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Abstract—We study the 2-party randomized communi-
cation complexity of read-once AC0 formulae. For bal-
anced AND-OR trees T with n inputs and depth d, we
show that the communication complexity of the function
fT (x, y) = T (x◦y) is Ω(n/4d) where (x◦y)i is defined so
that the resulting tree also has alternating levels of AND
and OR gates. For each bit of x, y, the operation ◦ is either
AND or OR depending on the gate in T to which it is an
input. Using this, we show that for general AND-OR trees
T with n inputs and depth d, the communication complex-
ity of fT (x, y) is n/2Ω(d log d). These results generalize the
classical results on the communication complexity of set-
disjointness [1], [2] (where T is an OR -gate) and recent
results on the communication complexity of the TRIBES
functions [3] (where T is a depth-2 read-once formula).

Our techniques build on and extend the information
complexity methodology [4], [5], [3] for proving lower
bounds on randomized communication complexity. Our
analysis for trees of depth d proceeds in two steps:
(1) reduction to measuring the information complexity
of binary depth-d trees, and (2) proving lower bounds
on the information complexity of binary trees. In order
to execute this program, we carefully construct input
distributions under which both these steps can be carried
out simultaneously. We believe the tools we develop will
prove useful in further studies of information complexity
in particular, and communication complexity in general.

Keywords-Communication complexity, Information
complexity, AND-OR trees, Lower bounds

I. INTRODUCTION

The communication complexity of functions belong-
ing to AC0 has been an important area of study. Results
in the two-party model have been pivotal for varied
applications such as time-space tradeoffs, data struc-
tures decision trees (see [6] for references), and more
recently for data streams [7], [5], [8]. Moreover, they
have been instrumental in clarifying the individual and
relative power of determinism, nondeterminism, and
randomization. In the multiparty number-on-forehead
model, non-trivial lower bounds for functions in AC0

have been shown recently [9], [10], [11], [12] that build
on the pattern matrix method of Sherstov [13], [14].
The currently best known lower bound for a function
in AC0, is of the form Ω(nε/2O(k)) for some constant

ε < 1 (the largest value of ε is plausibly 3/10) and the
bound holds up to k = Θ(log n) players [12]. While the
dependence on k is near-tight, extending these bounds
to obtain a linear dependence on n for functions in AC0

is a significant challenge for the multiparty number-on-
forehead model.

In this paper, we consider the two-party model and
adopt the following convention for discussing different
communication complexity measures of f : D(f) for the
deterministic complexity, Rδ(f) for the bounded two-
sided error randomized complexity with error 0 < δ <
1/2, and N(f) for the nondeterministic communication
complexity. These measures are with respect to the
worst-case partition of the inputs of f between the two
parties. For formal definitions, the readers are referred to
the book by Kushilevitz and Nisan [6]. Classically, the
communication complexity of equality, set disjointness
and their variants have been investigated thoroughly. A
well-known result is that for set disjointness, denoted
by DISJ, Rδ(DISJ) = Ω(n), first proved by Kalyanasun-
daram and Schnitger [1], and simplified by Razborov [2]
(see [5] for an information complexity based proof)
while N(DISJ) = O(log n). Strengthening this result to
allow a separation on R(f) from both N(f) and N(f)
was resolved only recently by Jayram, Kumar, and
Sivakumar [3] using the tribes function (TRIBES) who
showed that R(TRIBES) = Ω(n) while N(TRIBES) =
N(TRIBES) = O(

√
n log n). This is nearly the best

possible gap because R(f) 6 D(f) 6 N(f) · N(f)
as shown by Aho, Ullman, and Yannakakis [15].

The lower bound for TRIBES illustrates a key dif-
ficulty in proving communication complexity lower
bounds. The standard approach of proving lower bounds
for R(f) is by showing that large rectangles in the
function matrix of f must have large probability of
error under some suitable distribution (there are several
variants of this approach all of which can be loosely
clubbed as the discrepancy bound). This method can at
best show a lower bound of N(f). Jayram et al. [3]
overcome this by using a direct-sum argument via
information complexity, and then applying the Hellinger
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distance measure to exploit the rectangular structure
inherent in communication protocols. Extending these
techniques to handle more general classes of functions
has been an open problem.

A natural class of functions generalizing the DISJ
and TRIBES examples is the class of read-once formu-
lae. Recall that a read-once formula can be identified
with a tree in which nodes are labeled by AND /OR
gates and leaves are labeled by literals such that every
variable appears at most once in the tree. Note that set
disjointness is a depth-2 formula while tribes is a depth-
3 read-once formula. Read-once formulae have already
been extensively studied in the context of decision trees.
Analogous to communication complexity, DT (f) and
RT0(f) can be defined accordingly [16]. Snir [17]
showed that for the function f defined by a complete
binary AND-OR tree RT0(f) = DT (f)α, where α =
log2(1 +

√
33) − 2 = 0.753 . . . , and a matching lower

bound was shown by Saks and Wigderson [18]. In fact,
they conjectured that for every Boolean function f ,
RT0(f) = Ω((DT (f))α), a conjecture which is still
open. Heiman and Wigderson [19] made some progress
on this conjecture by showing that for every read-
once formula f , RT0(f) = Ω((DT (f))0.51). Building
on [18], Heiman, Newman, and Wigderson [20] showed
that RT0(f) = Ω(n/2d) for any function f that can be
computed by depth-d read-once threshold formula (that
also allows threshold gates).

In this paper, we consider the randomized communi-
cation complexity of general read-once AC0 formulae.
Note that lower bounds on randomized communication
complexity imply lower bounds on randomized decision
trees, because any randomized decision tree can be
easily simulated by a communication protocol in which
the currently queried node can be revealed by some
player using 1 bit (and the depth of the tree corresponds
to the communication cost).

Our main result is that for balanced AND-OR trees T
with n inputs and depth d, we show that the communi-
cation complexity of the function fT (x, y) = T (x ◦ y)
is Ω(n/4d). Using this, we show the following lower
bound on the communication complexity of general
AND-OR trees T with n inputs and depth d.

Theorem I.1. Given an arbitrary AND-OR tree T of
depth d with n leaves, we have :

Rδ(T ) >
n

16dd!
(1−2

√
δ) = Ω(n(1−2

√
δ)/ exp(d log d))

These results generalize the classical results on the
communication complexity of set-disjointness [1], [2]
(where T is an OR -gate) and recent results on the

communication complexity of the TRIBES functions [3]
(where T is a depth-2 read-once formula).

