On the Communication Complexity of 3D FFTs and its
Implications for Exascale

Kenneth Czechowski', Casey Battaglinot, Chris McClanahan-,
Kartik lyert, P.-K. Yeung®+, Richard Vuduct
Georgia Institute of Technology, Atlanta, GA
* School of Computer Science
t School of Computational Science and Engineering
+ School of Aerospace Engineering
{kentcz,cbattaglino3,chris.mcclanahan,kartik.iyer,pk.yeung,richie}@gatech.edu

ABSTRACT

This paper revisits the communication complexity of large-
scale 3D fast Fourier transforms (FFTs) and asks what im-
pact trends in current architectures will have on FFT per-
formance at exascale. We analyze both memory hierarchy
traffic and network communication to derive suitable ana-
lytical models, which we calibrate against current software
implementations; we then evaluate models to make predic-
tions about potential scaling outcomes at exascale, based
on extrapolating current technology trends. Of particular
interest is the performance impact of choosing high-density
processors, typified today by graphics co-processors (GPUs),
as the base processor for an exascale system. Among various
observations, a key prediction is that although inter-node
all-to-all communication is expected to be the bottleneck
of distributed FFTs, intra-node communication—expressed
precisely in terms of the relative balance among compute
capacity, memory bandwidth, and network bandwidth—will
play a critical role.

Categories and Subject Descriptors

D.1 [Concurrent Programming]: Distributed program-
ming

General Terms

Algorithms, Performance

Keywords
FFT, Exascale, Performance Model

1. INTRODUCTION

As we progress toward exascale computing, new challenges,
such as power and energy constraints, limit the scalability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’12, June 25-29, 2012, San Servolo Island, Venice, Italy.

Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

of traditional high performance computing systems. This
has spurred the development of various alternative archi-
tectures. One noteworthy example is the recent interest in
systems comprised of dense, massively parallel processors,
such as GPUs. Yet despite the attention surrounding exas-
cale, there is no consensus on which architectural strategies
will win out, both on the processor level and on the system-
wide level. Furthermore, this uncertainty raises important
questions about how these design choices impact algorithms
and software implementations.

This paper studies the ways in which the design of future
exascale systems will affect applications targeted to run on
these machines. To analyze potential architecture and algo-
rithm scenarios, we propose the use of detailed, principled
performance models, incorporating both algorithmic and ar-
chitectural characteristics. This takes a unique approach
towards performance modeling by integrating algorithmic
communication complexity analysis—including traffic both
within the memory hierarchy and across the network—with
cost models that are grounded in technology trends. Our
overall goal is to use such models to better understand the
strengths and weaknesses of a particular algorithmic or ar-
chitectural approach, and to apply such insights to quanti-
tatively predict performance on future architectures.

To demonstrate this approach, we consider the problem of
implementing a large-scale 3-dimensional fast Fourier trans-
form (3D FFT) on a hypothetical future exascale system.
We derive and calibrate a suitable analytical performance
model, then use it to make predictions about potential scal-
ing outcomes at exascale, based on the extrapolation of cur-
rent technology trends. Of particular interest is the perfor-
mance impact of building systems comprised of high-density
compute units, as typified today by graphics co-processors
(GPUs).

Contributions.

We make what we believe to be two contributions to our
current understanding of large-scale FFT computations and
the implications for exascale.

1. Modeling (§ 3): We derive an analytical performance
model of a 3D FFT that includes computation and
both inter- and intra-node communication costs. The
inter-node terms account for topology; the intra-node
terms include memory bandwidth, cache, and I/O-
bus (PCle) effects. This gives us a basis for studying

how performance changes as machine parameters vary;
how alternative 3D FFT algorithms might behave; and
what the future may hold. We instantiate and validate
this model experimentally on existing systems. An in-
tuitive interpretation of the model in terms of processor
balance [6, 8, 11, 33, 35] is given in § 4.

2. Predictions (§ 6): Using our model, we consider trends
in architecture and FFT performance over the past 30
years and predict what might happen in the year 2020,
at exascale. Current debates about exascale architec-
tures suggest two competing designs, or “swim lanes.”
One design is based on an embedded-CPU-like proces-
sor and the other based on a GPU-like design. Bar-
ring certain memory technology changes as discussed
below, our analysis yields what may be a surprise to
some, if not many: the relatively high compute-density
of a GPU-like node could cause a global system im-
balance. Consequently, a one exaflop/s (EF/s) sys-
tem based on an extrapolated CPU-like design might
actually outperform a one EF/s GPU-like design for
3D FFTs, or any similarly communication bandwidth-
bound computation.

Limitations.

Our work has several limitations and qualifications.

First and foremost, we are not oblivious to the notion that,
“Prediction is very difficult, especially about the future.”
Indeed, we rely critically on assumptions that are subject
to considerable debate and dramatic shifts. We do discuss
some specific threats to validity, including, for instance, vi-
ability and impact of stacked memory on intra-node FFT
performance. Our real intent in making any predictions at
all is to foster discussion and perhaps influence the future,
rather than to only obtain the strictly “correct” answer.

Second, our FFT analysis is far from exhaustive. For ex-
ample, we only consider the pencil decomposition of the
transpose method for computing a 3D FFT. Other distri-
buted FFT algorithms exist, but for realistic problem sizes
on current and future large-scale systems the pencil decom-
position is the best option [17, 22]. We also assume ideal
problem sizes: n is a power of two and all dimensions are
equally sized. Interested readers are directed elsewhere for
examples of how irregular problem sizes can impact perfor-
mance [9]. Our analysis also omits several factors that could
play key roles in future systems. Chief among these are mi-
croscopic memory and network contention effects, which we
account for implicitly through parameter calibration. These
omissions imply that our estimates are optimistic, as we
show when we try to validate the model. Nevertheless,
our modeling goal is to bound performance, in order to un-
derstand scalability independent of implementation artifacts
that might reasonably disappear by the time we reach exas-
cale. In that sense, the model may still permit interesting
conclusions.

