ON THE COMPACTNESS OF OPERATORS OF HANKEL TYPE

AKIHITO UCHIYAMA

(Received December 22, 1976)

1. Introduction. Let P be the orthogonal projection from $L^{2}(T)$ onto $H^{2}(T)$, where $T = \{z \in C \mid |z| = 1\}$ and $H^{2}(T)$ is the Hardy space on T, that is, $\{f \in L^{2}(T) \mid \int_{T} f(e^{i\theta})e^{-ik\theta}d\theta = 0, k = -1, -2, \cdots\}$. For a function $\varphi \in H^{2}(T)$ satisfying $\int \varphi d\theta = 0$ the Hankel operator L_{φ} is defined by $L_{\varphi}(\psi) = P(\varphi \overline{\psi}), \psi \in H^{2}(T) \cap L^{\infty}(T)$, where the bar denotes complex conjugation.

Nehari [5], Hartman [3], and Coifman, Rochberg and Weiss [1] considered some properties of the Hankel operators. In this paper we are concerned with the following theorems.

THEOREM A ([5], [2]). L_{φ} is a bounded operator from H^{2} to H^{2} if and only if $\varphi \in BMO$. Furthermore the operator norm $||L_{\varphi}||$ is equivalent to $||\varphi||_{BMO}$.

THEOREM B ([3], [7]). L_{φ} is a compact operator if and only if $\varphi \in CMO$.

The definitions of BMO, BMO-norm and CMO will be given at the end of Section 1. We note that more general situations are considered in [1].

In the following all the functions considered will be real valued functions defined on \mathbb{R}^n . For a measurable function b we define B(f)=bf. As pointed out in [1] for the one dimensional case the study of [H, B] = HB - BH, where H is the Hilbert transform, is often essentially equivalent to that of L_{φ} .

Suppose that K is a Caldéron-Zygmund singular integral operator with smooth kernel. That is, there is an $\Omega(x)$ which is homogeneous of degree zero, which satisfies $\int_{|x|=1} \Omega = 0$, $\Omega \neq 0$ and $|\Omega(x) - \Omega(y)| \leq |x - y|$ when |x| = |y| = 1, and that

$$(Kf)(x) = P.V. \int \frac{\Omega(x-y)}{|x-y|^n} f(y) dy.$$

THEOREM A' ([1]). If b is in BMO, then [K, B] is a bounded map of $L^{p}(\mathbb{R}^{n})$ to itself, $1 , with operator norm <math>||[K, B]||_{(p)} \leq C_{K,p}||b||_{BMO}$. Conversely, if $[B, R_{i}]$, where $R_{1}, R_{2}, \dots, R_{n}$ are the Riesz transforms, are bounded on $L^{p}(\mathbb{R}^{n})$ for some $p, 1 and <math>i = 1, \dots, n$ then b is in BMO and $||b||_{BMO} \leq A \sum_{i=1}^{n} ||[B, R_{i}]||_{(p)}$.

We shall improve Theorem A' in Section 2 and extend Theorem B on \mathbb{R}^n in Section 3. In the latter case we shall find some difficulties in the functions of CMO over \mathbb{R}^n which do not occur in the unit circle case. To avoid it we shall use the characterization of CMO over \mathbb{R}^n which is announced in Neri [6].

NOTATION. *i*, *j*, *k* and *m* mean always integers. A dyadic cube is a cube of the form $\{x = (x_1, \dots, x_n) \in \mathbb{R}^n | k_i 2^j \leq x_i < (k_i + 1)2^j \text{ for } i = 1, \dots, n\}$. For a measurable set E, |E|, m(f, E), \overline{E} and χ_E mean the Lebesgue measure of E, $|E|^{-1} \int_E f(y) dy$, the closure of E and the characteristic function of E respectively. For a cube Q in \mathbb{R}^n , M(f, Q) means $\inf \left\{ |Q|^{-1} \int_Q |f(y) - c| dy | c \in \mathbb{R} \right\}$. \mathbb{R}_p and $\mathbb{R}(x, a, b)$ mean $\{x \in \mathbb{R}^n | |x_i| < 2^p$ for $i = 1, \dots, n\}$ and $\{y \in \mathbb{R}^n | a < |x - y| < b\}$ respectively.

