ON THE COMPARABILITY OF $A^{1 / 2}$ AND $A^{* 1 / 2}$

ALAN MCINTOSH

Abstract

There exists a regularly accretive operator A in a Hilbert space H such that $A^{1 / 2}$ and $A^{* 1 / 2}$ have different domains. Consequently, the domain of the closed bilinear form corresponding to A is different from the domain of $A^{1 / 2}$.

1. Introduction. Let A denote a regularly accretive linear operator in a complex Hilbert space H. It was shown by T. Kato in [1] that if $\alpha<\frac{1}{2}$ then the domains of A^{α} and $A^{* x}$ are the same. Kato also showed that this is not necessarily the case if $\alpha>\frac{1}{2}$. In this paper we construct a regularly accretive operator A for which the domain of $A^{* 1 / 2}$ is different from the domain of $A^{1 / 2}$. We remark that the domain of the closed bilinear form corresponding to such an operator A is also different from the domain of $A^{1 / 2}$ (see [2]). ${ }^{1}$
In proving the existence of such an operator A, we use the following result:
(I) Let k be a natural number. Then there exist bounded selfadjoint operators U and V in a (finite-dimensional) Hilbert space H such that U is positive definite and $\|U V-V U\| \geqq k\|U V+V U\|$.

Examples of such operators were constructed by the author when searching for a counterexample to a different problem. (See Result (III) of [4], together with the first comment added in the proofs of [4].)
T. Kato has made the interesting observation that if $Z=U V$, where U and V are operators satisfying (1), then Z has real spectrum (for Z is similar to $U^{1 / 2} V U^{1 / 2}$), but the numerical range of Z extends vertically at least k times further than horizontally.

Throughout this paper the scalar field is assumed to be the field \boldsymbol{C} of complex numbers. All operators are assumed to be linear. We remark that a densely-defined maximal accretive operator is regularly accretive if $|\operatorname{Im}(A u, u)| \leqq \kappa \operatorname{Re}(A u, u)$ for some $\kappa \geqq 0$ and all $u \in D(A)$, the domain of A.

Received by the editors May 17, 1971.
AMS 1970 subject classifications. Primary 47B44.
Key words and phrases. Regularly accretive operator, square root of an operator, Hilbert space, closed bilinear form.
${ }^{1}$ An example of a maximal accretive (but not regularly accretive) operator A with $D\left(A^{1 / 2}\right) \neq D\left(A^{* 1 / 2}\right)$ was given by Lions in [5]; namely $A=d / d x$ with $D(A)=H_{0}^{1}(0, \infty)$ in the space $H=L^{2}(0, \infty)$. Indeed it can be shown that every maximal accretive operator A for which $i A$ is maximal symmetric but not selfadjoint has this property. (See Theorem 4.2 of [6].)

An operator A is called invertible if A is one-one, onto, and has continuous inverse.

2. The result.

Theorem. Let $\kappa>0$. There exists a regularly accretive operator A in a Hilbert space H such that $|\operatorname{Im}(A u, u)| \leqq \kappa \operatorname{Re}(A u, u)$ for all $u \in D(A)$, and $D\left(A^{1 / 2}\right) \neq D\left(A^{* 1 / 2}\right)$.

Proof. We first note the following corollary to result (I) above:
(II) Let $0<\varepsilon<1$ and let $1<K<2$. There exist bounded selfadjoint operators S and T in a Hilbert space H such that $0<S \leqq 1, S$ is invertible, $\|S T+T S\| \leqq \varepsilon$ and $\|S T-T S\|=K$.
To prove (II), let k be a natural number such that $2 \varepsilon^{-1} \leqq k<3 \varepsilon^{-1}$ and choose U and V satisfying the properties mentioned in (I). Now set $S=\|U\|^{-1} U$ and $T=K\|U\|\|U V-V U\|^{-1} V$.

