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1. Introduction. Let P be the orthogonal projection from L*T)
onto H*T), where T = {ze€C||z| = 1} and H¥T) is the Hardy space on
T, that is, {f eLZ(T))S fee #¥dh = 0, k=—1, —2, ---}. For a function
pe HYT) satisfyingScpdTﬁ = 0 the Hankel operator L, is defined by
L,(y) = P(py), v H(T) N L>(T), where the bar denotes complex con-
jugation.

Nehari [5], Hartman [3], and Coifman, Rochberg and Weiss [1] con-

sidered some properties of the Hankel operators. In this paper we are
concerned with the following theorems.

THEOREM A ([5], [2]). L, ts a bounded operator from H? to H*® if
and only if o€ BMO. Furthermore the operator morm | L,|| is equi-
valent to ||@||syo.

THEOREM B ([3], [T]). L, ts a compact operator if and only if
@ € CMO.

The definitions of BMO, BMO-norm and CMO will be given at the end
of Section 1. We note that more general situations are considered in [1].

In the following all the functions considered will be real valued
functions defined on R". For a measurable function b we define B(f)=bf.
As pointed out in [1] for the one dimensional case the study of
|H, Bl = HB — BH, where H is the Hilbert transform, is often essen-
tially equivalent to that of L,.

Suppose that K is a Caldéron-Zygmund singular integral operator
with smooth kernel. That is, there is an 2(x) which is homogeneous of
degree zero, which satisfies R=002%0and |2x) — 2W)| = |z — ¥

when |2| = |y| = 1, and that
&A@ = P.V. (22D say .
|l — y|

THEOREM A’ (J1]). If b is tn BMO, then [K, B] is a bounded map
of L*(R") to itself, 1<p<co, with operator norm ||[K, B]||;,»=Cx.,!b||emo-.
Conversely, if |B, R, where R, R,, ---, R, are the Riesz tranmsforms,
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are bounded on L*(R"™) for some p, 1<p<c and 1 =1, -++, n then b is
im BMO and [|b|lswo < A 7, I[B, R}l p-

We shall improve Theorem A’ in Section 2 and extend Theorem B on
R® in Section 8. In the latter case we shall find some difficulties in the

functions of CMO over R™ which do not occur in the unit circle case.
To avoid it we shall use the characterization of CMO over R" which is

announced in Neri [6].

NOTATION. 14, j, k¥ and m mean always integers. A dyadic cube is
a cube of the form {x=(x,, +--, x,) € R”]k,-z"_gw,.<(ki + 1)27 for v=1, ---, n}.
For a measurable set E,|E|, m(f, E), E and y, mean the Lebesgue
measure of E, IE{”S f)dy, the closure of E and the characteristic
function of K respeEctively. For a cube @ in R", M(f, Q) means
inf{lQl" MW —cldy IceR}. R, and R(z, o, b) mean {ze R*| || <27
for t =1, -+, n} and {y € B*|a < |z — y| < b} respectively.

DEFINITION. For fe Li,.(R", ||fl|lsxo Will denote sup{M(f, Q)|Q is a
cube in R"}. Identifying functions which differ by a constant, the set
of functions satisfying || f|lgmo < oo is a Banach space under the norm

Il |lsxo and we call this space BMO. The BMO-closure of <7, where &7
is the set of C=-functions with compact support, is denoted by CMO.

[See [6], p 186.]
2. THEOREM 1. Let 1 <p <o and be U, Lic(R"). Then ||bllexo=
A(p, K)I[K, Bll|u-

ProoF. In this proof for ¢+ =1, ---,10 A, is a positive constant de-
pending only on K, p and A;(1 < j <14). We may assume ||[K, Bll|, = 1.
We want to prove

(*) sup M@, Q)=A(p, K) .
Since [[[K, Blil» = |I[K, B,z lllim for every z,eR" and reR,, where
B, . (f)®) = b(r~'w + x,)f(x), it suffices to prove the inequality () for
Q=@ ={reR"||x;|<@Vn) for j=1,---,n}. Let M=M(®, Q,)=|Q,|™
. |b(y) — ay| dy. Since [K, B — a,] = | K, B], we may assume @, = 0. Let

n,klbe such that

“"l"HL'>° =1 ’

supp ¢ C @, ,

Sa/rdw=0,
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Y(@)b(x) = 0
and 1Q, l‘lgn,k(x)b(x)da; — M.