Independent of our work, Leonardos and Saks [21]
have informed us that they have obtained a lower bound
of n/8d for general trees of depth d.
Techniques: In this paper, we extend the informa-
tion complexity paradigm to handle general read-once
formulae. Information theoretic arguments have been
implicitly used in previous work [22], [23], [24].
Chakrabarti, Shi, Wirth, and Yao [4] were the first to
consider information complexity as a formal resource
measure while proving direct sum theorems for two-
party simultaneous protocols. Bar-Yossef, Jayram, Ku-
mar, and Sivakumar [5] considered a generalization
of this measure for general communication protocols.
In particular, they introduced conditional information
complexity in order to handle non-product distributions
that are essential for proving tight lower bounds.

In the information complexity paradigm, the idea is to
construct a distribution over inputs and lower bound the
entropy of the protocol transcript over this distribution.
The information revealed by the transcript about the
inputs serves as the natural lower bound on the entropy
of the transcript. More precisely, the lower bound on
the communication complexity is given by the mutual
information I(Z : Π) between the inputs Z = (X,Y ) to
the two players and the protocol transcript Π (for now
assume that Π is a private coin protocol).

The mutual information I(Z : Π) exhibits a direct-
sum property that makes the task of lower bounding it
tractable. Let us consider the case of the DISJ function
given by OR (X∧Y ) where X,Y are n-bit inputs, ∧ is
the bit-wise AND . In this case, [5] used a distribution
for which each bit Xi, Yi of the input Xi ∧Yi = 0, and
the different bits are independent of each other. On mea-
suring the mutual information I(Z : Π | D) conditioned
on an appropriately chosen D, the information com-
plexity of the DISJ can be shown to be at least n times
the information complexity of the AND function on two
bits. Thus the problem reduces to lower bounding the
information complexity of a much simpler function. To
show the information complexity lower bound for AND,
[5] exploit the rectangle property of communication
protocols. Specifically, the Hellinger distance between
probability distributions proves very useful in exploiting
the rectangle property of communication protocols.

The intuition behind the direct sum for DISJ is that
when all the inputs to the OR gate are 0, a proto-
col has to check every input, since any single input
could alter the value of the function. However, this
intuition fails already at depth 2, in case of the TRIBES
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function. Basically, there are no inputs to the TRIBES
function where Ω(n) inputs can affect the output. To
circumvent this difficulty, [3] introduced the notion of
partial information cost. Informally, this is a quantity
that measures the information revealed by the transcript
on only a portion (X ′, Y ′) of the input (X,Y ). Ex-
actly which portion is measured is determined by the
conditioning random variable D. In fact, the approach
is to measure the mutual information with the part of
the input (X ′, Y ′) that will turn out to be irrelevant:
the remaining part of (X,Y ) is sufficient to determine
the value of the function. This is counterintuitive, since
standard applications of information complexity argue
that information about a part of the input needs to be
revealed precisely because it might directly determine
the value of the function. Nevertheless, the notion is not
meaningless: note that the protocol itself does not know
about the conditioning random variable and therefore
does not know which portion is irrelevant. In [3],
an appropriately chosen information complexity of the
TRIBES function is reduced to a corresponding cost of a
binary AND-OR tree of depth 2. Again, the information
cost of the binary AND-OR tree is lower bounded using
Hellinger distance.

Along these lines, the natural approach would be to
express the information cost of a depth d AND-OR tree
as the direct sum of the cost of binary trees of depth d.
Then show a lower bound on the information cost of the
binary tree possibly using Hellinger distances. However,
executing this plan poses three main challenges.

Firstly, for the information cost as defined in [3],
showing the lower bound on information complexity
of a binary tree of depth d becomes unwieldy. In
case of DISJ and TRIBES, the information cost could
be expressed in terms Hellinger distance between the
distribution of transcripts, when the input was fixed to
various values. The fixing of the inputs was crucial in
exploiting the properties of Hellinger distance such as
the “cut-paste lemma”.

Even for a binary tree of depth 3, as defined in
[3], the information cost involves Hellinger distances
between distributions over transcripts, where the input
itself is not fixed. To circumvent this, we define a new
information cost expression where one measures the
mutual information of the irrelevant bits conditioned
on a particular fixing of the relevant bits. We call this
complexity measure the irrelevant information cost of
the protocol. The notion of irrelevant information cost
(IRIC) could be of independent interest.

More importantly, unlike the case of DISJ [5] or
TRIBES [3] showing the direct sum of information com-

plexity becomes unwieldy. Intuitively, the DISJ function
consists of n completely disjoint AND gates. In case
of TRIBES, the function does not decompose in this
manner in to disjoint binary trees of depth 2, making
the direct sum argument harder. In [3], the information
cost expressions are manipulated one level at a time.
This approach appears difficult to carry out for general
depth, or even for TRIBES function with non-uniform
degree. We define a carefully chosen distribution on
binary subtrees of an arbitrary non-regular tree. Using
this distribution, we are able to perform the direct sum
argument for a depth d tree in one shot.

With this subtle change in the definition of informa-
tion cost, the natural extension of [3] approach would
yield a lower bound of 1/ exp(exp(d)) on the informa-
tion complexity of a binary tree of depth d. To obtain a
bound that decreases exponential in d, we alter the input
distribution. Roughly speaking, we devise a special
gadget distribution D for the inputs of a binary AND-
OR tree such that, the information cost under D can
be easily lower bounded to 1/ exp(d) using Hellinger
distances. Since the distribution D is chosen specifically
for this purpose, it does not have the symmetries or
the recursive structure available in distribution in [3].
However, by embedding samples from D at carefully
chosen input locations of the bigger AND-OR tree, one
produces the required symmetries.
Organization of this paper: In Section II, we introduce
some preliminaries on AND-OR trees and information
complexity. In Section III, we define the “hard” input
distributions under which we will measure information
complexity. In Section IV, we define the precise version
of information complexity that we will use for our lower
bounds. In Section V, we derive a lower bound on
the information complexity for approximately balanced
AND-OR trees in terms of the information complexity
of a binary AND-OR tree of the same height. In Sec-
tion VI, we use the lower bounds for approximately
balanced AND-OR trees to prove Theorem I.1 on the
communication complexity of arbitrary AND-OR trees.
Finally, in Section VII we show a lower bound on the
information complexity of binary AND-OR trees.

