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ON  THE  COMPARABILITY  OF A1'2 AND  A*1'2

ALAN  McINTOSH

Abstract. There exists a regularly accretive operator A in a

Hubert space H such that A1'2 and A*112 have different domains.

Consequently, the domain of the closed bilinear form corre-

sponding to A is different from the domain of A112.

1. Introduction. Let A denote a regularly accretive linear operator in a

complex Hubert space H. It was shown by T. Kato in [1] that if u.<\ then

the domains of A1 and A*' are the same. Kato also showed that this is not

necessarily the case if <x> J. In this paper we construct a regularly accretive

operator A for which the domain of A*112 is different from the domain of

A112. We remark that the domain of the closed bilinear form corresponding

to such an operator A is also different from the domain of A112 (see [2]).1

In proving the existence of such an operator A, we use the following

result:

(I) Let k be a natural number. Then there exist bounded selfadjoint

operators {/and Kin a (finite-dimensional) Hubert space //such that f/is

positive definite and || UV- VU\\ £k\\ UV+ VU\\.
Examples of such operators were constructed by the author when

searching for a counterexample to a different problem. (See Result (III)

of [4], together with the first comment added in the proofs of [4].)

T. Kato has made the interesting observation that if Z=UV, where U

and V are operators satisfying (I), then Z has real spectrum (for Z is

similar to U1'2 V U112), but the numerical range of Z extends vertically at

least k times further than horizontally.

Throughout this paper the scalar field is assumed to be the field C of

complex numbers. All operators are assumed to be linear. We remark that

a densely-defined maximal accretive operator is regularly accretive if

\\m(Au, u)\^k Re(Au, u) for some «r^Oandall ueD(A), the domain of A.
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1 An example of a maximal accretive (but not regularly accretive) operator A with

D(A1I2)^D(A*1'2) was given by Lions in [5]; namely A=d\dx with D{A)=H\{Q, oo)

in the space H=L2(0, oo). Indeed it can be shown that every maximal accretive operator

A for which i A is maximal symmetric but not selfadjoint has this property. (See Theorem

4.2 of [6].)
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An operator A is called invertible if A is one-one, onto, and has continuous

inverse.

2. The result.

Theorem. Let «>0. There exists a regularly accretive operator A in a

Hilbert space H such that \\m(Au, u)\^k Re(Au, u) for all ueD(A), and

D(A1'2)^D(A*112).

Proof.   We first note the following corollary to result (I) above:

(II) Let 0<£<1 and let 1<A^<2. There exist bounded selfadjoint

operators Sand Tin a Hilbert space //such that 0<S5jl, S is invertible,

||ST-r-r,S||^£ and \\ST-TS\\=K.
To prove (II), let Ac be a natural number such that 2e~1^Ac<3e~1 and

choose U and V satisfying the properties mentioned in (I). Now set

5=11(711-1,7and T=K\\U\\ WUV-VUW^V.
We now define, for each natural number «^2, a bounded operator An in

a Hilbert space Hn, as follows. Let K=2—n~1 and choose e^lrcO+K-)-1«-1.

If S, T and H are defined as in (II), let Hn=H and An=(S~1+iT)2. We

now show that An has the following properties:

(i) Re(Anu, u)^0 for all ueHn;

(ii) \lm(Anu, u)\^k Re(Anu, u) for all ueHn;

(iii) Re(A]¡2u, m)^||«||2 for all ueHn;

(iv) there exists an element veHn which does not satisfy the formula

(n - fr™ \\A*n1/2v\\ ^ \\Al!2v\\ < (n - \f'2 UV'M-

In proving these properties, we set ô=n~1. Note that <5>2e. Therefore

|| TS\\ <j i || TS + ST|| + J i TS - ST||

< Je + 1 - 4<5 < 1 - ¿á.

(i)       Re(Anu, u) _ ((S~2 - T2)u, u)

= (1 - ||raf) WS^uW2 > 0   for all ueHn.

(ii) We must prove that

\((S^T + TS~x)u, u)\ ^ k((S~2 - T2)u, u)   for all ueHn.

Equivalently, setting v = S~1u,

\((TS + ST)v, v)\ + k \\TSv\\2 ̂  k \\v\\2   for all veHn.

This follows from the inequality

lira + Sril + k ||rail2 ^ e + k{1 + |(e - Ô)}2

= e + k + K(e - ó) + i#c(e - <5)2

^k + (I + k)s- KÔ + %kô2        (v s < S)

^ «       (by the definition of e).
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(iii) A]i2 ¡s the unique accretive operator satisfying (Al¡2)2 = An (see

[3, p. 281]), so A)!2 = S-1+iT. Hence

Re(Alfu, w) = (5'-1w, u) ^ \\u\\2   for all u e Hn.

(iv) Recall that \\ST-TS\\=2-Ó. Now i(ST-TS) is selfadjoint, so

there is an element ueHn satisfying either

(oc) \(i(ST-TS)u, u)-(2-ô)\\u\\2\<ô\\u\\2, or

(ß) \(-i(ST-TS)u,u)-(2-ö)M\2\<ö\\u\\2.