DEFINITION. For $f \in L^1_{loc}(\mathbb{R}^n)$, $||f||_{BMO}$ will denote $\sup\{M(f, Q) | Q \text{ is a cube in } \mathbb{R}^n\}$. Identifying functions which differ by a constant, the set of functions satisfying $||f||_{BMO} < \infty$ is a Banach space under the norm $|| \cdot ||_{BMO}$ and we call this space BMO. The BMO-closure of \mathcal{D} , where \mathcal{D} is the set of C^{∞} -functions with compact support, is denoted by CMO. [See [6], p 186.]

2. THEOREM 1. Let $1 and <math>b \in \bigcup_{q>1} L^q_{loc}(\mathbb{R}^n)$. Then $||b||_{BMO} \leq A(p, K) ||[K, B]||_{(p)}$.

PROOF. In this proof for $i = 1, \dots, 10 A_i$ is a positive constant depending only on K, p and $A_j (1 \le j < i)$. We may assume $||[K, B]||_{(p)} = 1$. We want to prove

$$(*) \qquad \qquad \sup_{a} M(b, Q) \leq A(p, K) .$$

Since $||[K, B]||_{(p)} = ||[K, B_{r,x_0}]||_{(p)}$ for every $x_0 \in \mathbb{R}^n$ and $r \in \mathbb{R}_+$, where $B_{r,x_0}(f)(x) = b(r^{-1}x + x_0)f(x)$, it suffices to prove the inequality (*) for $Q = Q_1 = \{x \in \mathbb{R}^n \mid |x_j| < (2\sqrt{n})^{-1} \text{ for } j = 1, \dots, n\}$. Let $M = M(b, Q_1) = |Q_1|^{-1} \int_{Q_1} |b(y) - a_0| \, dy$. Since $[K, B - a_0] = [K, B]$, we may assume $a_0 = 0$. Let ψ be such that

$$egin{aligned} &\|\psi\|_{L^{\infty}}=1 \ , \ & ext{supp} \ \psi \subset Q_{ ext{i}} \ , \ & ext{supp} \ \psi \subset Q_{ ext{i}} \ , \ & ext{\int} \psi \ dx=0 \ , \end{aligned}$$

$$\psi(x)b(x)\geqq 0 \ |\,Q_{_1}\,|^{-1}\!\!\int\!\!\psi(x)b(x)dx\,=\,M$$
 .

Let \sum_{κ} , a closed subset of $\sum = \{x \in \mathbb{R}^n \mid |x| = 1\}$, and A_1 , a positive number, be such that $m(\sum_{\kappa}) > 0$, where *m* is the measure on \sum which is induced from the Lebesgue measure on \mathbb{R}^n , and $|\Omega(x) - \Omega(y)| < 2^{-1}\Omega(x)$ for every $x \in \sum_{\kappa}$ and every $y \in \sum$ satisfying $|x - y| < A_1$. Then for $x \in G = \{x \in \mathbb{R}^n \mid |x| > A_2 = 2A_1^{-1} + 1 \text{ and } |x|^{-1}x \in \sum_{\kappa}\}$

$$egin{aligned} & \|[K,\,B]\psi(x)| &\geq \|K(b\psi)(x)| - \|b(x)K(\psi)(x)\| \ &\geq &A_3M \, \|x\|^{-n} - A_4 \, \|b(x)| \, \|x\|^{-n-1}. \ & F = \{x \in G \, |\, |b(x)| > (MA_3/2A_4) \, |\, x| \, ext{ and } \, \|x\| < M^{p'/n} \} \,, \end{aligned}$$