Let 3%, a closed subset of 3, ={reR"*|{x| =1}, and A4, a positive
number, be such that m(3x) > 0, where m is the measure on 3, which
is induced from the Lebesgue measure on R*, and | 2(x) — 2(y)] < 27'2(x)
for every xeY.x and every ye 3, satisfying |2 — y| < A,. Then for
xeG ={xeR"||x| > A4, =247+ 1 and |z|"'we D}

I[K, Bl ()| = | K(by)(x)| — |b(@)K(y)(2)|

ZAM|z|™ — A |b(z)] 2|

Let F={reG||bx)| > (MA,/24,) x| and |x| < M*/"},
where p~* + p'7! = 1, then

12| K, Bl do

(\%

»'/n

, 27*'A,M | x|~ ™)Pdx

S(G\F)ﬂﬂa:}<}l

%

W t/n e (RTAM |7 Pd .

S(A5(1F1+A2 W r<lai<un® Mine
Thus .
|F| = AM* — A7 = A M7 (2 if M > (247A7)" .
Let g(z) = (sgn(b(x)K(x)))xz(x), then for xe@,

I[K*, Blg(x)| = 4, SF y 7" (AsM[2A,) |y dy — [b(x)] | K*(g)(@)|
=AM — A |b(x)| log M,
where K*f(x) = P.V. g.o(y — )|y — e[ ""fy)dy. Since [K*, B] is the
adjoint operator of [K, B], {|[[K*, B]||,» = 1. Thus
ApM = gll, = |ILK*, Blgll,

2| K", Blo@)do
Q)

>

| [K*, Blo(@)| de
Q0 {blz) <M}
=27 A M — 24,M log M) .
Then, M < A(K, p).
COROLLARY. For f in H'(R"
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A1 |l < inf (3] 11l a2 |
f =3 0Kk — K*(gh)) < AKY||f | -

For the definition of H'(R") we refer to [2]. The corollary will be
proved in the same way as in Theorem II of [1] using Theorem A’ and
Theorem 1.

3. LEMMA. Let feBMO. Then feCMO if and only if f satisfies
the following three conditions.
(1) -lilng Sup Mf, Q) =0.

(i) li¥n sup Mf,Q =0.
(iii) lim M(f,Q + ) = 0 for each Q.
This lemma, which seems to be due to Herz, Strichartz and Sarason,

is announced in Neri [6] without proof.

PrOOF. In this proof A is a positive constant depending only on .
From the definition of CMO, it is trivial that CMO satisfies (i) (ii) and
(iii). In the following we prove that if f satisfies (i) (ii) and (iii), then
for any ¢ > 0 there exists g, € BMO such that

o 2?£|Ig‘_h||tho<AE.
and
‘2 [1g. — Sllemo < Ae .

From (i) and (ii) there exist 4, and %k, such that
sup {M(f, @@ = 2"} <e
and
sup {M(f, @@ =z 2"} <e.
From (i), (ii) and (iii) there exists j. such that j. > i, k. and
sup {M(f, QIQ N R;, = @} <e.

We define @, as follows. If zeR;, @, means the dyadic cube of side
length 2% that contains z. If z¢R,\R,_, where j, <m, @, means the
dyadic cube of side length 2% 7., We set g.(x) = m(f, Q,). From (ii)
there exists m, > j. such that

sup{|gi(x) — g:(¥)| |2, y € Rp\Rp, 1} < €.
If xeR,, we define g(x)=g.(x) and if xeR,’, we define g.(»)=
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m(f, R, \Rn..). Note the fact that

(3) if Q.NnQ,*w, diamQ,<2diamgQ, .