First suppose that u satisfies (a). Let v = Su.

:.    \(i(TS~l - S-iT)v, v)-(2- Ô)\\S-H\\*\ < ó\\S-*v\\2.

:.    ({2S-2 - ¡(TS-1 - S-1r)}t», v) < 2(5 us-1«!2.

Now, as was proved in (i), (T2v, v)<(S~2v, v), so

({S-2 + T2 - ¡(TS-1 - S-xT)}v, v)

< 2(5 US"1»!!2 < 2Ô((S-2 + T2)v, v)

= 0({S~2 + T2+ ¿(TS-1 - S^T^v, v)

+ ô({S~2 + T2 - ¡(TS-1 - S^Tfiv, v).

.-.    ({S~2 + T2 - ¡(TS1 - S-t-T^v, v)

<--, ({S-2 +T2+ ¡(TS-1 - S^T^v, v).
1 — o

.-.     ((S-1 - iT^S-1 + iT)v, v) <(n- l)r-i((S-i + iT^S-1 - iT)v, v).

:.     ||(S-1 + iT)v\\2 <(n- I)"1 ||(S-1 - iT)v\\2.

.:   \\AH2v\\ <(n- i)-1'2 um

On the other hand, if u satisfies (ß), then v = Su satisfies

WAt^vW < (n - l)-1'2 \\A]¡2v\\.

So (iv) is proved.

Now define/l to be the operator A = @An in the Hubert space H=@Hn

(where the direct sum is taken over all natural numbers n^.2). Then A is

densely-defined maximal accretive and satisfies |Im(^H, u)\^k Re(Au, u)

for all ueD(A). Moreover A112 and hence A*112 are invertible, and for

every y>0 there exists veD(A1!2)C\D(A*112) which does not satisfy

y-1 \\A*ll2v\\ ^ \\A1/2v\\ ^y\\A*ll2v\\.

By applying the lemma below we conclude that D(A1/2)¿¿D(A*112).

Lemma. Let B and C be two closed invertible operators in a Hilbert

space H such that D(B) = D(C). Then there exists y>0 such that

y-1 \\Bu\\ <; ||Cw|| ^ y ||5h||   for all u e D(B).
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3. A stronger result. It is natural to ask whether stronger conditions on

A would imply that A1'2 and A*112 have the same domain. We will now

indicate that the following additional condition is not strong enough:

,„.    inf{0| the numerical range of A is contained in a

sector of semiangle 0} = 0.

In other words, there exists a regularly accretive operator A which

satisfies (C), but for which D(A1/2)r¿D(A*1/2).

Define the real-valued function/ by f(y)=y(log logy)1/3 if y>e; =0 if

y^e. We will show that there exists a regularly accretive operator A with

D(A1/2)^D(A*112) which satisfies:

(D)    f(\\m(Au, u)\) ^ ReL4w, u)   for all u e D(A) with ||u|| = 1.

Since/is increasing, and dfjdy-^-cc as y~»-oo, an operator which satisfies

(D) also satisfies (C).

The operator A is constructed as before but with an extra condition on e.

We note first that the operator U constructed in [4] satisfies 2^U^2m,

where m=2[mi)2. So the operator S=|| U\\~1TJ satisfies

||5-i||2 <: 22m~2 < exp 2m < exp exp((6Ac + l)2 + 1)

< exp exp((18£-x + l)2 + 1) < exp exp 500e"2

(because fc<3e-1, and £<1). Hence (using the monotonicity of/), if

Nl=i,

f(\lm(Anu, u)\) =f(\((S-iT+ ra->, m)|)

^/(lira + ST\\ \\S^u\\2) ̂ f(e \\S-iU\\2)

= Í£ llS-^IPÍlog log(c US"1«!!2)}1/3,    if £ WS^uW2 > e,
[0, otherwise;

is WS^uniog log US-1!!2}1'3,    if US"!2 > e,

\0, otherwise;

< 8£1/3 US-1»!!2.

On the other hand,

Re(Anu, u) = ((S~2 - T2)u, u)

^ IIs-^uw2 - ||rap us-1«||2

> ja \\s-M\2     (v II ran 2< i -id).

Now we may choose £ to satisfy £^(32)~3<53, in which case

f(\\m(Anu, u)\) < Re(Anu, u)   for all u e Hn such that ||u|| = 1.
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We conclude that the operator A = ® An (which we have already shown

to be regularly accretive and satisfy D(A1/2)¿£D(A*1/2)) satisfies property

(D), and hence (C).
Remark. Professor W. Kahan has constructed operators U and V

satisfying (I) such that 2^<7^2m where m = 2ck for some constant c.

Using these operators, together with slightly more care in the estimates,

we can replace the function/in (D) by the function/(j)=y (log log y)a

if y > e; =0 if y^e, for any <x<l. It would be interesting to know what

the situation is for functions f of faster growth. In particular, it seems

reasonable to conjecture that if A is a maximal accretive operator satisfying

\lm(Au, u)\p^k Re(Au, u) for all ueD(A) such that ||w|| = l, wherep>\

and k>0, then D(A1I2)=D(A*112). However this question remains open.
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