II. PRELIMINARIES

In this section, we set up some notation and briefly
review the information complexity notions developed in
[5], [3].
AND-OR Trees: Let T denote an (alternating) AND-OR
tree with n leaves and depth at most d. While all internal
nodes of an AND-OR tree T is are gates, the n leaves
represent input wires. The read-once formula T (X,Y )
associated with T is obtained by replacing each leaf
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v by either Xv ∨ Yv or Xv ∧ Yv , where (Xv, Yv) is a
distinct pair of Boolean variables, such that the resulting
formula has alternating levels of AND and OR gates.
Specifically, if the parent of v is an AND gate, then v is
an OR gate and vice versa. Henceforth, we shall abuse
notation and use T to denote both the AND-OR tree
and the read-once formula T (X,Y ) computed by it.

Let L(T ) denote the set of leaves of T . For an
internal node v, let C(v) denote the set of children of v.
For each node v, let ht(v) denote the height of node v,
with leaves being of height 0. Let Tv denote the subtree
of T rooted at v and the function computed by the
subtree.

For each node v 6∈ L(T ), we let Xv, Yv denote the
vector of inputs to the subtree Tv . Formally,

Xv = (Xu)u∈L(T )∩Tv
Yv = (Yu)u∈L(T )∩Tv

.

Let Zv denote the pair of inputs (Xv, Yv). Thus the
input to the tree is ZT = (XT , YT ), where XT =
(Xv)v∈L(T ) and YT = (Yv)v∈L(T ). If γ, δ are partial
assignments to disjoint subsets S1, S2 of input variables
to the tree, we denote by γ ∪ δ the partial assignment
extending γ, δ to the subset S1 ∪ S2 of input variables
to the tree (when there is no risk of confusion, we will
write this as γδ).

First, we will show the lower bound on communi-
cation complexity for a special case of AND-OR trees
defined below,

Definition II.1 (c-balanced AND-OR tree). For a con-
stant 0 < c < 1, a tree T of depth d is said to be
c-balanced if
• Every root to leaf path in T is of length d.
• For every node w ∈ T , and every child u ∈ C(w),

we have

|L(Tu)| 6 (1− c)× |L(Tw)|

The reduction from arbitrary AND-OR trees to c-
balanced AND-OR trees is described in Claim VI.6.
For a c-balanced tree, by inverting the function if
necessary, we can assume that each leaf is the child
of an OR node. Unless otherwise mentioned, we will
make this assumption throughout the article, and write
T (X,Y ) = T (X ∧ Y ).

Due to space constraints, in this version of the paper
we demonstrate our argument giving a lower bound for
c-balanced AND-OR trees on the special case of regular
trees, defined below.

Definition II.2 (Regular AND-OR tree). A tree T of
depth d is said to be regular, if the degree of all nodes
at a given height are equal.

Information Complexity: Let µ be a distribution on
the inputs (X,Y ), denoted by (X,Y ) ∼ µ. We say
that µ is product if X and Y are independent. Non-
product distributions are handled via a new random
variable D such that X and Y are independent con-
ditioned on D. The (conditional) information cost of
a randomized protocol Π under (µ, ν) is defined to be
I(X,Y : Π(X,Y ) | D,R), where (X,Y ) ∼ µ,D ∼ ν
and R denotes the public coins. We also allow Π to use
private coins, which results in a more robust measure
for information complexity. Since I(X,Y : Π(X,Y ) |
D,R) 6 H(Π(X,Y )) 6 E|Π|, the information cost of
a correct protocol for a function f is a lower bound on
the communication complexity of f .

The Hellinger distance h(P,Q) between two proba-
bility distributions P,Q : Ω→ [0, 1] is defined by

h2(P,Q) , 1
2

∑
ω∈Ω

(√
P (ω)−

√
Q(ω)

)2
.

Hellinger distance satisfies the triangle inequality.
Let Π be a randomized private-coin 2-party com-

munication protocol for a function f(x, y), with error
probability at most δ. (For protocols that also use public
coins, we will consider the transcript under an arbitrary
assignment to the public coins.) For inputs (a, b) to
the players, let Π(a, b) denote the random variable
containing the transcript of the communication, and let
P(a, b) be its distribution.

Proposition II.3 (Soundness of communication proto-
cols). Let f,Π, δ and P(·, ·) be as above. Let (a, b) and
(a′, b′) be two pairs of inputs. If f(a, b) 6= f(a′, b′),
then h2(P(a, b),P(a′, b′)) > 1− 2

√
δ.

The following lemma allows us to transition from
information complexity to Hellinger distance:

Lemma II.4 (Mutual information versus Hellinger dis-
tance). Let Z1 and Z2 be random variables, and let P1

and P2 be their distributions. Then if B is a uniformly
random bit (independent of the Zi), we have

I(B;ZB) > h2(P1, P2).

III. HARD DISTRIBUTIONS FOR REGULAR TREES

In this section, we will describe a hard distribution
of inputs to a regular AND-OR tree T with OR gates at
the bottom layer, and show some useful properties of the
distribution. The hard distribution of inputs for general
c-balanced trees is similar in spirit, and its description
is omitted in this extended abstract.

Definition III.1. Let v, w ∈ T be two vertices such that
w is a parent of v (v ∈ C(w)). For an input ZT , the
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vertex v is said to be relevant under ZT , if the output
Tv(Zv) of the node v, fixes the value Tw(Zw) of the
parent node w. Otherwise, the vertex v is said to be
irrelevant under ZT .

For an OR gate, a relevant child is one that evaluates
to 1, thus fixing the value of the OR gate. Similarly, a
relevant child of an AND gate always evaluates to 0.

Note that on evaluating a relevant child of w, the
computation of the output of w is complete. Thus,
intuitively, a hard distribution of inputs must maximize
the number of irrelevant children of a node v. With this
intuition, a natural hard distribution can be constructed
in a top-down manner as described below.
Canonical Hard Distribution: Fix the output of the
root to say 0 or 1 arbitrarily. This choice is propogated
to the leaves of the tree, while at all times gates the
number of irrelevant branches. For example, if an OR
gate v that is set to 0, then all its inputs must necessarily
be set to 0 (all children are irrelevant). On the other
hand, if the output is set to 1, then one of its children
sv is selected to be relevant (equal to 1), while all other
children are made irrelevant (set to 0). For AND gates,
the propogation is defined along similar lines with the
0 and 1 interchanged.