Let

where $p^{-1} + p'^{-1} = 1$, then

$$\begin{split} & 1 \ge \int_{\mathbb{R}^n} |[K, B] \psi(x)|^p \, dx \\ & \ge \int_{(G \setminus F) \cap \{|x| \le M^{p'/n}\}} (2^{-1}A_3M |x|^{-n})^p dx \\ & \ge \int_{\{A_5(|F| + A_2^n)^{1/n} \le |x| \le M^{p'/n}\} \cap G} (2^{-1}A_3M |x|^{-n})^p dx \; . \end{split}$$

Thus

$$|F| \ge A_6 M^{p'} - A_2^n \ge A_6 M^{p'}/2 ~~ ext{if}~~ M > (2A_2^n A_6^{-1})^{1/p'}$$
 .

Let $g(x) = (\operatorname{sgn}(b(x)K(x)))\chi_F(x)$, then for $x \in Q_1$

$$egin{aligned} &|[K^*,\,B]g(x)| \geq A_7 \int_F |\,y\,|^{-n} &(A_3M\!/\!2A_4)\,|\,y\,|\,dy\,-\,|\,b(x)\,|\,|\,K^*(g)(x)\,| \ &\geq &A_8M^{1+p'/n}-A_9\,|\,b(x)\,|\log\,M$$
 , \end{aligned}

where $K^*f(x) = P.V. \int \Omega(y-x) |y-x|^{-n} f(y) dy$. Since $[K^*, B]$ is the adjoint operator of [K, B], $||[K^*, B]||_{(p')} = 1$. Thus

$$egin{aligned} &A_{10}M \geqq ||\,g\,||_{p'} \geqq ||[K^*,\,B]g||_{p'} \& & \int_{Q_1} |[K^*,\,B]g(x)|\,dx \& & & & & \& \int_{Q_1 \cap \{b(x) < 2M\}} |[K^*,\,B]g(x)|\,dx \& & & & \ge 2^{-1}(A_8M^{1+p'/n}-2A_9M\log M) \;. \end{aligned}$$

Then, $M \leq A(K, p)$.

COROLLARY. For f in $H^{1}(\mathbb{R}^{n})$

and

A. UCHIYAMA

$$egin{aligned} A(K)\,||\,f\,||_{H^1} &\leq \inf \,\{\sum\limits_{i=1}^\infty \,||\,g_i\,||_{L^2}\,||\,h_i\,||_{L^2}\,|\ f\,&=\,\sum\limits_{i=1}^\infty (g_iK(h_i)\,-\,K^*(g_i)h_i)\} \leq A(K)'||\,f\,||_{H^1}\,. \end{aligned}$$

For the definition of $H^1(\mathbb{R}^n)$ we refer to [2]. The corollary will be proved in the same way as in Theorem II of [1] using Theorem A' and Theorem 1.

3. LEMMA. Let $f \in BMO$. Then $f \in CMO$ if and only if f satisfies the following three conditions.

- (i) $\lim_{a\downarrow 0} \sup_{|Q|=a} M(f, Q) = 0.$
- (ii) $\lim_{a \uparrow \infty} \sup_{|Q|=a} M(f, Q) = 0$.
- (iii) $\lim_{x\to\infty} M(f, Q + x) = 0$ for each Q.

This lemma, which seems to be due to Herz, Strichartz and Sarason, is announced in Neri [6] without proof.

PROOF. In this proof A is a positive constant depending only on n. From the definition of CMO, it is trivial that CMO satisfies (i) (ii) and (iii). In the following we prove that if f satisfies (i) (ii) and (iii), then for any $\varepsilon > 0$ there exists $g_{\varepsilon} \in BMO$ such that

$$(1) \qquad \qquad \inf_{h \in \mathscr{D}} ||g_{\varepsilon} - h||_{\text{BMO}} < A \varepsilon .$$

and

$$||g_{arepsilon} - f||_{ ext{BMO}} < A arepsilon$$
 .