Finally, we have framed our Prediction section (§ 6) around
“CPUs vs. GPUs,” mostly to be topical and provocative.
Such comparisons for exascale are in our view a red her-
ring. In fact, our analysis abstracts away the details of CPU
and GPU structures and characterizes them simply by bal-
ance. The predominant trend in nearly all processor designs

! Attribution is disputed though often credited to physicist
Niels Bohr.

is toward greater performance at the cost of increased im-
balance. Our paper serves as a cautionary tale about the
consequences of increasing imbalance too aggressively.

2. RELATED WORK

There is a flurry of current research activity in perfor-
mance analysis and modeling, both for exascale in general
and in particular for 3D FFT algorithms and software at all
scales of parallelism. Our paper most closely follows three
recent studies.

The first study is by Pennycook et al., who also con-
sider inter- vs. intra-node communication for the NAS-LU
benchmark (parallel wavefront stencil), leveraging their ear-
lier empirical modeling work [37]. Our model is by contrast
more explicit about particular intra-node parameters, such
as bandwidth, cache size, and I/O bus factors, and so our
model adds improved algorithm-architecture understanding
relative to this prior work.

The second study is Gahvari’s and Gropp’s theoretical
analysis of feasible latency and bandwidth regimes at ex-
ascale, using LogGP modeling and pencil/transpose-based
FFTs as one benchmark [9, 22]. Their model is more general
than ours in that it is agnostic about specific architectural
forms at exascale; however, ours may be more prescriptive
about the necessary changes by explicitly modeling particu-
lar architectural features.

The third study is Kogge’s and Dysart’s exascale projec-
tion paper [30]. Their paper tracks system characteristics
of Top500 supercomputers over the past 18 years to estab-
lish technology and architecture trends. Like our analysis,
they use historical data to predict exascale technologies, but
their paper primarily focuses on classifying supercomputers
rather than evaluating the impact of these design choices.
We take these projections a step further by combining them
with our performance models to make quantitative perfor-
mance predictions.

Beyond these key studies, there is a vast literature on
3D FFTs [2, 3, 5, 10, 12-15, 19, 20, 24, 25, 27, 32, 39, 40,
43]. We call attention to just a few of these. For large
problem sizes, the speed record is 34.7 teraflop/s (TF/s) in
1D set by the 88,126 processor “K computer” manufactured
by Fujitsu [1]. For relatively small problem sizes, the most
impressive strong scaling demonstration is the 32% run on
the Anton system, which uses custom ASIC network chips
and fixed-point arithmetic, completing a 32% 3D FFT in 4
pus (614 GF/s) [43], which our codes can only attain for
relatively much larger problem sizes (see § 5).

3. 3D FFT PERFORMANCE MODEL

In this section we develop a performance model for a
distributed 3D FFT on P nodes and total problem size
N = n®.The algorithm is illustrated in Figure 1. It con-
sists of three computation phases which are separated by
two communication phases. Each computation phase com-
putes n? 1D FFTs of size n in parallel. Each communication
phase involves v/ P independent P-node personalized all-to-
all exchanges. We describe our model in terms of the time
to compute (§ 3.1) and time to communicate (§ 3.2), but
focus on dominant terms Tiem and The.. In § 5 we identify
artifacts of modern architectures, such as the CPUSGPU
memory transfer (§ 5.3.1) and local transpose costs (§ 5.2.2),

that do not appear in the algorithmic analysis yet can have
an impact on performance.

3D FFT Using the Pencil Decomposition of the
Transpose Method

Computation 1D FFT in the
Phase #1 5 X-direction
Communication
X->Y
Phase #1 Transpose
Computation @ 1D FFT in the
Phase #2 Y-direction
Communication Yoz
Phase #2 Transpose
Computation 1D FFT in the
Phase #3 Z-direction

Figure 1: An illustration of the Computation and
Communication phases in a 3D FFT using a pencil
decomposition of the transpose method.

We make an additional simplifying assumption: we as-
sume just one processor per node. The reason is that the
cost of communicating between processors within a node ver-
sus the cost between nodes may actually be decreasing over
time, as suggested in the trend data that appears in § 6.

Note about units of measure.

When counting flops, we assume scalar flops. That is,
for the multiplication of two complex numbers, we would
count 6 flops when using the classical method (4 scalar mul-
tiplies and 2 scalar adds). When counting volumes of data,
however, we assume each word is a complexr value. We use
double-precision flops and double-complex words (16 bytes
per word) unless otherwise specified.

3.1 Computation Costs

The 3D FFT is decomposed into 3n? 1D FFTs, each of
length n, distributed evenly among the P nodes. To approx-
imate the cost of a local 1D FFT, we must consider both the
cost of the floating point operations (Thops) as well as the
memory operations (Tiem)-

3.1.1 Flop Costs

The 1D FFT of size n is computed using © (nlog n) float-
ing point operations. The “radix-2” algorithm, which was
originally presented by Cooley and Tukey in 1965, consists
of approximately 5nlog, n flops. Since then numerous FFT
algorithms have been presented, most of which reduce the

absolute flop count slightly (= 20%), but the practical per-
formance benefits come from algorithms that allow the com-
putation to be structured in such a way that fully exploits
the caches and SIMD lanes of the processor rather than the
improved work load. Therefore, for simplicity we will rely
on the conventional constant, which closely matches the ob-
served flop count in § 5.2.1.

Using this approximation of the 1D FFT, we can approx-
imate the total cost of all 1D FFTs during the three com-
putation phases (3 x "—; 1D FFTs per node). If each node
can perform C,,4. flops per unit time, then the total time

spent on computation is

n®> _ Bnlogn
TﬂoDS:gXFXTOdge. (1)

3.1.2 Memory Operation Costs

Within each node, we must load and store each data
point from memory at least once during a 1D FFT com-
putation. Caches are exploited to prevent an additional
DRAM access for each operand of each floating point op-
eration. For a local 1D n-point cache-oblivious FFT in a
two-level memory hierarchy, with cache size Z and line size
L in words, the number of cache misses grows on the or-
der of © (14 (n/L)(1+1log,n)) [21]. This result is I/O-
optimal [29], and so represents the best case asymptotic
performance for any algorithm and implementation. Note
that this bound counts cache misses, each transferring lines
of size L, hence the additional factor of L in the equation.