The node sv chosen to be the relevant child of v will
be referred to as the Selector. Using the same principle,
for a leaf node w ∈ L(T ), if w is set to 1, then both
the inputs Xw, Yw are forced to be irrelevant (equal to
1). On the other hand, if w is fixed to 0, then one of
the inputs Xw, Yw is chosen to be relevant (equal to 0),
while the other is set to a random bit.

The Leaf Selector σw ∈ {1, 2} corresponding to the
leaf w encodes the choice of relevant variable among
Xw and Yw.

Notice that the above construction is completely
determined by the choice of the distribution of selec-
tors and leaf selectors. The hard distribution of inputs
constructed in this work is somewhat more involved. We
will describe the construction of the hard distribution in
four steps.

A. Selectors and Leaf Selectors

Formally, for each node v ∈ T , the selector sv ∈
C(v) is a random variable equal to one of its children.
The set Sv consists of all the random variables su for
each u in the subtree rooted at v.

Sv = {su|u ∈ Tv}

Similarly, we shall denote ST = {su|u ∈ T }. For each
leaf node w ∈ L(T ), the leaf selector σw is chosen
uniformly at random from {1, 2}. We shall denote σT =

{σw|w ∈ L(T )}. The distribution of ST and σT for
regular trees is as follows:

Sampling ST , σT (regular trees): For each u ∈ T
with ht(u) > 1, set su to be a unifirm random element
from C(u).
For each leaf v ∈ L(T ) of the tree T , σv is a random
element from {1, 2}.

B. Binary Subtrees

For each node v, Tbinv is a random binary tree
rooted at v. Roughly speaking, we embedd the gadget
distributions Di described in the next section, in to the
leaves of the random binary subtree Tbinv . Here, we will
distribution of Tbinv conditioned on the choice of the
selectors Sv . The random tree Tbinv will be constructed
so as to satisfy the following property,

Property III.2. For each vertex u ∈ Tbinv , the selector
su ∈ Tbinv .

A random binary tree Tbinv satisfying the above
property is generated as follows,

Sampling Tbinv given Sv (regular trees):
• Sample the “pseudo-selector” s′v uniformly at

random from C(v)− {sv}.
• Recursively generate binary trees Tbinsv

, Tbins′v
given Ssv and Ss′v respectively.

• The tree Tbinv consists of {v,Tbinsv
,Tbins′v }.

C. Gadget input distribution Di to binary trees

The hard distribution of inputs consists embeddings
of a “gadget” distribution in to certain carefully chosen
random binary subtrees of T .

Let T be the complete binary tree of height i, with
root v0 and with all the leaves being children of OR
gates. We will think of T as defining a function from
{0, 1}2i × {0, 1}2i

to {0, 1} defined by T(X,Y ) for
T(X ∧ Y ). Di is a distribution over inputs X,Y to T
that satisfies the following property:

Property III.3. If v0 is an AND gate, then the output
of T under Di is always 1, else it is always 0.

The details of construction of the gadget distributions
is described in Section VII.

D. Input Distribution

Let XT = (Xv)v∈L(T ) and YT = (Yv)v∈L(T )

be the input variables to the AND-OR tree, and let
ZT = (XT , YT ). For a node v, let Zbinv = (Xbin

v , Y binv )
denote the inputs at the leaves of Tbinv . Hence Zv−Zbinv
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Authorized licensed use limited to: MIT Libraries. Downloaded on April 21,2010 at 15:31:13 UTC from IEEE Xplore.  Restrictions apply. 



will denote the remaining inputs in the subtree Tv rooted
at v.

Input Distribution given ST , σT
Define distributions DRel

v and DIrrel
v for the inputs Zv =

(Xv, Yv) recursively as follows:
• If v is a leaf then DRel

v is supported on the input
(1, 1), while DIrrel

v is defined as follows:

(Xv, Yv) =

{
(0, random bit) if σv = 1
(random bit, 0) if σv = 2

• If v is an internal gate then,
– Irrelevant Branch DIrrel

v : Generate Zsv from
the distribution DRel

sv
, and Zu according to

DIrrel
u for all other u ∈ C(v) − {sv}. Then

the input Zv is the union of these inputs, i.e.

Zv = ∪u∈C(v),u 6=sv
Zu ∪ Zsv

– Relevant Branch DRel
v :

∗ Sample Tbinv by generating the pseudo-
selectors needed.

∗ Generate Zbinv according to the distribu-
tion Dht(v).

∗ For every node w ∈ Tv − Tbinv such that
its parent belongs to Tbinv , generate Zw
from DIrrel

w .
The “hard” distribution DT on {0, 1}n × {0, 1}n is
given by DIrrel

u where u is the root of the tree T .

Observation III.4. The following properties hold for
the distributions DRel

v defined above :

• For an AND gate v, the subtree Tv evaluates to 1
on DRel

v and 0 on DIrrel
v .

• For an OR gate v, the subtree Tv evaluates to 0
on DRel

v and 1 on DIrrel
v .

• For a node v, if Zv is generated from DIrrel
v , then

the output of AND-OR tree T −Tv on input ZT −Tv

is equal to output of T on ZT . Roughly speaking,
dropping an irrelevant branch does not change the
output value of the tree.

Let S′T denote the set of pseudo-selector random
variables sampled in the above procedure. Clearly, S′T
itself is a random subset of vertices of T depending on
ST . Let us denote by S′v the restriction of the set S′T
to the subtree Tv .

E. Properties of Selectors ST and Binary Trees Tbin

We now state some crucial properties of the selector
and binary tree random variables that we just defined.
The generalizations of these distributions for the case of

c-balanced AND-OR trees are designed so as to ensure
that these crucial properties still hold.

Claim III.5. For every node v ∈ T and two of its
children u1, u2 ∈ C(v)

Pr
[
sv = u1, s

′
v = u2

∣∣∣ST − {sv}, S′T − {s′v}]
= Pr[sv = u2, s

′
v = u1|ST − {sv}, S′T − {s′v}]

Lemma III.6. Consider a node w ∈ Tbinv and two of
its children u1, u2 in Tbinv . Conditioned on Tbinv , the
selector sw is uniformly distributed among {u1, u2}
irrespective of the choice of every other selector. For-
mally,

Pr[sw = u1|Tbinv , ST −{sw}] = Pr[sw = u2|Tbinv , ST −{sw}] =
1
2

F. Maximally Irrelevant Leaves

As described earlier, the choice of selectors ST
determines the vertices that will be relevant. Therefore,
we make the following definition:

Definition III.7 (Maximally Irrelevant Leaves). Let v ∈
Tu ∩ L(T ). Let Pv = {u0 = u, u1, . . . , ut = v} denote
the unique path from u to node v ∈ Tu. An assignment
to Su is said to make v maximally irrelevant if for each
0 6 i < t, sui

6= ui+1. For the sake of brevity, we shall
denote this by v ∈ Irrel(Su). Denote by Rel(ST ) the set
of leaves of T that are not in the set Irrel(ST ).