Then by the definition of 4., j. and m., if @,NQ, #D or x, y € R,,_,, then
(4) lg:(x) — g.(y)| < Ae..

Thus (1) is obvious. From the definition of 4, and j.

(5) SQ 1 f@) — g.y)|dy < Ae|Q, |

for every x€ R, . Let @ be an arbitrary cube in R*. First we consider
the case such that QCR,, and max {diam @Q,|Q.NQ #* @} >4 diam Q.
Then by (3) the number of @, such that @, N Q = @ is bounded by A4,
and if QNR;, #@, |Q] is less than 2"%. Thus from (4) and the definition
of 4. and 7., M(f — g., @) <Ae. Second if QCR,, and max {diam @Q,|@Q.N
Q+* 2} <4 diam Q,

Mf -9, Q=R 3 | 1/@) — 0w)dy = 4e

by (5). Third if QC R;,,_,, by the definition of m,

Lastly we consider the case QN R, #@ and QN R, ,#@. Let p, be the
smallest integer satisfying Q C R,,, then

M(f — Qe Q) é AM(f — e RPQ) .
Since m, > k., |m(f, R,)) — m(f, R,_,)| < Ae for every integer ¢ such that
m,. =< q. Then

M(F = g0 By IRyl S [ 17@) = m(s, Ryl dy

PQ R’ms
+mif, R = mlf, BB, D | B + 5, [ 1) = 0w dy
<¢|R,,| + Ae(pe — m.) | R, | + Ae|R,,|
<1 + 24)|R,,]| .
Thus (2) is proved.

THEOREM 2. Let be Uy, Lio(R*). Then|[K, B]is a compact operator
from L? to itself, 1 < p <co, if and only +f b CMO.

Proor. If [K, B] is a compact operator, then from Theorem 1
be BMO. Thus we may assume ||b|lswo = 1. First suppose that b does
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not satisfy (i) of the previous lemma. Then there exist 6 >0 and a
sequence of cubes {Q;}3, such that

(11) M®, Q) > o

for every j and lim; .. q; = 0 where ¢; is the diameter of Q;. In the
following for ¢ = 20, .-+, 36 A, is a positive constant depending only on
K,p,6 and Aj20<j<1i). Let b; be a real number such that

M, Q) = |Q;|™* SQ_ |b(y) — b;|dy and w; the center of Q,. We define f;
as follows !

(12) fib—b,) =0,
(18) supp f; C Q;
(14) g fidy =0
and

(15) |fiw)| = 1Q;[7?

for every y € Q;. Note that [K, B]f = K((b — b,)f) — (b — b;)K(f). From
(18) and (15)

(16) [ K((b — b)) £ A | Q177 s — y[™
for y¢ A,,Q;. By (11), (12) and the continuity of the kernel
am [ K((d — b0)f)(W)| = Aud | Q; Y7 |2, — y|™"

for y e (A.Q)°N{y||x; — y|*(@x; — y) € Sk}, where 3 is as in the proof
of Theorem 1. On the other hand, by (14) and the smoothness of the
kernel

(18) [(0(y) — b)K(f)W)| = Aws|b(y) — b;] s — 97" 7'q; | Q"7
for y ¢ A,,Q;. Since ||b||sxo = 1,
L g 500 = Bl 0y = 4,271 Qs
[See for example [2][4].] Thus if @ > 4,
[(0(y) — bHK( )W) |” dy

Slz,-—ubaq:i
S ABAGIQPT S (24) T2 Qs K

oo

§A25 Z kP2 kpntp—n)

k=log a
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oo
SAzo Z o—ktpntp=n—p/2)
_ k=log a
< Aya—((P—l)‘n+p/2) .