Thus, for some constant A and sufficiently large n, the
time spent moving data between main memory and the pro-
cessor is

n® A x n(max(log, n,1.0))
P Bmem ’

(2)

where Pmem is the node’s memory bandwidth in words per
unit time. The max function ensures that the transfers in-
clude at least the compulsory misses.

Unfortunately, the relative complexity of the cache hi-
erarchy on modern processors (e.g., multi-levels, replace-
ment policies, address translation, etc.) makes an analytical
derivation of the constant prohibitively difficult. Instead, in
§ 5.2.1 we will approximate the constant A = 6.3 by using
hardware counters to track the number of DRAM accesses
during a 1D FFT computation.

3.1.3 Flops:Byte

Assuming arithmetic and memory operations can be over-
lapped, Teomp = max(Tiiops; Tmem). However, the computa-
tional intensity (flops:byte) of a 1D FFT is generally lower
than the machine balance of modern processors, making the
computation memory bound. Furthermore, our analysis in
§ 6 suggests processors will be even more imbalanced in the
future. This leads us to focus on Tiem instead of Thops-

3.2 Communication Costs

During the communication phase, each node must perform
a personalized all-to-all exchange of its data points with v/ P

other nodes on the network. In total, each node sends ap-

proximately ® data points.?
Ideally, on a fully connected network with link bandwidth
Biink, the time to perform this exchange is

nS

ﬂ)et ~ 2 X P . ﬂlink bl (3)
where the factor of 2 accounts for the two communication
phases.

Since a fully connected network is unlikely at exascale, we
assume a more realistic 3D torus topology for the analytical
sections of this paper. We consider two scenarios. First, a
lower-bound on the communication phase on a 3D torus is

3
Tow = Q[———] . (4)
Ps - Brink

This models the communication phase as simultaneous v/ P-

node all-to-all exchanges within P% x Pt x P& subblocks
of the 3D torus (see § 9 for a detailed derivation). For the
problem size and machine parameter values we consider in
this paper, the latency term will be negligible, and so does
not appear in subsequent uses of this formula.

However, the bound of Equation (4) makes strong as-
sumptions about task placement that are not always feasible
on shared high-end systems [28]. Thus, we will also con-
sider a second, more realistic approximation by using the
cost of a global all-to-all. The communication time is then
bound by the bisection bandwidth of a 3D torus, which is

O (P% -ﬂ“nk); thus,

3
Thee ~ 2% — . (5)

2
P53 Brinx

4. INTERPRETING THE MODEL:
BALANCED PROCESSORS

This section gives a more intuitive explanation of the high-
level features of the model described in § 3.

Suppose we wish to build a machine with a particular
peak performance of Ryc.. flops per unit time. Given a
node of peak Cloqe, we will choose the number of nodes
P = Rycar/Crode- Thus, Them from Equation (2) becomes,
in the limit of large n,

1 Cnode 3)
Tnem ~= O - ———=-n"log,n| . 6
(Rpeak Bmem gZ ()

Note the factor Chode/Bmem. This factor is the classical
definition of balance [6, 8, 11, 33, 35], which has units of
flops / word (or byte), applied here to node performance.
When this factor is large (in this case relative to the inher-
ent flop:byte requirements of an FFT), we say the node is
imbalanced. Thus, the intra-node communication time de-
pends not on the absolute performance of a node but instead
on this balance ratio.

A similar argument applies to the inter-node time, T,e¢,

2Each node need only send (‘F 1 data points, which

is approximately 2 7 (all of its data) for the relatively large
values of P considered in this paper.

yielding from Equation (5),

n(‘t % node TLB) , (7)

R i ,31mk

where kK = g, using the optimal task-mapping lower-bound
of Equation (4), or k = 2, using the bisection bound of
Equation (5). Again, a similar kind of balance factor ap-
pears, here relative to network bandwidth. Evidently, inter-
node time also depends on balance. However, since xk < 1,
Tt is less sensitive to Chodqe than is Them.-

Thus, we may conclude the following: balanced nodes re-
duce both Them and Thet; and Tiem depends more sensitively
on Chode than The. Put another way, intra-node design is
critical, but in perhaps an unintuitive way: a supercomputer
composed of many weak but balanced nodes could perform
better than one with the same peak and fewer more powerful
but imbalanced nodes.

S. MODEL CALIBRATION

Empirical tests are important for calibrating the analyt-
ical model as well as identifying additional hardware and
software artifacts that impede performance. In the case of
the FFT, we use this opportunity to

e use timing data to estimate effective throughput of
both memory bandwidth and network bandwidth;

e use hardware counters to measure the analytical con-
stants in Equation 1 and Equation 2;

e explore hardware and software artifacts that influence
performance;

e compare and contrast performance on systems with
different underlying architectures —a CPU-based sys-
tem and a GPU-based system.

5.1 Experiment Setup

The experiments were run on 4,096 nodes (98,304 cores) of
“Hopper,” a 1.288 PF /s Cray XEG6 housed at the the National
Energy Research Scientific Computing Center. Each node
has two Magny-Cours chips® running at 2.1 GHz and 32
GB DDR3 1333-MHz memory. Hopper’s 6,392 nodes form
a 17x8x24 3D torus with a Gemini interconnect.

In addition to Hopper, the GPU experiments were run on
“Keeneland,” which consists of HP SL390 servers accelerated
with NVIDIA Tesla M2070 GPUs. Keeneland has 120 com-
pute nodes, each with dual-socket, six-core Intel X5660 2.8
GHz Westmere processors and 3 GPUs per node, with 24GB
of DDR3 host memory. The interconnect is single rail, QDR
Infiniband [41].

We use the PSDFFT (Parallel Three-Dimensional Fast
Fourier Transform), an off-the-shelf distributed 3D FFT li-
brary, to perform the computations. It implements the dis-
tributed memory transpose algorithm using a pencil decom-
position [36]. P3DFFT is freely available under a GPL li-
cense.® A major use of P3DFFT, which could be considered
to be our motivating application, is a direct numerical tur-
bulence simulation.