Lemma III.8. Given Sv , the random binary subtree
Tbinv can equivalently be generated as follows:
• Pick a leaf w ∈ Irrel(Sv) uniformly at random. Let
P = {u0 = v, u1, . . . , ut = w} denote the unique
path from v to node u.

• Generate binary subtrees Tbinsu0
,Tbinsu1

, . . . ,Tbinsut−1
,

and take their union with P to obtain Tbinv .

Proof: Consider a sample T of the random binary
tree Tbinv . The tree T has a unique vertex w ∈ Irrel(ST ).
Consider the path P = {u0 = v, u1, . . . , ut = w}
from v to w. Let T0, . . . ,Td−1 denote the subtrees of T
rooted at sui

. By definition of the distribution for Tbinv ,
it is clear that,

Pr[Tbin = T] =
d−1∏
i=0

(
Pr[s′ui

= ui+1] Pr[Ti]
)

=
d−1∏
i=0

( 1
|C(ui)| − 1

)( d−1∏
i=0

Pr[Ti]
)
,

where we used that Pr[s′ui
= ui+1] = 1

|C(ui)|−1 since
s′ui

is a uniform random element in C(ui)−{sui
}. By

regularity, observe that
∏d−1
i=0 (|C(ui)|−1) is the number
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of maximally irrelvant leaves. Hence, Tbinv can be
equivalently generated by picking a leaf w ∈ Irrel(Sv)
uniformly at random and generating binary subtrees
Tbinsu0

,Tbinsu1
, . . . ,Tbinsut−1

Let ZIrrel(ST ) denote the restriction of ZT to coordi-
nates corresponding to leaves that are made maximally
irrelevant by the selector choice ST . Formally,

ZIrrel(ST ) = (Xv, Yv)v∈Irrel(ST )

For the sake of brevity, we shall write Z Irrel instead
of ZIrrel(ST ) when the choice of ST is clear from the
context. Further, let ZRel = ZT − Z Irrel.

Lemma III.9. Conditioned on ST , S
′
T , the random

variables {Zv|v ∈ Irrel(ST )} are independent of each
other.

Proof: Consider a maximally irrelevant leaf v ∈
Irrel(ST ). For every node w along the path from the
root ρ to v, the recursive procedure always takes the
irrelevant branch, thus generating DIrrel

w . Independent of
all other inputs, Zv is generated from the distribution
DIrrel
v using σv at the base case of the recursion. Hence

the random variables {Zv|v ∈ Irrel(ST )} are all inde-
pendent of each other.
Special nodes:

Let us call a node v to be Special, if we sample
the binary tree Tbinv in the recursive procedure to
generate inputs. The set of Special nodes is a random
set completely determined by the choice of ST and S′T .
Hence we shall write Special(ST , S′T ) to denote the set
of Special nodes.

Observation III.10. Let Pv = {u0 = ρ, · · · , ut = v}
denote a path from from the root ρ to a vertex ut in the
AND-OR tree T . If sui 6= ui+1 for all i < t − 1, and
sut−1 = ut then ut is a Special node.

Define ZSpecial as

ZSpecial = (Xv, Yv)|v∈Tbin
u ,u∈Special(ST ,S′T )

Let ZSpecial
u denote the Special inputs within the subtree

Tu. Formally,

ZSpecial
u = (Xv, Yv)|v∈Tbin

w ,w∈Tu∩Special(ST ,S′T )

Every input in ZSpecial is generated from one of the
tailor-made distributions {Di}. Every input Zv not in
ZSpecial is generated through the base case of the above
recursive definition (using the leaf selector σv).

Accounting for all the shared randomness used in
generating a sample from the distribution DIrrel

v , we
make the following observation.

Observation III.11. For any node v ∈ T , using shared
randomnessRv = {Sv, S′v, σv, ZSpecial

v } the two players
can sample their inputs Xv, Yv from the DIrrel

v and DRel
v

without any communication.

IV. IRRELEVANT INFORMATION COST

Let Π be a protocol computing T (X ∧ Y ) for a c-
balanced AND-OR tree T of depth d. To lower bound
the communication between the players in the protocol
Π, we will make use of the following information cost.

Definition IV.1. The irrelevant information cost
IRIC(Π, T ) for the protocol Π is defined as

IRIC(Π, T ) = I(Z Irrel
T : Π|ZSpecial

T , ST , S
′
T , σT ,R)

(1)
where Π denotes transcript of the protocol executed
with shared randomness R over the input ZT gener-
ated using the choices ST , S

′
T and σT . Further, the

irrelevant information complexity IRIC(T ) is defined as
the minimum of IRIC(Π, T ) over all randomized δ-error
protocols for T .

IRIC(T ) = min
Π

IRIC(Π, T ) (2)

Clearly, IRIC(Π, T ) 6 H(Π) where Π denotes the
random variable equal to the transcript of the protocol.
Consequently, IRIC(Π, T ) serves as a lower bound on
the communication complexity of the protocol Π.

Observation IV.2. By independence of Zv for v ∈
Irrel(ST ) (Lemma III.9),

IRIC(Π, T ) >
∑

v∈Irrel(ST )

I(Zv : Π|ZSpecial, ST , S
′
T , σT ,R)

A. Information Cost of a Binary Tree

The input distribution constructed in Section III for
an arbitrary AND-OR tree reduces to the distribution
given in Table I for the case of a balanced binary tree
T.

The irrelevant information cost of a protocol Πbin

computing the function T while using shared random-
ness Rbin reduces to the following :

IRIC(Πbin,T) = I(Zν : Πbin|ZT−{ν}, ST, σT,Rbin)
(3)

Here we used the observation that S′T is completely
fixed by the assignment to ST.