We now define, for each natural number $n \geqq 2$, a bounded operator A_{n} in a Hilbert space H_{n}, as follows. Let $K=2-n^{-1}$ and choose $\varepsilon \leqq \frac{1}{2} \kappa(1+\kappa)^{-1} n^{-1}$. If S, T and H are defined as in (II), let $H_{n}=H$ and $A_{n}=\left(S^{-1}+i T\right)^{2}$. We now show that A_{n} has the following properties:
(i) $\operatorname{Re}\left(A_{n} u, u\right) \geqq 0$ for all $u \in H_{n}$;
(ii) $\left|\operatorname{Im}\left(A_{n} u, u\right)\right| \leqq \kappa \operatorname{Re}\left(A_{n} u, u\right)$ for all $u \in H_{n}$;
(iii) $\operatorname{Re}\left(A_{n}^{1 / 2} u, u\right) \geqq\|u\|^{2}$ for all $u \in H_{n}$;
(iv) there exists an element $v \in H_{n}$ which does not satisfy the formula

$$
(n-1)^{-1 / 2}\left\|A_{n}^{* 1 / 2} v\right\| \leqq\left\|A_{n}^{1 / 2} v\right\| \leqq(n-1)^{1 / 2}\left\|A_{n}^{* 1 / 2} v\right\| .
$$

In proving these properties, we set $\delta=n^{-1}$. Note that $\delta>2 \varepsilon$. Therefore

$$
\begin{aligned}
\|T S\| & \leqq \frac{1}{2}\|T S+S T\|+\frac{1}{2}\|T S-S T\| \\
& \leqq \frac{1}{2} \varepsilon+1-\frac{1}{2} \delta<1-\frac{1}{4} \delta .
\end{aligned}
$$

(i) $\operatorname{Re}\left(A_{n} u, u\right)=\left(\left(S^{-2}-T^{2}\right) u, u\right)$

$$
\geqq\left(1-\|T S\|^{2}\right)\left\|S^{-1} u\right\|^{2}>0 \quad \text { for all } u \in H_{n}
$$

(ii) We must prove that

$$
\left|\left(\left(S^{-1} T+T S^{-1}\right) u, u\right)\right| \leqq \kappa\left(\left(S^{-2}-T^{2}\right) u, u\right) \quad \text { for all } u \in H_{n}
$$

Equivalently, setting $v=S^{-1} u$,

$$
|((T S+S T) v, v)|+\kappa\|T S v\|^{2} \leqq \kappa\|v\|^{2} \quad \text { for all } v \in H_{n}
$$

This follows from the inequality

$$
\begin{aligned}
\|T S+S T\|+\kappa\|T S\|^{2} & \leqq \varepsilon+\kappa\left\{1+\frac{1}{2}(\varepsilon-\delta)\right\}^{2} \\
& =\varepsilon+\kappa+\kappa(\varepsilon-\delta)+\frac{1}{4} \kappa(\varepsilon-\delta)^{2} \\
& \leqq \kappa+(1+\kappa) \varepsilon-\kappa \delta+\frac{1}{4} \kappa \delta^{2} \quad(\because \varepsilon<\delta) \\
& \leqq \kappa \quad \text { (by the definition of } \varepsilon) .
\end{aligned}
$$

(iii) $A_{n}^{1 / 2}$ is the unique accretive operator satisfying $\left(A_{n}^{1 / 2}\right)^{2}=A_{n}$ (see [3, p. 281]), so $A_{n}^{1 / 2}=S^{-1}+i T$. Hence

$$
\operatorname{Re}\left(A_{n}^{1 / 2} u, u\right)=\left(S^{-1} u, u\right) \geqq\|u\|^{2} \quad \text { for all } u \in H_{n} .
$$

(iv) Recall that $\|S T-T S\|=2-\delta$. Now $i(S T-T S)$ is selfadjoint, so there is an element $u \in H_{n}$ satisfying either
(α) $\left|(i(S T-T S) u, u)-(2-\delta)\|u\|^{2}\right|<\delta\|u\|^{2}$, or
(β) $\left|(-i(S T-T S) u, u)-(2-\delta)\|u\|^{2}\right|<\delta\|u\|^{2}$.
First suppose that u satisfies (α). Let $v=S u$.

$$
\begin{aligned}
& \therefore \quad\left|\left(i\left(T S^{-1}-S^{-1} T\right) v, v\right)-(2-\delta)\left\|S^{-1} v\right\|^{2}\right|<\delta\left\|S^{-1} v\right\|^{2} . \\
& \therefore \quad\left(\left\{2 S^{-2}-i\left(T S^{-1}-S^{-1} T\right)\right\} v, v\right)<2 \delta\left\|S^{-1} v\right\|^{2} .
\end{aligned}
$$