On each node P3DFFT computes local 1D FFTs using
third party libraries. We used FFTW 3.2.2, though IBM’s

3the Magny-Cours chip contains two six-core Istanbul pro-
cessors on a single die
4ht1:p://code.google.com/p/defft/

ESSL and Intel’s MKL libraries can serve as drop-in re-
placements. For the GPU experiments we developed D1G-
PUFFT, ® a custom wrapper around CUFFT, Nvidia’s FFT
library for GPUs, making CUFFT an additional option.

5.2 Hopper Performance Results

Here we present our empirical performance results from
a large-scale FFT, run on 4096 nodes of Hopper. Figure 2
shows the time spent during the Communication and Com-
putation phases over varying problem sizes. To quantify
the additional overhead of the 3D FFT, we timed compo-
nents in an isolated setting. This involved benchmarking the
“MPI_AlltoAll()” and FFTW calls individually. The results
are shown in Figure 2. Observe that

e network communication time dominates computation
time. However, as the problem size increases the com-
putation time grows faster than communication time.
This can be explained by the asymptotic complexities
of Equation (2) and Equation (5).

e the computation phase incurs a large overhead that is
not explained by the analytical model;

e total time is the sum of the computation and commu-
nication phases. There is no overlap.

FFT Performance on Hopper

10.0000

1.0000 Vad
0.1000 /
0.0100 /

0.0010 /

0.0001

Time (s)

- Communication
Computation

100 1000 10000

Problem Size

Figure 2: P3DFFT performance on 4096 nodes of
Hopper. The plot shows the time spent during the
Computation and Communication phases of the 3D
FFT.

5.2.1 Measuring Computational Constants

The computational complexity of the FFT and its con-
stant are described in Section 3.1.2. To measure the con-
stant for the FFT’s cache complexity (to allow us to model
its bandwidth load), we executed FFTW on all arrays of
power-of-two size that were too large to fit in L3 cache but
small enough to fit in DRAM. We used timing and profiling
results and divided by the cache complexity equation to de-
termine the constant A in Equation (2), assuming that the
memory bottleneck exists between DRAM and L3 cache.

5.2.2 Local Transpose Artifact

SDiGPUFFT is freely available as a set of patches to
P3DFFT at nttp://code.google.com/p/digputft/

Prior to the personalized all-to-all exchange, each node
must compute a local transpose to reshuffle the data in addi-
tion to performing the local FFT computation. This shuffle
can be costly because it involves loading and storing nearly
every value in the local data set. For a 3D FFT, where each

of the P processors owns % complex words, the total time

spent reshuffling by each processor is
on?
Tonuene ~ 2 X 7P~,3 > (8)

where Binem is the local main memory bandwidth in words
per unit time. There are two factors of 2 here: one accounts
for loads and stores, and the other for the fact that in a 3D
FFT there will be two all-to-all exchanges. Figure 4 shows
that in DIGPUFFT the local transpose (16%) is nearly as
costly as the FFT computation (21%) itself. Other FFT
implementations have shown similar relative costs [19, 43].

5.3 Keeneland Performance Results

Here we present our 3D FFT performance results for a
GPU cluster. Rather than comparing this data with the
results from Hopper, which is much larger and has a more
sophisticated interconnect than Keeneland, we also include
P3DFFT results from experiments that were run on the
CPU processors in Keeneland. The results are shown in
Figure 3.

FFT Performance on Keeneland

700

525 /‘
350

/ <+ GPU
175 CPU

{

0 750 1500 2250 3000
Problem Size

Gflops/s

Figure 3: DiGPUFFT performance on Keeneland.

5.3.1 The I/O Bus (PCle) Bottleneck Artifact

An important observation from Figure 3 is that despite the
GPU’s higher memory bandwidth and floating-point through-
put, we observe only a modest overall win from GPU over
CPU, showing just roughly 10% to 20% improvements. Fur-
ther inspection (see Figure 4) reveals that 27% of the time
is spent in CPUSGPU communication.

In the case of a 3D FFT of size n® evenly distributed
across P nodes, this can result in a transfer penalty of

on®
Trcie & ——
o roa— ©)
during each computation phase, where Bpcre is the I/O
bus bandwidth in words per unit time. The factor of two
accounts for both CPU—GPU and CPU<+GPU transfers.
Since the PCle bandwidth (Bpcie=8 GB/s) is an order of

DiGPUFFT (GPU)

FFT Comp

21%
Network

36%

GPU<->CPU
27%

Figure 4: Breakdown of execution time in DiG-
PUFFT (GPU-based 3D FFT). Results are from a
64 node run on the Keeneland cluster with a prob-
lem size of 20482, and 3 MPI tasks per node.

magnitude slower than the memory bandwidth on the GPU
(144 GB/s or more), the PCle bus can have a significant
impact on performance.

Fortunately, the PCle bottleneck is likely to improve in
the near future. The gap in bandwidth between fBpci. and
main memory bandwidth is, as it happens, decreasing. Ad-
ditionally, several approaches are underway to circumvent
the CPUSGPU memory transfer cost altogether. Early de-
velopment in MVAPICH-GPU, a MPI implementation that
improves the connection between the GPU and network in-
terface, has already shown a 45% performance improvement
over the indirect cudaMemcpy() + MPI_Send [42]. Or in a
more extreme case, AMD’s Fusion architecture discards the
notion of a discrete GPU by incorporating CPU and GPU
cores on the same processor die. These observations reaffirm
generally held views that the effect of PCle is a short-term
artifact, not a long-term barrier to scalability.