From (i) and (ii) there exist i_{ε} and k_{ε} such that

 $\sup \left\{ \mathit{M}(f, \mathit{Q}) \, | \, |\mathit{Q} \, | \leq 2^{\mathit{ni}_{\mathit{\varepsilon}}} \right\} < \varepsilon$

and

 $\sup \left\{ M(f, Q) \, | \, | \, Q \, | \geq 2^{nk_{\varepsilon}}
ight\} < arepsilon$.

From (i), (ii) and (iii) there exists j_{ϵ} such that $j_{\epsilon} > i_{\epsilon}$, k_{ϵ} and

$$\sup \{M(f, Q) | Q \cap R_{j_{\varepsilon}} = \emptyset\} < \varepsilon$$
.

We define Q_x as follows. If $x \in R_{j_{\epsilon}}, Q_x$ means the dyadic cube of side length $2^{i_{\epsilon}}$ that contains x. If $x \in R_m \setminus R_{m-1}$ where $j_{\epsilon} < m, Q_x$ means the dyadic cube of side length $2^{i_{\epsilon}+m-j_{\epsilon}}$. We set $g'_{\epsilon}(x) = m(f, Q_x)$. From (ii) there exists $m_{\epsilon} > j_{\epsilon}$ such that

$$\sup\{|g'_{\epsilon}(x) - g'_{\epsilon}(y)| \,|\, x, \, y \in R_{m_{\epsilon}} \setminus R_{m_{\epsilon}-1}\} < \varepsilon$$
.

If $x \in R_{m_{\epsilon}}$, we define $g_{\epsilon}(x) = g'_{\epsilon}(x)$ and if $x \in R_{m_{\epsilon}}^{c}$, we define $g_{\epsilon}(x) =$

166

 $m(f, R_{m_{\epsilon}} \setminus R_{m_{\epsilon}-1})$. Note the fact that

 $(3) \qquad \qquad \text{if} \quad \bar{Q}_x \cap \bar{Q}_y \neq \varnothing \,\,, \quad \text{diam} \, Q_x \leqq 2 \, \text{diam} \, Q_y \,\,.$

Then by the definition of i_{ϵ} , j_{ϵ} and m_{ϵ} , if $\bar{Q}_x \cap \bar{Q}_y \neq \emptyset$ or $x, y \in R^c_{m_{\epsilon}-1}$, then

$$|g_{\epsilon}(x) - g_{\epsilon}(y)| < A \varepsilon$$

Thus (1) is obvious. From the definition of i_{ε} and j_{ε}

(5)
$$\int_{Q_x} |f(y) - g_{\varepsilon}(y)| \, dy \leq A\varepsilon \, |Q_x|$$

for every $x \in R_{m_{\varepsilon}}$. Let Q be an arbitrary cube in \mathbb{R}^{n} . First we consider the case such that $Q \subset R_{m_{\varepsilon}}$ and max $\{\operatorname{diam} Q_{x} | Q_{x} \cap Q \neq \emptyset\} > 4$ diam Q. Then by (3) the number of Q_{x} such that $Q_{x} \cap Q \neq \emptyset$ is bounded by A, and if $Q \cap R_{j_{\varepsilon}} \neq \emptyset$, |Q| is less than $2^{n_{\varepsilon}}$. Thus from (4) and the definition of i_{ε} and j_{ε} , $M(f - g_{\varepsilon}, Q) < A \varepsilon$. Second if $Q \subset R_{m_{\varepsilon}}$ and max $\{\operatorname{diam} Q_{x} | Q_{x} \cap$ $Q \neq \emptyset\} \leq 4$ diam Q,

$$M(f-g_{\epsilon},Q){\leq}|Q|^{-1}{\sum\limits_{Q_x\cap Q
eq \phi}}{\int_{Q_x}}|f(y)-g_{\epsilon}(y)|\,dy{\leq}Aarepsilon$$

by (5). Third if $Q \subset R^{\circ}_{m_{\varepsilon}-1}$, by the definition of m_{ε}

 $M(f - g_{\epsilon}, Q) \leq M(f, Q) + A \varepsilon \leq (1 + A) \varepsilon$.