V. SIMULATING A BINARY TREE

In this section, we will show the following relation
between the information cost of a general tree and that
of a complete binary tree. In the next section we will
apply this theorem to a c-balanced tree T .
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Input Distribution for a binary tree
• For each vertex v ∈ T, set the selector sv to be one of

its children u ∈ C(v) chosen uniformly at random. Let ST

denote the set of all selectors in T.
• For each leaf v ∈ T, sample the leaf selector σv distributed

uniformly on {1, 2}.
• Let ν denote the unique node in Irrel(ST). Generate Zν =

(Xν , Yν) as follows:

(Xν , Yν) =

{
(0, random bit) if σν = 1

(random bit, 0) if σν = 2

• Let P = {u0 = ρ, u1, . . . , ud = ν} denote the path from
the root ρ of T to the leaf ν. For each i, generate Zsui

from
the distribution Di.

The input is ZT is given by

ZT = ∪d−1
i=0 Zsui

∪ Zν

Table I
INPUT DISTRIBUTION FOR A BINARY TREE

Theorem V.1. For every depth d AND-OR tree T ,

IRIC(T ) >
(

min
ST
|Irrel(ST )|

)
· IRIC(T)

where T is the binary AND-OR tree of depth d.

Proof: Given a protocol Π for T , we will construct
a protocol Πbin for the complete binary tree T of depth
d.

Protocol Πbin

Input: The two players get X̃, Ỹ ∈ {0, 1}2d

respec-
tively. Let Z̃ = (X̃, Ỹ ).
Using shared randomness, they sample the following:
• Selectors for the tree T according to the distri-

bution ST . Let ŜT denote the sampled selector
values.

• A binary subtree Tbin of the root ρ, from the
distribution (Tbinρ |ŜT ).

• Leaf selectors σT −Tbin for leaves outside the
binary tree Tbin.

• For each u /∈ Tbin such that u ∈ C(w) for w ∈
Tbin,

– Generate Zu from the distribution DIrrel
u us-

ing shared randomness. Specifically, other
than Su and σu, the shared randomness
required would be Ru = {S′u, ZSpecial

u }.
Denote by S′T −Tbin , Z

Special
T −Tbin , ST −Tbin , ZT −Tbin

the union over all such u of S′u, Z
Special
u , Su, Zu.

Execute the protocol Π on the union of input Z̃ and
ZT −Tbin . Let us denote by RT , the shared random-
ness that may be used by the protocol Π.

Correctness: Consider a node u /∈ Tbin but directly
attached to Tbin. Formally, let u /∈ Tbin such that u ∈
C(w), for w ∈ Tbin. The inputs Zu are generated from
the distribution DIrrel

u . By Item 3 of Observation III.4,
every such node u does not affect the output of the
function T . In other words, dropping the subtree Tu
does not alter the value of the function. Hence, the above
protocol is a randomized δ-error protocol for computing
T(X̃ ∧ Ỹ ).

For the sake of clarity, we are using the tilde super-
script to differentiate random variables associated with
the binary tree T from the others. For instance, a selector
s̃v ∈ S̃T picks just one of two children of v ∈ T.
Information Cost: By Equation (3), the information
cost of protocol Πbin is given by:

IRIC(Πbin,T) = I(Z̃ν : Πbin|Z̃T−{ν}, S̃T, σ̃T,Rbin)
(4)

The shared randomness used by the protocol Πbin is
given by:

Rbin = {ST ,Tbin, σT −Tbin , S′T −Tbin , Z
Special
T −Tbin ,RT }

Observe that σ̃T has the same distribution as σTbin .
Formally, we write σ̃T ∪ σT −Tbin ∼ σT where ∼
denotes that the random variables are identically dis-
tributed. Rewriting the information cost expression, we
get IRIC(Πbin,T) = I(Z̃ν : Π | G), where G denotes
the collection

{Z̃T−{ν}, S̃T, σT , ST ,T
bin, S′T −Tbin , Z

Special
T −Tbin ,RT }

Let us fix a choice of the binary tree Tbin. By Lemma
III.6, we know the following facts:
• For a node v ∈ Tbin with two children u1, u2 in-

side Tbin, the random variable (sv|Tbin) is uniform
over the set {u1, u2}. In other words, conditioned
on the binary tree Tbin, the selector random vari-
ables STbin are distributed like the selectors in a
binary AND-OR tree.

• Conditioned on Tbin, the random variables
ST −Tbin and STbin are independent of each other.

Thus one can write

(ST ,Tbin) ∼ ((ST |Tbin),Tbin)

∼
((

(STbin |Tbin) ∪ (ST −Tbin |Tbin)
)
,Tbin

)
Let us rewrite the shared randomness Rbin using the
above equivalence, Rbin =

{Tbin, (STbin |Tbin), (ST −Tbin |Tbin), σT −Tbin ,

S′T −Tbin , Z
Special
T −Tbin ,RT }

Conditioned on Tbin, we claim that the selectors in-
side STbin do not affect the execution of the simulation.
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Once the tree Tbin is fixed, the players use the given
input Z̃ for the inputs at leaves of Tbin. The inputs Zv
for leaves v ∈ L(T −Tbin) outside the binary tree are all
independent of STbin . Thus conditioned on the binary
tree Tbin, the protocol transcript Πbin is independent
of STbin . Hence, we can drop (STbin |Tbin) from the
conditioning altogether to obtain, IRIC(Πbin,T) =

I(Z̃ν : Π|Z̃T−{ν}, S̃T, σT ,T
bin, (ST −Tbin |Tbin),

S′T −Tbin , Z
Special
T −Tbin ,RT )

Let us fix a binary tree Tbin. Fix a vertex v ∈ Tbin with
two children u1, u2 in Tbin. The selector s̃v ∈ S̃T uni-
formly at random one of the two children. By Lemma
III.6, the distribution of the selector sv conditioned on
sv ∈ {u1, u2} is also uniform over u1, u2, irrespective
of the choice of every other selector. Formally, we have

S̃T ∼ ((STbin |Tbin)) (5)

Further we know that conditioned on Tbin, STbin is
independent of ST −Tbin . This tells us that the following
random variables are identically distributed :(
S̃T ∪ (ST −Tbin |Tbin)

)
∼
(

(STbin |Tbin) ∪ (ST −Tbin |Tbin)
)
∼ (ST |Tbin)

Substituting in the information expression we get,
IRIC(Πbin,T) =

I(Z̃ν : Π | Z̃T−{ν}, σT ,T
bin, (ST |Tbin),

S′T −Tbin , Z
Special
T −Tbin ,RT )

Now we will interchange the conditioning
(Tbin, (ST |Tbin)) ∼ ((Tbin|ST ), ST ) in the above
information expression, and get IRIC(Πbin,T) =