6. PROJECTING FORWARD

Recent discussions surrounding the direction of high-end
systems has separated into two strategies, sometimes called
the exascale processor “swim lanes.” Others use the terms
Many-Core (MC) and Many-Thread (MT) designs [16, 23,
26, 30]. MC designs are “CPU-like,” in that they repli-
cate embedded CPU-cores, and emphasize latency reduction
through traditional memory hierarchy and other techniques
that boost instruction-level parallelism. By contrast, MT
designs replicate GPU-style processors, with an emphasis on
hiding latency via massive multithreading. In this paper, the
essential difference is that MC designs have lower absolute
performance but may be better balanced than MT designs.
Recall that the key design consideration for 3D FFTs, as
suggested in § 4, is not absolute per-processor performance,
but rather the relative balance among compute capacity per
node, intra-node bandwidth, and inter-node bandwidth.

Predictions.
We use our model to see how performance and scaling

Table 1: Processor architecture projections, from start-
ing values on the US National Science Foundation’s
“Keeneland” (GPU-based) and NERSC’s Hopper system
(CPU-based), both delivered in 2010. Processor/Node
counts are scaled to reflect a 4 PF/s machine

Doubling 10-year
2010 time increase
Parameter values (in years) factor value
Peak: Ccpuy 50.4 GF/s 1.7 59.0x 3.0 TF/s
CGPU 515 GF/S 30 TF/S
Cores:* pcpu 6 1.87 40.7x 134
pPGPU 448 18k
Memory SBcpu 21.3 GB/s 3.0 9.7x 206 GB/s
bandwidth: Bgpu 144 GB/s 1.4 TB/s
Fast Zcpu 6 MB 2.0 32.0x 192 MB
memory Zgpu 2.7 MB? 86.4 MB
Line size: Lcpu 64 B 10.2 2.0x 128 B
Lapu 128 B 256 B
Link Bia 10 GB/s 2.25 21.8x 218 GB/s
bandwidth:
Machine Rpeax 4 PF/s 1.0 1000x 4 EF/s
peak:
System FE 635 TB 1.3 208x 132 PB
memory:
Nodes Pcpu 79,400 2.4 17.4x 1.3M
(Bpsak). Pgpy 7,770 135,000

““Cores” refers to the processor manufacturer’s own usage
rather than, say, floating-point functional units.

¥ Fast Memory refers to the capacity of on-chip cache. In
practice, we usually only measure the last-level cache because
it dominates the total cache size. However, on the M2070
GPU, the sum of the L1 + registerfiles (2.7 MB) is larger
than the L2 (512 KB).

could change in light of current technology trends. We sum-
marize these trends with respect to various machine param-
eters in Table 1, which extrapolates from the current con-
figuration of the Keeneland cluster using our own derived
trends.® We present these extrapolations in terms of the
time (in years) for a particular parameter to double and the
factor by which current values might increase in ten years.
For several parameters, we separate extrapolated CPU-like
vs. GPU-like processors. However, since the two are funda-
mentally based on similar process technologies (e.g., silicon
and manufacturing processes), we hypothesize that the rates
of growth will be identical through 2020 though they start
from different values in 2010.

Prediction 1: Under business-as-usual assumptions (Ta-
ble 1), a 3D FFT will achieve 2.8 petaflop/s (PF/s) on a
high-density GPU-like exascale machine in 2020. This value
is 0.08% of the 4 EF /s peak, compared to today’s best frac-
tion of peak for 3D FFTs, which is about 0.5%.

To obtain this estimate, we extrapolated the various sys-
tem parameters of Table 1, used them to determine the form
(e.g., number of nodes) required to get a system running at
4 EF/s, selected a problem size according to the method-
ology of Gahvari and Gropp [22], and then evaluated our

50ur precise methodologies for deriving these trends appear
in the extended appendix. See § 9.

performance model to estimate execution time. Prediction
2 below further elaborates on this calculation.

Prediction 2: On 4 EF/s systems that are expected in
2020, we predict that the MC or “CPU-like” swim lane will
deliver higher performance for a 3D FFT. Our quantitative
prediction is that, given MC-style and MT-style systems of
4 EF/s peak each, the MC-style system will deliver about
3.2x better performance.

Figure 5 summarizes our quantitative prediction and shows
why we think an MC-style design wins. We consider three
scenarios: (i) a GPU-like system vs. a CPU-like system
matched on peak performance (GPU vs. CPU-1); (ii) a
GPU-like system vs. a CPU-like system which both perform
the FFT in the same time, assuming inter- and intra-node
communication time cannot be overlapped (GPU vs. CPU-
2); and (iii) a GPU-like system vs. a CPU-like system which
both perform the FFT in the same time, assuming inter- and
intra-node communication time can be overlapped (GPU vs.
CPU-3). We fix the problem size to be an n® volume with
n = 21,000. Figure 5 further breaks down the execution
time into inter- vs. intra-node time. For the inter-node
time, Thet, we assume Equation (5) for T,e; we revisit this
choice in Prediction 3 below. Note that flop-time does not
appear; it is practically negligible, as communication time
dominates it by roughly three orders of magnitude.

First, consider the case in which the GPU-like and CPU-
like systems have the same peak. For the GPU-like design,
the values of Them and T, appear in the leftmost bar of
Figure 5. Network time dominates memory time by 2.8x.
The CPU-like system, labeled CPU-1, appears as the second
bar of Figure 5. This system spends less time than the GPU
system in both forms of communication, with its network
communication time nearly % the time. From the discussion
of § 4, the essential reason is better processor balance, which
translates into lower memory and network time. However,
this advantage is not free: CPU-1 requires over 10X as many
processors as the GPU system. The price of such a system
could be prohibitive, if dollar cost is proportional to the
number of processors.

A more sensible CPU-like configuration might be one in
which we match not on peak performance but rather on ac-
tual performance, that is, the actual time to perform the
FFT. In the third bar of Figure 5, we consider a different
CPU-based design, CPU-2, in which the total communica-
tion time for the FFT, Them + Thes, exactly matches that of
the 4 EF /s GPU system. This change requires fewer proces-
sors than CPU-1 (350k vs. 1M) and has a lower overall peak
of 1 EF /s, making it perhaps significantly cheaper. More in-
terestingly, observe that relative to the GPU system, CPU-2
trades higher on-chip memory communication time for lower
off-chip network communication.

