
 Open access Proceedings Article DOI:10.1109/DDECS.2018.00022

On the Comparison of Different ATPG Approaches for Approximate Integrated
Circuits — Source link

Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi ...+1 more authors

Published on: 25 Apr 2018 - Design and Diagnostics of Electronic Circuits and Systems

Topics: Automatic test pattern generation and Benchmark (computing)

Related papers:

 Testing approximate digital circuits: Challenges and opportunities

A Test Pattern Generation Technique for Approximate Circuits Based on an ILP-Formulated Pattern Selection
Procedure

 Approximation-aware testing for approximate circuits

 Automated error prediction for approximate sequential circuits

 Approximate computing: Design & test for integrated circuits

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-comparison-of-different-atpg-approaches-for-
3z2mdw9mpx

https://typeset.io/
https://www.doi.org/10.1109/DDECS.2018.00022
https://typeset.io/papers/on-the-comparison-of-different-atpg-approaches-for-3z2mdw9mpx
https://typeset.io/authors/marcello-traiola-275wv8y8wo
https://typeset.io/authors/arnaud-virazel-3lu4lxaz89
https://typeset.io/authors/patrick-girard-1qnuse0sqa
https://typeset.io/authors/mario-barbareschi-2ijruh5zmh
https://typeset.io/conferences/design-and-diagnostics-of-electronic-circuits-and-systems-efndk17r
https://typeset.io/topics/automatic-test-pattern-generation-fkjnl7gs
https://typeset.io/topics/benchmark-computing-2t10njof
https://typeset.io/papers/testing-approximate-digital-circuits-challenges-and-3mf3d6kqc7
https://typeset.io/papers/a-test-pattern-generation-technique-for-approximate-circuits-2w0tqn48pp
https://typeset.io/papers/approximation-aware-testing-for-approximate-circuits-xtp3n9n2u3
https://typeset.io/papers/automated-error-prediction-for-approximate-sequential-4bsnelgkrm
https://typeset.io/papers/approximate-computing-design-test-for-integrated-circuits-2qvy6hihgl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-comparison-of-different-atpg-approaches-for-3z2mdw9mpx
https://twitter.com/intent/tweet?text=On%20the%20Comparison%20of%20Different%20ATPG%20Approaches%20for%20Approximate%20Integrated%20Circuits&url=https://typeset.io/papers/on-the-comparison-of-different-atpg-approaches-for-3z2mdw9mpx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-comparison-of-different-atpg-approaches-for-3z2mdw9mpx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-comparison-of-different-atpg-approaches-for-3z2mdw9mpx
https://typeset.io/papers/on-the-comparison-of-different-atpg-approaches-for-3z2mdw9mpx

HAL Id: lirmm-03032856
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03032856

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Comparison of Different ATPG approaches for
Approximate Integrated Circuits

Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto
Bosio

To cite this version:
Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto Bosio. On the Com-
parison of Different ATPG approaches for Approximate Integrated Circuits. DDECS 2018 - 1st
International Symposium on Design and Diagnostics of Electronic Circuits and Systems, Apr 2018,
Budapest, Hungary. pp.85-90, ฀10.1109/DDECS.2018.00022฀. ฀lirmm-03032856฀

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03032856
https://hal.archives-ouvertes.fr

1

On the Comparison of Different ATPG approaches

for Approximate Integrated Circuits

Marcello Traiola1, Arnaud Virazel1, Patrick Girard1, Mario Barbareschi2, Alberto Bosio1

1LIRMM - University of Montpellier / CNRS - France - Email: {firstname.lastname}@lirmm.fr
2DIETI - University of Naples Federico II - Italy - Email: mario.barbareschi@unina.it

Abstract—Approximate Computing (AxC) emerges more and
more as a new paradigm for the design of energy-efficient
Integrated Circuits (ICs) at the cost of accuracy reduction. The
latter has to be modeled and quantified by means of Error
Metrics. From the testing point of view, AxC Integrated Circuits
offer an opportunity. Instead of testing for all manufacturing
defects, the goal is to test only for those that will lead to an error
considered as not acceptable by the adopted Error Metrics.
The main advantages are the test cost reduction, since the
number of required test vectors will be reduced, and the yield
improvement. We developed three approaches for generating
test vectors targeting AxC Integrated Circuits. This paper aims
at comparing these approaches on a public benchmark suite.