Now, as was proved in (i), $\left(T^{2} v, v\right)<\left(S^{-2} v, v\right)$, so

$$
\begin{aligned}
&\left(\left\{S^{-2}+T^{2}-i\left(T S^{-1}-S^{-1} T\right)\right\} v, v\right) \\
&< 2 \delta\left\|S^{-1} v\right\|^{2}<2 \delta\left(\left(S^{-2}+T^{2}\right) v, v\right) \\
&= \delta\left(\left\{S^{-2}+T^{2}+i\left(T S^{-1}-S^{-1} T\right)\right\} v, v\right) \\
&+\delta\left(\left\{S^{-2}+T^{2}-i\left(T S^{-1}-S^{-1} T\right)\right\} v, v\right)
\end{aligned}
$$

$\therefore \quad\left(\left\{S^{-2}+T^{2}-i\left(T S^{-1}-S^{-1} T\right)\right\} v, v\right)$

$$
<\frac{\delta}{1-\delta}\left(\left\{S^{-2}+T^{2}+i\left(T S^{-1}-S^{-1} T\right)\right\} v, v\right)
$$

$$
\therefore \quad\left(\left(S^{-1}-i T\right)\left(S^{-1}+i T\right) v, v\right)<(n-1)^{-1}\left(\left(S^{-1}+i T\right)\left(S^{-1}-i T\right) v, v\right) .
$$

$$
\therefore \quad\left\|\left(S^{-1}+i T\right) v\right\|^{2}<(n-1)^{-1}\left\|\left(S^{-1}-i T\right) v\right\|^{2} .
$$

$$
\therefore\left\|A_{n}^{1 / 2} v\right\|<(n-1)^{-1 / 2}\left\|A_{n}^{* 1 / 2} v\right\| .
$$

On the other hand, if u satisfies (β), then $v=S u$ satisfies

$$
\left\|A_{n}^{* 1 / 2} v\right\|<(n-1)^{-1 / 2}\left\|A_{n}^{1 / 2} v\right\|
$$

So (iv) is proved.
Now define A to be the operator $A=\oplus A_{n}$ in the Hilbert space $H=\oplus H_{n}$ (where the direct sum is taken over all natural numbers $n \geqq 2$). Then A is densely-defined maximal accretive and satisfies $|\operatorname{Im}(A u, u)| \leqq \kappa \operatorname{Re}(A u, u)$ for all $u \in D(A)$. Moreover $A^{1 / 2}$ and hence $A^{* 1 / 2}$ are invertible, and for every $\gamma>0$ there exists $v \in D\left(A^{1 / 2}\right) \cap D\left(A^{* 1 / 2}\right)$ which does not satisfy

$$
\gamma^{-1}\left\|A^{* 1 / 2} v\right\| \leqq\left\|A^{1 / 2} v\right\| \leqq \gamma\left\|A^{* 1 / 2} v\right\| .
$$

By applying the lemma below we conclude that $D\left(A^{1 / 2}\right) \neq D\left(A^{* 1 / 2}\right)$.
Lemma. Let B and C be two closed invertible operators in a Hilbert space H such that $D(B)=D(C)$. Then there exists $\gamma>0$ such that

$$
\gamma^{-1}\|B u\| \leqq\|C u\| \leqq \gamma\|B u\| \quad \text { for all } u \in D(B)
$$

3. A stronger result. It is natural to ask whether stronger conditions on A would imply that $A^{1 / 2}$ and $A^{* 1 / 2}$ have the same domain. We will now indicate that the following additional condition is not strong enough:
$\inf \{\theta \mid$ the numerical range of A is contained in a sector of semiangle $\theta\}=0$.

In other words, there exists a regularly accretive operator A which satisfies (C), but for which $D\left(A^{1 / 2}\right) \neq D\left(A^{* 1 / 2}\right)$.

Define the real-valued function f by $f(y)=y(\log \log y)^{1 / 3}$ if $y>e ;=0$ if $y \leqq e$. We will show that there exists a regularly accretive operator A with $D\left(A^{1 / 2}\right) \neq D\left(A^{* 1 / 2}\right)$ which satisfies:
(D) $\quad f(|\operatorname{Im}(A u, u)|) \leqq \operatorname{Re}(A u, u)$ for all $u \in D(A)$ with $\|u\|=1$.

Since f is increasing, and $d f / d y \rightarrow \infty$ as $y \rightarrow \infty$, an operator which satisfies (D) also satisfies (C).

