PR\infty F$ . The first part of the proposition conceming $a^{\prime}$ ) is, as the corre-
sponding part of Prop. 7, a consequence of the fact that $\sigma$ induces a non-trivial
autmorphism of $K(q_{i})$ .

To prove the second, it is enough to recall that $\alpha_{i,0}^{\sigma}\equiv\alpha_{j,0}$ (mod $q_{j}$ ),
$(\sigma\in\sigma_{i}^{-1}Z\sigma_{j})$ , is the definition of the weak conjugation. (q.e. $d.$ )
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\S 5. Main Theorem

Using the terminology “component of indices” introduced in prior to Prop. 5,
our main theorem is stated as follows:

THEOREM. Let $F$ be an algebraic number field of a finite degree, and $K$ an
extension over $F$ of a finite degree $n$ . Let $\mathfrak{p}$ be a prime ideal of $F$, and let $d(K/F)$

be the discriminant of $K/F$ . Denote on the other hand by $\delta(K/F)$ the greatest
common divisor of discriminants of integers of $K$ with respect to $K/F$ . Then, $p$

divides $\delta(K/F)d(K/F)^{-1}\iota f$ and only $\iota fc(I)<f_{I}g_{I}$ , or equivalentry

$\frac{1}{f_{I}}\sum_{d|f}I\mu(\frac{f_{I}}{d})(Np)^{d}<gI$ ,

is the case for at least one component I of indices, where $\mu$ is the Mobius’ function.

PROOF. Notation being as in \S 4, we investigate an integer $\alpha$ in $0_{K}$ together
with a system $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha_{g}$ of local integers in $0_{(i),0}$ satisfying

(7) $\alpha\equiv\alpha_{j}$ (mod $q_{j}^{e_{i}(N+1)}$ ), $(i=1,2, \ldots, g)$ ,

where $N$ is the p-exponent of $d(K/F)$ .
Assume first the inequality $c(I)\geq f_{I}gI$ holds for every components $I$ of

indices. Then, by Prop. 5, we can choose $\alpha_{i,0}\in 0_{(i),0}$ such that $\alpha_{j}$ mod $q_{i}$ belongs
to $C(q_{j})$ and such that $\alpha_{i,0}$ mod $q_{j}$ and $\alpha_{j,0}$ mod $q_{j}$ are not weakly conjugate as far
as $i$ and $j$ belong to the same $I$. If here $i$ and $j$ belong to different components of
indices, then $\alpha_{i,0}mod q_{j}$ and $\alpha_{j,0}$ mod $q_{j}$ cannot be weakly conjugate because the
field generated by them have different degree over $K(p)$ .

Let $\pi_{j}$ be, as in Prop. 7, a prime element of $q_{i}$ . Put

$\alpha_{j}=\alpha_{i,0}+\pi_{i}$ ,

and let $\alpha$ be as in (7). Then, Prop. 6 implies that the $q_{j}$-exponent of

$\prod_{\sigma}(\alpha-\alpha^{\sigma})$ , $\sigma\in H\backslash H\cdot\sigma_{i}^{-1}Z\sigma_{l}$ ,

is equal to the $q_{i}$-exponent of $\mathfrak{O}(K/F)$ , and Prop. 7 implies that
$\prod_{\sigma}(\alpha-\alpha^{\sigma}),$ $(\sigma\in H\backslash G)$ , is prime to $p$ whenever $\sigma\not\in\bigcup_{j}H\cdot\sigma_{i}^{-1}T\sigma_{i}$ . Therefore,
the $q_{j}$-exponent of $\mathfrak{O}(\alpha, K/F)$ coincides with that of $\mathfrak{O}(K/F)$ for every $i$. Hence,
the p-components of $d(\alpha, K/F)$ and $d(K/F)$ are same. From this follows that $p$

does not divide $\delta(K/F)$ .
Assume conversely $c(I)<f_{I}g_{I}$ for some $I$, and denote in general by $\alpha_{i,0}$
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an element of $0_{(i),0}$ and by $\pi_{i}$ a prime element of $q_{i}$ in $0_{(i)}$ . Since then
$\sigma\in\sigma_{i}^{-1}Z\sigma_{j},$ $(i\neq j)$ , does not belong to any $H\cdot\sigma_{i}^{-1}T\sigma_{i}$ , Prop. 8 implies that there
exists $\sigma\in G$ with $\sigma\not\in H\cdot\sigma_{i}^{-1}T\sigma_{i}$ at least one $i$ such that (6) holds under any
choioe of $\alpha_{i,0}$ . This shows that the p-exponent of $d(\alpha, K/F)$ exceeds $N$ as far as $\alpha$

is determined by (7) with $\alpha_{i}=\alpha_{i,0}+\pi_{j}$ .
Thus, there remains only to observe the case where $\alpha_{i}$ is not of this form.

This case occurs merely when $e_{i}>1$ and $\alpha_{j}=\alpha_{i,0}+\rho_{j}$ with $\rho_{i}\equiv 0$ (mod $q_{i}^{2}$ ). But,
in this case, the $q_{i}$-exponent of

$\prod_{\sigma}(\rho_{i}-\rho_{i}^{\sigma})$ , $\sigma\in\sigma_{i}^{-1}T\sigma_{j}\cap H\backslash \sigma_{i}^{-1}T\sigma_{i}$ ,

exceeds the $q_{j}$-exponent of $\mathfrak{O}(K/F)$ due to Prop. 6. Consequently, the
p-exponent of $d(\alpha, K/F)$ exceeds $N$. Hence, $p$ divides $\delta(K/F)$ whenever
$c(I)<f_{I}g_{I}$ .

(q.e. $d.$ )

REMARK 1. The statement of the theorem does not concem the ramification.

REMARK 2. The arguments in the present paper are based upon the idea
announced in [3] in a very special case.
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