Then from (17), for 8> a > A,

i/p
(i K, BIf;|" dy)
Rlzj,a94,8q¢;)
g Azss(a—pnﬂo — B-p?ﬂ—'n)l/p — A;épa-(llﬁnw—l)/m .
So from (16) there exist A4, 4, and A, satisfying
19) 2< Ay < Ay,

LK, Blf;["dy = A

SR(a:j,A29Qj:A3041j)

and

(20) [K, Blf;|”dy = Ay/4 .

S|fﬂj—ﬂ|>a43oqj

By the result of [2] and [4],

1) [{y]1b(y) — bil > u + A} N R(x;, Awgjy Au@i)]| = Ay | Q] 6744 .

Let ECR(x;, Axq;, Asq;) be an arbitrary measurable set. Then by (16),
(18), (21) and [[b]lswo = 1

I° 1E| +L QY
[ LK, Bifirdy < e 120(1 4 tog 800"

Thus there exists A4, such that
[ BIfirdy < Aa/4

for every measurable set E satisfying
E C R(x;, Axqj, Aywg;) and | E| < A%} .
If we select a subsequence {@Q;,} satisfying
(22) @it Qi < Al Ago
then for m > 0 using (19), (20) and (22) we get

[K, Blfiw — K, Blfjwsmlls

=

o SR(”J'(I:)'Azsqi(k)'Aaoqi(k))\R(”a'(k-(—m)'0'430‘11'(k +m))
= ((An/2)"? — (An/4)?)"
= (A/2)7? — (1/4)7)* 4y .

LK, Blfiw — LK, B]j}(,c+m,!”dy



170 A. UCHIYAMA

Thus {[K, B]f;};.. is not relatively compact in L*, i.e., [K, B] is not com-
pact. Quite similarly we can prove that if b does not satisfy (ii) or (iii)
of the previous lemma, [K, B] is not a compact operator.

Conversely, suppose that b€ CMO. Then for any ¢ > 0 there exists
b.c = such that ||b — b.||smo < &. By Theorem A’

”[K’ B] - [K, Be]”(p) <e.

Thus for the proof of the converse part it suffices to prove that [K, B]
is a compact operator for be <. In the following for ¢ = 40, ---, 48 A,
is a positive constant depending only on b, p, K and A4; 40 = 5 <7). It
is clear that

(81) LK, Blf (@) < Aull fll,|=]™
for |z| > A, and from Theorem A’ .
(32) LK, BIfll, = Al f1l, -

Take an arbitrary 27 >¢ >0 and z€ R". Then,
[K, Blf(x) — [K, Blf(x + 2)
= P.V. SK(x — y)(b) — b@)F(y)dy

— P.V. SK(x + 2 — y)bly) — b + 2)fW)dy

[ K@= )+ 2) - be)F@)dy
(33) z—yl>e 2z

(K(x — y) — K@ + z — 9))(b(y) — blx + 2))f(y)dy

Slz-—v|>s_llzl

+ P.V. g ., K@ = »)0w) - ba)fw)dy

le—yl<e Iz

—~ P.V. g K@ + 2z — 9)(b) — b(x + 2))f(y)dy .

lz—yl<e el

The first term of (33) is dominated by
[b(x + 2) — b(x) | K\ (f) (@)

where K. (f)(x) = Sup””]&,_y o K(x — v)f(y)dy|. The second term is do-
minated by

A j2lle — yI™ f@) | dy -

lz—yl>e Yzl

The last two terms are dominated by
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YN N Taa F I
lo—yl<eT L]

S _ Iw+z—y|“““lf(y)|dz/->
lz—yl<e 2]

Note that S | Ilz] [y 'dy = Age,

lyl>e~1
S|y|<s_1lzl Iy = A2l

K (Nl = Aa il fl

[see [8], p42] and that b is uniformly continuous. Then by taking |z|
sufficiently small depending on ¢, we can get

(3) (&, Blf@) — (K, Bifw + 2)Fda) " < cdall £, -

Thus from (31), (32), (84) and the theorem of Frechet-Kolmogorov ([9],
p275), [K, B] is a compact operator.
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