I(Z̃ν : Π | Z̃T−{ν},σT , ST , (Tbin|ST ),

S′T −Tbin , Z
Special
T −Tbin ,RT )

Conditioned on ST , the tree Tbin is generated by
recursively sampling the pseudo-selectors for every
vertex v ∈ Tbin. From Lemma III.8, an equivalent
sampling procedure would be the following: Choose a
path P = {u0 = ρ, . . . , ud = ν} from the root ρ of T to
uniformly random node ν in Irrel(ST ), and pick binary
trees Tbin1 ,Tbin2 , . . . ,Tbind−1 rooted at u1, u2, . . . ud−1 re-
spectively. The choice of Tbini is given by the choice of
pseudoselectors starting from vertex sui

and proceeding
downwards. Let S′i denote the set of pseudoselectors
generated for the subtree Tbini . Conditioning on Tbin is
equivalent to the choice of P and S′1, S

′
2, . . . , S

′
d−1. We

rewrite the above information expression again and get
that IRIC(Πbin,T) =

I(Z̃ν : Π | Z̃T−{ν}, σT , ST ,{P, S′1, S′2, . . . , S′d−1},
S′T −Tbin , Z

Special
T −Tbin ,RT )

Observe that,
Z̃T−ν = ∪d−1

i=1 Z̃sui

where each Z̃sui
is generated from Dht(sui

).
Now, let us consider sampling the input ZT for the

AND-OR tree T , given the choice of selectors ST .
Given the selectors ST , by Observation III.10, each
of the nodes su1 , su2 , . . . , sud−1 are Special nodes. For
each of these Special nodes sui

, one would generate
a binary tree Tbini and an input ZSpecial

sui
from the

distribution Dh(sui
). In order to generate the binary trees

Tbini , the players would generate pseudo-selectors S′
Tbin

i

which is identically distributed to S′i defined above, i.e.,

S′T −Tbin ∪ (∪d−1
i=1 S

′
i) ∼ S′T . (6)

Further,

Z̃T−ν ∼ ∪d−1
i=1 Z̃sui

∼ ∪d−1
i=1Z

Special
sui

∼ ZSpecial
Tbin ,

Therefore we have(
Z̃T−ν ∪ ZSpecial

T −Tbin

)
∼ ZSpecial

T (7)

Substituting the identities 6,7 back in the information
expression one gets,

IRIC(Πbin,T) = I(Z̃ν : Π | P, σT , ST , S′T , Z
Special
T ,RT )

Expanding the above information expression along the
choice of the vertex ν ∈ Irrel(ST ) (the vertex ν fixes
the path P).

IRIC(Πbin,Tbin) = I(Zν : Π|P, ZSpecial
T , ST , S

′
T , σT ,RT )

= ES∗T

[
I(Zν : Π|P, ZSpecial

T , ST = S∗T , S
′
T , σT ,RT )

]
= ES∗T

[ 1
|Irrel(S∗T )|

∑
ν∈Irrel(ST )

I(Zν : Π|ZSpecial
T , ST = S∗T , S

′
T ,

σT ,RT )
]
(since ν is uniformly random in Irrel(S∗T ))

6 ES∗T

[ 1
|Irrel(S∗T )|

I(Z Irrel
T : Π|ZSpecial

T , ST = S∗T , S
′
T , σT ,RT )

]
(by Observation IV.2)

6 max
S∗T

( 1
|Irrel(S∗T )|

)
ES∗T

[
I(Z Irrel
T : Π|ZSpecial

T , ST = S∗T ,

S′T , σT ,RT )
]

6 max
S∗T

( 1
|Irrel(S∗T )|

)
× I(Z Irrel

T : Π|ZSpecial
T , ST , S

′
T , σT ,RT )

6 max
ST

( 1
|Irrel(ST )|

)
× IRIC(Π, T )
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This finishes the proof of Theorem V.1.

VI. PUTTING IT TOGETHER

Definition VI.1. For an AND-OR tree T , let Rδ(T )
denote the minimum communication complexity of a δ-
error randomized protocol computing T (X,Y ).

Lemma VI.2. For a c-balanced tree T with n leaves,
minST |Irrel(ST )| > cd · n

Proof: At each node v, the choice of the selector
sv forbids every leaf in the subtree Tsv from belonging
to Irrel(ST ). However, if the node v is c-balanced, then
irrespective of the choice of sv , at least c-fraction of the
leaves of v survive.

After the choice of the selector sρ at the root ρ, at
least cn leaves survive. Now the choice of the selectors
at depth 2 would prune away 1 − c-fraction of the
remaining leaves. Therefore at least c2n leaves survive
the choice of selectors at the depth 2. Extending the
argument shows that for a depth d tree at least cd · n
leaves belong to Irrel(ST ).

The following theorem follows easily from the above
Lemma VI.2, Theorem V.1 and Theorem VII.1.

Theorem VI.3. For a c-balanced AND-OR tree T of
depth d, Rδ(T ) > Ω(n(1− 2

√
δ)2( c4 )d)

We now finish the proof of the main theorem, Theo-
rem I.1, as follows. Given an arbitrary tree T of depth
at most d, we will perform a sequence of pruning
operations to obtain a c-balanced tree T ′ of depth at
most d such that the communication complexity of T is
at least as much as that of T ′. This is shown in Claim
VI.6 below. Combining the claim with Theorem VI.3
above yields Theorem I.1.

We begin by introducing the pruning operations.

Observation VI.4. (Pruning Operation I) Let T be an
AND-OR tree. Let T ′ = T − Tv denote the AND-OR
tree obtained by deleting the subtree rooted at v from
T . Then Rδ(T ) > Rδ(T ′).

Observation VI.5. (Pruning Operation II) If the root ρ
of the tree T has a single child v, then Rδ(T ) > Rδ(T ′).

We now state the claim that allows us to reduce
communication lower bounds for general AND-OR trees
to the case of 1

2 balanced trees (the proof is omitted).

Claim VI.6. Given an arbitrary AND-OR tree T of
depth at most d with n leaves, there exists a sequence
of pruning operations such that the resulting tree T ′ is
a 1

2 -balanced AND-OR tree of depth at most d with at
least n

2dd!
leaves.

VII. GADGET DISTRIBUTIONS

We begin by describing the distribution of inputs Di
to a complete binary tree of height i which served as
a “gadget” in the input distribution that we define for
arbitrary c-balanced AND-OR trees.