The CPU-2 system may be pessimistic in its execution
time, because it assumes that we cannot overlap Tyem and
Ther- The rightmost bar of Figure 5 considers CPU-3, where
we assume that the total time to perform the FFT is not the
sum, Tmem + Thet, but rather max{Timem, Tnet} = 0.528 sec-
onds when the two communication phases perfectly overlap.
The CPU-3 system loses in total time but reduces off-chip
network communication time. This situation can be benefi-
cial if off-chip communication consumes much more energy
than on-chip communication [31]. Also, this system uses
295k CPUs, putting it within 2.25% of the total number of
processors in the GPU system.

(memory time) / (network time)

Year

Figure 6: Projected ratio of Tiem/Tnet for weakly
scaled 3D FFTs. The problem size n> starts at 40963
and is scaled as the same rate as P.

Prediction 3: Time spent moving data within the node
could dominate time spent communicating in the network.
The implication is that the all-to-all exchange will not be the
factor that limits FF'T scalability; rather, intra-node design
will.

To get some intuition for the conditions under which this
prediction could come true, consider the ratio Tmem/Tuet,
which is greater than one if main memory communication
time dominates network time. Using the simplified analysis
of § 4, we have

1-k
Z]]em o C(node 6link
Tt Ryeax Bnem

The log factor grows slowly, so we can ignore it for the mo-
ment. Then, according to Table 1, Coqe/Rpear decreases
over time, while Biink/Bmenm increases over time.” If we wish
to control whether the overall product of these two factors
increases or decreases, our main “tuning knob” is the net-
work topology, which is captured by & (recall that x < 1).
We show how this ratio might grow over time for vari-
ous topologies in Figure 6, where the base processor is our
extrapolated CPU system (as it varies over time). Using
the bisection bandwidth estimate given by Equation (5), we
see that the overall ratio of Tiem/Thet is less than one for
a 3D torus and, furthermore, actually decreases over time,
which means the network becomes more and more of a bot-
tleneck. However, under an optimal mapping (“3D Torus
Ideal” in Figure 6), a 3D torus could also be as much as
10x faster than suggested by the bisection estimate (com-
pare Equation 4 with Equation 5), and the ratio actually
increases over time. Thus, the extent to which the network
limits scalability depends on the topology. Figure 6 includes
bisection estimates for higher dimensional torii as well, in
which cases Tiem/Tner also increase. The slopes of these
lines suggest that a 4D torus is well-balanced for an FFT,
and that higher-dimensional networks are likely to be over-
engineered. However, if there is a severe energy penalty for

-log,n . (10)

"For us, the fact that Bin and Bmem are converging is in-
teresting. One explanation for why this happens is that the
physical footprint of pins going into a processor or DIMM
cannot grow as quickly as the width of, say, wires going
into a router or link. This notion is consistent with recent
suggestions by interconnect architects, who try to keep the
growth in network bandwidth as close to compute capacity
increases as costs will permit [7].

3-D FFTs at Exascale: Year=2020, n=21000
GPU CPU-1: Same Peak
131k sockets
Peak = 3.98 EF/s
Bisection = 1.12 PB/s

0.8-
~0.6-
M)
2
Comm. 8
. Memory @
&
. Network ¢
g 0.4-
|_
0.2-
0.0-

1M sockets
Peak = 3.98 EF/s
Bisection = 5.29 PB/s

CPU-2: Same Total
350k sockets
Peak = 1.04 EF/s
Bisection = 2.16 PB/s

CPU-3: Same Overlap
295k sockets
Peak = 876 PF/s
Bisection = 1.93 PB/s

Figure 5: We consider three extrapolated CPU-like systems vs. an extrapolated GPU-like system. CPU-1
has the same peak as GPU; CPU-2 computes the FFT in the same total time as GPU, assuming no overlap
of communication; and CPU-3 also yields the same time as GPU, but assuming full overlap. In all cases, the
CPU systems actually perform less network communication.

network communication, then 5D and higher-dimensional
FFTs will help provide energy scaling over time, since the
Tinem/Thet 1s tending to increase in those cases.

Note on xPU-memory stacking.

One technology that could disrupt these analyses is xPU-
memory die stacking, the leading proposed mechanism for
enabling memory bandwidth to scale at the same rate as
compute capacity [34]. Applying our model, which is based
on the known I/O complexity estimates for the FFT, we can
establish that a node’s computation and memory transfers
will be balanced when Them < Thops [11, 33]. Given a chip
with p cores, C flop/s per core, 8 byte/s bandwidth to the
chip, and a shared cache of size Z, this balance constraint

yields [11]
% <0 (log %) . (11)

In theory, stacked memory makes it possible to keep the left-
hand side constant over time. Although p grows faster than
Z, it enters into this inequality through the log and so will
not decrease too quickly. Thus, stacked memory would keep
the processing system balanced for FFTs. However, if it is
not possible to keep p = © (8), then stacked memory only
delays rather than solves the processor imbalance problem.

7. CONCLUSIONS AND FUTURE WORK

One claim of this paper is that 1/O-bus (PCle) and net-
work bandwidth will not be the true limiters of performance
for parallel 3D FFTs. Instead, it is intra-node communi-
cation due to main memory bandwidth that will have the

biggest impact at exascale. In fact, our key prediction is
that if we ignore intra-node balance, as a naively extrapo-
lated GPU-style design would do, then we will hurt overall
system balance by not taking advantage of the better scal-
ing of network bandwidth relative to memory bandwidth.
Thus, more architectural emphasis on intra-node balance
will have the biggest pay-off in the long-run for communica-
tion bandwidth-bound computations on high-end systems.

In terms of absolute bandwidth values, high-density (GPU-
based) compute nodes extend the time until which network
bandwidth will outpace main memory bandwidth, but do
not fundamentally solve the problem. The most interesting
solution for FFT-like computations, which include sorting,
is most likely stacked memory if it can indeed deliver pro-
portional scaling of memory bandwidth to core counts.