Lastly we consider the case $Q \cap R^{\circ}_{m_{\varepsilon}} \neq \emptyset$ and $Q \cap R_{m_{\varepsilon^{-1}}} \neq \emptyset$. Let p_q be the smallest integer satisfying $Q \subset R_{p_q}$, then

$$M(f - g_{\varepsilon}, Q) \leq AM(f - g_{\varepsilon}, R_{p_0})$$
.

Since $m_{\varepsilon} > k_{\varepsilon}$, $|m(f, R_q) - m(f, R_{q-1})| < A\varepsilon$ for every integer q such that $m_{\varepsilon} \leq q$. Then

$$egin{aligned} &M(f-g_{\epsilon},\,R_{p_Q})|\,R_{p_Q}| \leq \int_{R_{p_Q} \setminus R_{m_{\epsilon}}} |\,f(y)-m(f,\,R_{p_Q})|\,dy \ &+ |\,m(f,\,R_{p_Q})-m(f,\,R_{m_{\epsilon}} ackslash R_{m_{\epsilon}-1})|\,|\,R_{m_{\epsilon}}| + \sum_{Q_{x} \in R_{m_{\epsilon}}} \int_{Q_{x}} |\,f(y)-g_{\epsilon}(y)|\,dy \ &\leq & \epsilon \,|\,R_{p_Q}| + A arepsilon(p_Q-m_{\epsilon})\,|\,R_{m_{\epsilon}}| + A arepsilon\,|\,R_{m_{\epsilon}}| \ &\leq & (1+2A) arepsilon\,|\,R_{p_Q}| \;. \end{aligned}$$

Thus (2) is proved.

THEOREM 2. Let $b \in \bigcup_{q>1} L^q_{loc}(\mathbb{R}^n)$. Then [K, B] is a compact operator from L^p to itself, $1 , if and only if <math>b \in CMO$.

PROOF. If [K, B] is a compact operator, then from Theorem 1 $b \in BMO$. Thus we may assume $||b||_{BMO} = 1$. First suppose that b does

not satisfy (i) of the previous lemma. Then there exist $\delta > 0$ and a sequence of cubes $\{Q_j\}_{j=1}^{\infty}$ such that

(11)
$$M(b, Q_j) > \delta$$

for every j and $\lim_{j\to\infty} q_j = 0$ where q_j is the diameter of Q_j . In the following for $i = 20, \dots, 36$ A_i is a positive constant depending only on K, p, δ and $A_j(20 \leq j < i)$. Let b_j be a real number such that $M(b, Q_j) = |Q_j|^{-1} \int_{Q_j} |b(y) - b_j| \, dy$ and x_j the center of Q_j . We define f_j as follows

$$(12) f_j(b-b_j) \ge 0 ,$$

$$(13) \qquad \qquad \operatorname{supp} f_j \subset Q_j$$

(14)
$$\int f_j \, dy = 0$$

and

(15)
$$|f_j(y)| = |Q_j|^{-1/p}$$

for every $y \in Q_j$. Note that $[K, B]f = K((b - b_j)f) - (b - b_j)K(f)$. From (13) and (15)

(16)
$$|K((b-b_j)f_j)(y)| \leq A_{2^{n}} |Q_j|^{1-1/p} |x_j - y|^{-n}$$

for $y \notin A_{21}Q_j$. By (11), (12) and the continuity of the kernel

(17)
$$|K((b-b_j)f_j)(y)| \ge A_{22}\delta |Q_j|^{1-1/p} |x_j - y|^{-n}$$

for $y \in (A_{21}Q_j)^{\circ} \cap \{y \mid |x_j - y|^{-1}(x_j - y) \in \sum_{\kappa}\}$, where \sum_{κ} is as in the proof of Theorem 1. On the other hand, by (14) and the smoothness of the kernel

$$(18) \qquad |(b(y) - b_j)K(f_j)(y)| \leq A_{23} |b(y) - b_j| |x_j - y|^{-n-1}q_j |Q_j|^{1-1/p}$$

for $y \notin A_{21}Q_j$. Since $||b||_{BMO} = 1$,

$$\int_{R(x_j,2^{k_{q_j,2}k+1}q_j)} |b(y) - b_j|^p \, dy \leq A_{24} 2^{k_n} |Q_j| \, k^p \, .$$