A. Gadget Distributions

If i = 0, we define Di to be the distribution supported
on the single input (1, 1) ∈ {0, 1}20 × {0, 1}20

.
Now let i > 0. and let T be the complete binary tree

of height i whose leaves are children of OR gates. We
identify the leaves of T with [2i]. We will think of T
as defining a function from {0, 1}2i×{0, 1}2i

to {0, 1}
defined by T(X,Y ) := T(X ∧ Y ).

To each non-leaf node v of the AND-OR tree T, we
associate a canonical input (αv, βv) ∈ {0, 1}2

ht(v) ×
{0, 1}2ht(v)

to the subtree Tv rooted at v, defined re-
cursively as follows: let L = {v1, v2} be the children
of v; then
• Suppose v has height 1 (and hence is an OR gate).

We assume v1 < v2 as elements of [2i]. Then,
inputs αv, βv ∈ {0, 1}L are given by αv = βv =
10 (here the input rs denotes input r to v1 and s
to v2).

• Otherwise, αv = αv1αv2 and βv = βv1βv2 .
We have the following simple properties:
• Tv(αv, βv) = Tv(αv, βv) = 1.
• Tv(αv, βv) = Tv(αv, βv) = 0.
Let v0 be the root of the tree T. We can now define

the distribution Di over inputs to the tree T:

The distribution Di:
• If v0 is an AND gate, then Di is the uniform

distribution over the set {(αv0 , βv0), (αv0 , βv0)}.
• If v0 is an OR gate, then Di is the uniform

distribution over the set {(αv0 , βv0), (αv0 , βv0))}.

It is easy to check that the above construction satisfies
Property III.3. Now we will lower bound a certain
information cost for the distribution Di.

B. Bounding the Information Cost

Now we will lower bound the information complexity
of a binary AND-OR tree of depth d for the specific
construction of gadget distribution outlined earlier.

First we fix some notation related to binary trees. Let
L be the set of leaves of the tree. Let LX be the X-
variables, LY be the y-variables (they are not part of
the tree: hence |LX | = |LY | = |L| = 2d). For a node v
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of T, let Lv be the set of leaves that are descendants of
v. Let Lv be the set of leaves that are not descendants
of v.

If γ is an assignment to some of the leaves of the
tree and v is a node of the tree, then γ|v denotes the
restriction of γ to the variables coming from the subtree
rooted at v. Similarly, γ|v denotes the restriction of γ
to all the input variables not in the subtree rooted at v.

For a node v of height i, we will denote by Dv the
distribution Di, thought of as a distribution over inputs
to the subtree rooted at v. For a node v of the tree, we
define the set DSupp(v) ⊆ ({0, 1}Lv )2 be the set of
those assignments (γ, δ) to LXv ,LYv , such that for every
ancestor u of v, letting w be the child of u that is not
an ancestor of u, we have (γ|w, δ|w) ∈ support(Dw).

We can now prove the theorem lower bounding the
information complexity of binary AND-OR trees.

Theorem VII.1. Let Π be a δ-error randomized com-
munication protocol for the binary AND-OR tree of
height d. Then IRIC(Π,T) > 1

8 · (1− 2
√
δ)2 · 1

4d .

Proof: Recall

IRIC(Πbin,T) = I(Zν : Πbin|ZT−{ν}, ST, σT,Rbin)
= Ei∈{1,2}Ev∈LE(γ,δ)∈DSupp(v)I((Xv, Yv) : Π | ST,

ν = v, ZT−{v} = (γ, δ), σv = i,Rbin),

where the distribution of (γ, δ) is uniform over
DSupp(v). First note that we may fix the value of Rbin

to some value without increasing the IRIC. Henceforth
we assume that it has been fixed. Now, taking cases on
i ∈ {1, 2}, we may write this expression as

1
2
·
(
Ev∈LE(γ,δ)∈DSupp(v)

[
I((B, 0) : Π | ST, ν = v,

ZT−{v} = (γ, δ))
]

+Ev∈LE(γ,δ)∈DSupp(v)

[
I((0, B) : Π | ST, ν = v,

ZT−{v} = (γ, δ))
])
,

where B is a random bit.
For an input (x, y) ∈ {0, 1}LX × {0, 1}LY

, we let
P(x, y) be the probability distribution of the random
variable Π(x, y). Applying Lemma II.4, we may bound
the first term in the parenthesis from below by

Ev∈LE(γ,δ)∈DSupp(v)

[
h2(P(0γ, 0δ),P(1γ, 0δ))

]
and the second term is bounded below by

Ev∈LE(γ,δ)∈DSupp(v)

[
h2(P(0γ, 0δ),P(0γ, 1δ))

]
.

Thus, combining these two expressions and applying the
Cauchy-Schwarz inequality, we get

IRIC(Πbin,T) >
1
8
Ev∈L

(
E(γ,δ)∈DSupp(v)

[
h(P(0γ, 0δ),P(1γ, 0δ)) + h(P(0γ, 0δ),P(0γ, 1δ))

])2

.

(8)

For any internal node v ∈ T , and (γ, δ) ∈ DSupp(v),
define

ε(v, γ, δ) =
∑
w∈Lv

E
(γ′,δ′)∈DSupp(w)

γ′|v=γ,δ′|v=δ

[
h(P (0γ′, 0δ′), P (1γ′, 0δ′)) + h(P (0γ′, 0δ′), P (0γ′, 1δ′))

]
.

By equation (8), letting ρ be the root of T,

IRIC(Πbin,T) >
1
8
· 1

2d
· ε2(ρ, ∅, ∅). (9)

It remains to prove a lower bound on ε(ρ, ∅, ∅).
Such a lower bound will be derived from the following
lemma.

Lemma VII.2. For each internal node v ∈ T , for any
(γ, δ) ∈ DSupp(v), the following four distributions are
pairwise ε(v, γ, δ) ·

√
2

ht(v)
close in Hellinger distance:

• P(αvγ, βvδ).
• P(αvγ, βvδ).
• P(αvγ, βvδ).
• P(αvγ, βvδ).

This lemma is proved by induction on ht(v). The
proof is omitted in this extended abstract.

Note that Tρ(αρ, βρ) 6= Tρ(αρ,¬βρ), and so Propo-
sition II.3 implies that

h2(P(αρ, βρ),P(αρ,¬βρ)) > 1− 2
√
δ.

The previous Lemma implies that ε2(ρ, ∅, ∅) · 2d >
1− 2

√
δ, and hence by Equation (9)

IRIC(Π,T) >
1
8

(1− 2
√
δ) · 1

4d
.
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