The operator A is constructed as before but with an extra condition on ε. We note first that the operator U constructed in [4] satisfies $2 \leqq U \leqq 2^{m}$, where $m=2^{(6 k+1)^{2}}$. So the operator $S=\|U\|^{-1} U$ satisfies

$$
\begin{aligned}
\left\|S^{-1}\right\|^{2} \leqq 2^{2 m-2}<\exp 2 m & <\exp \exp \left((6 k+1)^{2}+1\right) \\
& <\exp \exp \left(\left(18 \varepsilon^{-1}+1\right)^{2}+1\right)<\exp \exp 500 \varepsilon^{-2}
\end{aligned}
$$

(because $k<3 \varepsilon^{-1}$, and $\varepsilon<1$). Hence (using the monotonicity of f), if $\|u\|=1$,

$$
\begin{aligned}
f\left(\left|\operatorname{Im}\left(A_{n} u, u\right)\right|\right) & =f\left(\left|\left(\left(S^{-1} T+T S^{-1}\right) u, u\right)\right|\right) \\
& \leqq f\left(\|T S+S T\|\left\|S^{-1} u\right\|^{2}\right) \leqq f\left(\varepsilon\left\|S^{-1} u\right\|^{2}\right) \\
& = \begin{cases}\varepsilon\left\|S^{-1} u\right\|^{2}\left\{\log \log \left(\varepsilon\left\|S^{-1} u\right\|^{2}\right)\right\}^{1 / 3}, & \text { if } \varepsilon\left\|S^{-1} u\right\|^{2}>e, \\
0, & \text { otherwise }\end{cases} \\
& < \begin{cases}\varepsilon\left\|S^{-1} u\right\|^{2}\left\{\log \log \left\|S^{-1}\right\|^{2}\right\}^{1 / 3}, & \text { if }\left\|S^{-1}\right\|^{2}>e \\
0, & \text { otherwise }\end{cases} \\
& <8 \varepsilon^{1 / 3}\left\|S^{-1} u\right\|^{2} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{Re}\left(A_{n} u, u\right) & =\left(\left(S^{-2}-T^{2}\right) u, u\right) \\
& \geqq\left\|S^{-1} u\right\|^{2}-\|T S\|^{2}\left\|S^{-1} u\right\|^{2} \\
& >\frac{1}{4} \delta\left\|S^{-1} u\right\|^{2} \quad\left(\because\|T S\|^{2}<1-\frac{1}{4} \delta\right) .
\end{aligned}
$$

Now we may choose ε to satisfy $\varepsilon \leqq(32)^{-3} \delta^{3}$, in which case

$$
f\left(\left|\operatorname{Im}\left(A_{n} u, u\right)\right|\right)<\operatorname{Re}\left(A_{n} u, u\right) \quad \text { for all } u \in H_{n} \text { such that }\|u\|=1 .
$$

We conclude that the operator $A=\oplus A_{n}$ (which we have already shown to be regularly accretive and satisfy $\left.D\left(A^{1 / 2}\right) \neq D\left(A^{* 1 / 2}\right)\right)$ satisfies property (D), and hence (C).

Remark. Professor W. Kahan has constructed operators U and V satisfying (I) such that $2 \leqq U \leqq 2^{m}$ where $m=2^{c k}$ for some constant c. Using these operators, together with slightly more care in the estimates, we can replace the function f in (D) by the function $f(y)=y(\log \log y)^{\alpha}$ if $y>e ;=0$ if $y \leqq e$, for any $\alpha<1$. It would be interesting to know what the situation is for functions f of faster growth. In particular, it seems reasonable to conjecture that if A is a maximal accretive operator satisfying $|\operatorname{Im}(A u, u)|^{p} \leqq \kappa \operatorname{Re}(A u, u)$ for all $u \in D(A)$ such that $\|u\|=1$, where $p>1$ and $\kappa>0$, then $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)$. However this question remains open.

References

1. T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246-274. MR 25 \#1453.
2. -, Fractional powers of dissipative operators. II, J. Math. Soc. Japan 14(1962), 242-248. MR 27 \#1851.
3. -_, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 \#3324.
4. A. McIntosh, Counterexample to a question on commutators, Proc. Amer. Math. Soc. 29 (1971), 337-340.
5. J. L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan 14 (1962), 233-241. MR 27 \#2850.
6. A. McIntosh, Bilinear forms in Hilbert space, J. Math. Mech. 19 (1969/70), 10271045. MR 41 \#6007.

School of Mathematics and Physics, Macquarie University, North Ryde, n.S.W., Australia 2113