[See for example [2][4].] Thus if $\alpha > A_{21}$

$$\begin{split} \int_{|x_j-y|>\alpha q_j} |(b(y) - b_j) K(f_j)(y)|^p \, dy \\ &\leq A_{23}^p A_{24} q_j^p |Q_j|^{p-1} \sum_{k=\log \alpha}^{\infty} (2^k q_j)^{-p(n+1)} 2^{kn} |Q_j| \, k^p \\ &\leq A_{25} \sum_{k=\log \alpha}^{\infty} k^p 2^{-k(pn+p-n)} \end{split}$$

168

$$\leq A_{26} \sum_{k=\log \alpha}^{\infty} 2^{-k(pn+p-n-p/2)}$$

 $\leq A_{27} \alpha^{-((p-1)n+p/2)}$.

Then from (17), for $\beta > \alpha > A_{\scriptscriptstyle 21}$

$$\left(\int_{R(x_j, \alpha q_j, \beta q_j)} |[K, B] f_j|^p \, dy \right)^{1/p} \\ \geq A_{28} \delta(\alpha^{-pn+n} - \beta^{-pn+n})^{1/p} - A_{27}^{1/p} \alpha^{-(1/2+n(p-1)/p)} \, .$$

So from (16) there exist A_{29} , A_{30} and A_{31} satisfying

(19)
$$2 < A_{29} < A_{30},$$

 $\int_{R(x_j, A_{29}q_j, A_{30}q_j)} |[K, B]f_j|^p dy \ge A_{31}$

and

(20)
$$\int_{|x_j-y|>A_{30}q_j} |[K, B]f_j|^p \, dy \leq A_{31}/4 \, dy$$

By the result of [2] and [4],

$$|\{y| \, | \, b(y) - b_j| > u + A_{\scriptscriptstyle 32}\} \cap R(x_j, \, A_{\scriptscriptstyle 29}q_j, \, A_{\scriptscriptstyle 30}q_j)| \leq A_{\scriptscriptstyle 33} \, | \, Q_j | \, e^{-A_{\scriptscriptstyle 34}u} \; .$$

Let $E \subset R(x_j, A_{20}q_j, A_{30}q_j)$ be an arbitrary measurable set. Then by (16), (18), (21) and $||b||_{BMO} = 1$

$$\int_{E} |[K, B] f_j|^p \, dy \leq A_{\scriptscriptstyle 35} \, rac{|E|}{|Q_j|} \Big(1 + \log^+ rac{|Q_j|}{|E|} \Big)^p \; .$$

Thus there exists A_{36} such that

$$\int_{E} |[K, B]f_{j}|^{p} \, dy < A_{\scriptscriptstyle 31}/4$$

for every measurable set E satisfying

$$E \subset R(x_j, A_{\scriptscriptstyle 29}q_j, A_{\scriptscriptstyle 30}q_j) \, \, ext{and} \, \, |E| < A_{\scriptscriptstyle 36}^n q_j^n \, .$$

If we select a subsequence $\{Q_{j(k)}\}$ satisfying

then for m > 0 using (19), (20) and (22) we get

$$\begin{split} ||[K, B]f_{j(k)} - [K, B]f_{j(k+m)}||_{p}^{p} \\ &\geq \int_{R(x_{j(k)}, A_{20}q_{j(k)}) \setminus R(x_{j(k+m)}, 0, A_{30}q_{j(k+m)})} |[K, B]f_{j(k)} - [K, B]f_{j(k+m)}|^{p} dy \\ &\geq ((A_{31}/2)^{1/p} - (A_{31}/4)^{1/p})^{p} \\ &\geq ((1/2)^{1/p} - (1/4)^{1/p})^{p} A_{31} . \end{split}$$

Thus $\{[K, B]f_j\}_{j=1}^{\infty}$ is not relatively compact in L^p , i.e., [K, B] is not compact. Quite similarly we can prove that if b does not satisfy (ii) or (iii) of the previous lemma, [K, B] is not a compact operator.