Interestingly, the most common weak-but-balanced pro-
cessor designs are those of mobile processors. Our analysis
hints strongly that leveraging the volume of production of
such processors, combined with high-quality integrated net-
working, die stacking, and a balanced-throughput design,
could be an excellent building block for an exascale system.
This notion may, in fact, be part of an emerging view in
other large-scale systems, such as data centers [4, 38].

Algorithmically, perhaps the only way forward for FFT
type computations is through much more aggressive data or
numerical (e.g., low-rank) compression [18].

We believe our basic modeling methodology and its level
of detail could provide similar kinds of insights for other
computations, particularly if enriched with additional pa-
rameters and an explicit accounting of power, energy, and
even dollar costs. This style of analysis could be especially

useful in the context of algorithm-architecture co-design, a
notion that has been outlined for intra-node designs else-
where [11].

Finally, we would like to emphasize the methodological
contribution of this paper over the analytical analysis. While
our predictions are provoking and offer a fresh perspective,
the results are suggestive rather than conclusive. The in-
tention of this paper is not to fuel the CPU vs GPU debate
or dictate microarchitecture design. Instead we are trying
to offer a quantitative approach for reasoning about the re-
lationship between hardware and software in future super-
computers. In time, as the path toward exascale computing
becomes clear, a more rigorous analysis will be possible.

8. ACKNOWLEDGEMENTS

We thank the reviewers for their suggestions. This work
was supported in part by the National Science Foundation
(NSF) under award number 0833136, NSF CAREER award
number 0953100, NSF I/UCRC award number 0934114, NSF
TeraGrid allocations CCR-090024 and ASC-100019, joint

NSF 0903447 and Semiconductor Research Corporation (SRC)

Award 1981, and grants from the U.S. Dept. of Energy
(DOE) and the Defense Advanced Research Projects Agency
(DARPA). This research also used resources of the Keeneland
Computing Facility at the Georgia Institute of Technology,
which is supported by the National Science Foundation un-
der Contract OCI-0910735. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of
NSF, SRC, DOE, or DARPA.

9. APPENDIX

We have released a tech report version of this paper which
includes an extended appendix with: (1) a more detailed dis-
cussion of the the performance model, (2) raw data used to
generate the technology tends in Table 1, and (3) code that
can be used to reproduce the calculations found in Section 6.

References

[1] The HPC Challenge benchmark. http://icl.cs.utk.
edu/hpcc.

[2] R. Agarwal, F. Gustavson, and M. Zubair. An effi-
cient parallel algorithm for the 3-D FFT NAS parallel
benchmark. In Proceedings of IEEE Scalable High Per-
formance Computing Conference, pages 129-133. IEEE
Comput. Soc. Press, 1994.

[3] G. Almasi et al. Cellular supercomputing with system-
on-a-chip. In 2002 IEEE International Solid-State
Clircuits Conference. Digest of Technical Papers (Cat.
No.02CH37315), pages 196-197. Ieee, 2002.

[4] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: A fast
array of wimpy nodes. Communications of the ACM,
54(7):101-109, July 2011.

[5] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Opti-
mizing Bandwidth Limited Problems Using One-Sided
Communication and Overlap. In Proceedings 20th IEEE
International Parallel € Distributed Processing Sympo-
stum, pages 1-10. IEEE, 2006.

[6] G. E. Blelloch, B. M. Maggs, and G. L. Miller. The
hidden cost of low bandwidth communication. In
U. Vishkin, editor, Developing a Computer Science
Agenda for High-Performance Computing, pages 22—25.
ACM, New York, NY, USA, 1994.

[7] R. Brightwell, K. T. Pedretti, K. D. Underwood, and
T. Hudson. Seastar interconnect: Balanced bandwidth
for scalable performance. IEEE Micro, 26:41-57, May
2006.

[8] D. Callahan, J. Cocke, and K. Kennedy. Estimating
interlock and improving balance for pipelined architec-
tures. Journal of Parallel and Distributed Computing,
5(4):334-358, Aug. 1988.

[9] A. Chan, P. Balaji, W. Gropp, and R. Thakur. Com-
munication analysis of parallel 3d fft for flat cartesian
meshes on large blue gene systems. In Proceedings of
the 15th international conference on High performance
computing, pages 350-364. Springer-Verlag, 2008.

[10] C. E. Cramer and J. Board. The development and inte-
gration of a distributed 3D FFT for a cluster of worksta-

tions. In Proceedings of the 4th Annual Linux Showcase
& Conference, Atlanta, GA, USA, 2000.

[11] K. Czechowski, C. Battaglino, C. Mcclanahan,
A. Chandramowlishwaran, and R. Vuduc. Balance prin-
ciples for algorithm-architecture co-design. In USENIX
Wkshp. Hot Topics in Parallelism (HotPar), pages 1-5,
Berkeley, CA, USA, 2011. Usenix Association.

[12] K. Datta, D. Bonachea, and K. Yelick. Titanium Perfor-
mance and Potential: An NPB Experimental Study. In
Proceedings of the Languages and Compilers for Paral-
lel Computing (LCPC) Workshop, volume LNCS 4339,
pages 200-214, 2006.

[13] H. Q. Ding, R. D. Ferraro, and D. B. Gennery. A
Portable 3D FFT Package for Distributed-Memory Par-
allel Architectures. In Proceedings of 7th SIAM Con-
ference on Parallel Processing, pages 70—-71. SIAM
Press, 1995.

[14] P. Dmitruk, L.-P. Wang, W. H. Mattaeus, R. Zhang,
and D. Seckel. Scalable parallel FFT for spectral sim-
ulations on a Beowulf cluster. Parallel Computing,
27(14):1921-1936, Dec. 2001.

[15] J. Doi and Y. Negishi. Overlapping Methods of All-
to-All Communication and FFT Algorithms for Torus-
Connected Massively Parallel Supercomputers. In 2010
ACM/IEEEFE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
number November, pages 1-9. IEEE, Nov. 2010.

[16] J. Dongarra et al. The international exascale software
project roadmap. IJHPCA, 25(1):3-60, 2011.

[17] D. Donzis, P. Yeung, and D. Pekurovsky. Turbulence
simulations on 0(10*) processors. 2008.

[18] A. Edelman, P. McCorquodale, and S. Toledo. The
Future Fast Fourier Transform? SIAM Journal on Sci-
entific Computing, 20(3):1094, 1998.

[19]

[20]

[21]

[22]

[25]

[26]

[27]

28]

[29]

[31]

M. Eleftheriou, B. Fitch, A. Rayshubskiy, T. Ward,
and R. Germain. Scalable framework for 3D FFTs on
the Blue Gene/L supercomputer: implementation and
early performance measurements. IBM Journal of Re-
search and Development, 49(2.3):457-464, 2005.

B. FANG, Y. DENG, and G. MARTYNA. Performance
of the 3D FFT on the 6D network torus QCDOC paral-
lel supercomputer. Computer Physics Communications,
176(8):531-538, Apr. 2007.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachan-
dran. Cache-oblivious algorithms. In Proceedings of the
40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, pages 285, Washington, DC, USA,
1999. IEEE Computer Society.

H. Gahvari and W. Gropp. An introductory exas-
cale feasibility study for FFTs and multigrid. In
2010 IEEE International Symposium on Parallel € Dis-
tributed Processing (IPDPS), pages 1-9, Atlanta, GA,
USA, Apr. 2010. IEEE.

M. Garland and D. B. Kirk. Understanding
throughput-oriented architectures. Communications of
the ACM, 53(11):58, Nov. 2010.

L. Giraud, R. Guivarch, and J. Stein. Parallel Dis-
tributed FFT-Based Solvers for 3-D Poisson Problems
in Meso-Scale Atmospheric Simulations. International
Journal of High Performance Computing Applications,
15(1):36-46, Feb. 2001.

L. Gu, X. Li, and J. Siegel. An empirically tuned 2D and
3D FFT library on CUDA GPU. In Proceedings of the
24th ACM International Conference on Supercomputing
- ICS 10, page 305, Tsukuba, Japan, 2010. ACM Press.

Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendel-
son, and U. C. Weiser. Many-core vs. many-thread ma-
chines: Stay away from the valley. IEEE Computer
Architecture Letters, 8:25—28, 2009.

J. Hein, H. Jagode, U. Sigrist, A. Simpson, and
A. Trew. Parallel 3D-FFTs for multi-core nodes on
a mesh communication network. In Proceedings of
the Cray User’s Group (CUG) Meeting, pages 1-15,
Helsinki, Finland, 2008.

H. Jagode, J. Hein, and A. Trew. Task placement of
parallel multidimensional ffts on a mesh communication
network. University of Tennessee Knozville, Technical
Report No. ut-cs-08-613, 2008.

H. Jia-Wei and H. T. Kung. I/O complexity: The red-
blue pebble game. In Proceedings of the thirteenth an-
nual ACM symposium on Theory of computing - STOC
’81, pages 326-333, New York, New York, USA, May
1981. ACM Press.

P. Kogge and T. Dysart. Using the top500 to trace and
project technology and architecture trends. In Proceed-
ings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
page 28. ACM, 2011.

P. Kogge et al. Exascale Computing Study: Technology
challenges in acheiving exascale systems, Sept. 2008.

(32]

(33]

34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]

(43]

S. Kumar, Y. Sabharwal, R. Garg, and P. Heidel-
berger. Optimization of All-to-All Communication on
the Blue Gene/L Supercomputer. In 2008 37th Inter-
national Conference on Parallel Processing, pages 320—
329. IEEE, Sept. 2008.

H. T. Kung. Memory requirements for balanced com-
puter architectures. In Proceedings of the ACM Int’l.
Symp. Computer Architecture (ISCA), Tokyo, Japan,
1986.

G. H. Loh. 3D-Stacked Memory Architectures for
Multi-core Processors. In 2008 International Sympo-
sium on Computer Architecture, pages 453-464. IEEE,
June 2008.

J. McCalpin. Memory Bandwidth and Machine Balance
in High Performance Computers. IEEE Technical Com-
mittee on Computer Architecture (TCCA) Newsletter,
Dec. 1995.

D. Pekurovsky and J. H. Goebbert. P3DFFT — highly
scalable parallel 3d fast fourier transforms library.
http://www.sdsc.edu/us/resources/p3dfft, Novem-
ber 2010.

S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and
G. R. Mudalige. Performance analysis of a hybrid
MPI/CUDA implementation of the NAS-LU bench-
mark. In Proceedings of the International Workshop on

Performance Modeling, Benchmarking and Simulation
(PMBS), New Orleans, LA, USA, Nov. 2010.

V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web
search using mobile cores: Quantifying and mitigating
the price of efficiency. ACM SIGARCH Computer Ar-
chitecture News, 38(3):215-314, June 2010.

U. Sigrist. Optimizing parallel 3D fast Fourier trans-
formations for a cluster of IBM POWERS5 SMP nodes.
PhD thesis, The University of Edinburgh, 2007.

D. Takahashi. A Parallel 3-D FFT Algorithm on Clus-
ters of Vector SMPs. In Proceedings of Applied Parallel
Computing: New Paradigms for HPC in Industry and
Academia, volume LNCS 1947, pages 316-323, 2001.

J. Vetter, R. Glassbrook, J. Dongarra, K. Schwan,
B. Loftis, S. McNally, J. Meredith, J. Rogers, P. Roth,
K. Spafford, et al. Keeneland: Bringing heterogeneous
gpu computing to the computational science commu-
nity. IEEE Computing in Science and Engineering,
13(5):90-95, 2011.

H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur,
and D. Panda. MVAPICH2-GPU: optimized GPU to
GPU communication for InfiniBand clusters. Computer
Science-Research and Development, pages 1-10.

C. Young, J. Bank, R. Dror, J. Grossman, J. Salmon,
and D. Shaw. A 32x32x32, spatially distributed 3D
FFT in four microseconds on Anton. In Proceedings of
the Conference on High Performance Computing Net-
working, Storage and Analysis, page 23. ACM, 2009.