Conversely, suppose that $b \in CMO$. Then for any $\varepsilon > 0$ there exists $b_{\varepsilon} \in \mathscr{D}$ such that $||b - b_{\varepsilon}||_{BMO} < \varepsilon$. By Theorem A'

 $||[K, B] - [K, B_{\varepsilon}]||_{(p)} < \varepsilon$.

Thus for the proof of the converse part it suffices to prove that [K, B] is a compact operator for $b \in \mathscr{D}$. In the following for $i = 40, \dots, 48$ A_i is a positive constant depending only on b, p, K and A_j ($40 \leq j < i$). It is clear that

(31)
$$|[K, B]f(x)| \leq A_{40} ||f||_p |x|^{-n}$$

for $|x| > A_{41}$ and from Theorem A'

(32)
$$||[K, B]f||_p \leq A_{42} ||f||_p$$
.

Take an arbitrary $2^{-1} > \varepsilon > 0$ and $z \in \mathbb{R}^n$. Then,

$$[K, B]f(x) - [K, B]f(x + z)$$

= P.V. $\int K(x - y)(b(y) - b(x))f(y)dy$
- P.V. $\int K(x + z - y)(b(y) - b(x + z))f(y)dy$
(33)
= $\int_{|x-y|>e^{-1}|z|} K(x - y)(b(x + z) - b(x))f(y)dy$
+ $\int_{|x-y|>e^{-1}|z|} (K(x - y) - K(x + z - y))(b(y) - b(x + z))f(y)dy$
+ P.V. $\int_{|x-y|.$

The first term of (33) is dominated by

$$|b(x + z) - b(x)| K_*(f)(x)$$

where $K_*(f)(x) = \sup_{\eta>0} |\int_{|x-y|>\eta} K(x-y)f(y)dy|$. The second term is dominated by

$$A_{43} \int_{|x-y|>arepsilon^{-1}|z|} |x-y|^{-n-1} |f(y)| \, dy$$
 .

The last two terms are dominated by

170

$$\begin{array}{l} A_{44} \Big(\int_{|x-y| < \varepsilon^{-1}|z|} |x-y|^{-n+1} |f(y)| \, dy \\ &+ \int_{|x-y| < \varepsilon^{-1}|z|} |x+z-y|^{-n+1} |f(y)| \, dy \, . \Big) \end{array}$$
Note that
$$\int_{|y| < \varepsilon^{-1}|z|} |z| \, |y|^{-n-1} dy = A_{45} \varepsilon, \\ \int_{|y| < \varepsilon^{-1}|z|} |y|^{-n+1} dy = A_{46} \varepsilon^{-1} |z| \, , \\ ||K_*(f)||_p \leq A_{47} ||f||_p \end{array}$$

[see [8], p42] and that b is uniformly continuous. Then by taking |z| sufficiently small depending on ε , we can get

(34)
$$\left(\int |[K, B]f(x) - [K, B]f(x + z)|^p \, dx \right)^{1/p} \leq \varepsilon A_{48} \, ||f||_p \, .$$

Thus from (31), (32), (34) and the theorem of Frechet-Kolmogorov ([9], p275), [K, B] is a compact operator.

References

- R. R. COIFMAN, R. ROCHBERG AND G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
- [2] C. FEFFERMAN AND E. M. STEIN, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [3] P. HARTMAN, On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862-866.
- [4] F. JOHN AND L. NIREMBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
- [5] Z. NEHARI, On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162.
- [6] U. NERI, Fractional integration on the space H¹ and its dual, Studia Math., LIII (1975), 175-189.
- [7] D. SARASON, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- [8] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press. 1970.
- [9] K. YOSIDA, Functional Analysis, Springer, 1968.

Mathematical Institute Tôhoku University Sendai, Japan