keywords: Approximate Computing; Test; ATPG; Functional
Approximation; Integrated Circuits

I. INTRODUCTION

The Approximate Computing (AxC) paradigm is based on

the intuitive observation that rather than a perfect result, inner

operations of a computing system can be selectively inaccurate

for providing gains in efficiency (i.e., less power consumption,

less area, higher manufacturing yield) at the cost of a slightly

accuracy reduction. Moreover, many research works proved

that some computing domains are characterized by the so-

called error inherent-resilience property, that is the ability of

an application to produce good-enough results despite the

fact that some of the inner operations, or involved data, are

inexact [1]–[4]. This way, AxC techniques benefit from such a

property whenever inaccuracy implies performance gain. The

inaccuracy can involve every system layer from hardware to

software components [5].

In this paper we focus on Functional Approximation [1],

[6]–[15] applied to hardware components. Functional Approx-

imation aims at modifying the circuit structure so that an

original function F is replaced by the function G, whose

implementation leads to an area/energy reduction at the cost of

a reduced accuracy, meaning that some errors can be observed

at the outputs of G. The observed errors represent a variation

between the output values of F (precise) and G (approximate).

Such variation is the accuracy loss measured by means of

Error Metric(s). For instance, we can cite the Error Rate, i.e.

how many times an error is observed at circuit outputs, and

the Error Magnitude, measured as the difference between the

golden and erroneous outputs, both formally defined in [3].

During the manufacturing process, physical defects (either

random or systematic) can affect the IC and may be the cause

of faults leading to observable errors. Unfortunately, these

errors (due to faults) may further reduce the accuracy - already

reduced as result of the functional approximation - and may

affect outputs more than the acceptable error (i.e., the amount

of errors is greater than the threshold). In this context, the

role of testing is to ensure that the observed errors due to the

presence of defects is never greater than the acceptable error

threshold fixed by the final user.

In this paper, we present a comparison between three differ-

ent Automatic Test Pattern Generation (ATPG) approaches for

functional Approximate Integrated Circuits (AxIC). We per-

form experiments for all the techniques on a public benchmark

suite [16] composed of arithmetic circuits and we compare the

results. We use the Worst Case Error (WCE) as metric since it

is significant for such type of circuits [17]. The results show

that a unique technique cannot be adopted and, depending on

the type of circuit and error threshold, the test engineer has to

carefully select the most suitable one.

The paper is organized as follows. Section II describes the

issue related to the AxIC testing. Section III describes two

existing AxIC aware ATPG techniques and introduces a third

one. Experimental results are discussed in Section IV. Finally,

conclusions are given in Section V.

II. PROBLEM STATEMENT

As described in Section I, functional approximation mod-

ifies/simplifies the circuit structure by introducing a certain

amount of errors. The main issue is to ensure that, during the

manufacturing process, physical defects do not cause an error

greater than the acceptable one. In a more formal way, each

detectable fault Fi leads to an observable error Ei; the goal

is, therefore, to identify the whole set of detectable faults Fs

such that the induced error Es is non-acceptable (i.e., greater

than the given error threshold). Finally, testing only for the set

of detectable faults Fs guarantees to have an error that does

not exceed the acceptable one.

Figure 1 represents the above concept. The set of all possible

faults which can affect an AxIC is composed of different

subsets, each of those leads the circuit to have an error. As

an example, Figure 1 depicts the case where, for each fault

of the subset Fs, it exists at least one input vector x able to

sensitize and propagate the fault to the circuit outputs such that

the observed error Es is greater than the acceptable threshold.

Conversely, it exists a set of faults Ft for which the observed

errors Et are always equal or lower than the acceptable

threshold. This property has to be valid for all the possible

2

��������	No faults

AxIC

AxIC

AxIC

ES (>Thr)

Et (≤Thr)
 ∀ inputs

E (≤Thr)
 ∀ inputs

 ∃ x inputs∈

Fig. 1: AxIC Fault impact

combinations of inputs. The goal of the test is, therefore, to

detect all the faults belonging to Fs. The composition of the

set Fs depends on the user-defined acceptable error threshold.

The advantage of applying such approaches is, above all,

to increment the yield (i.e., fewer circuits will be rejected).

Moreover, by reducing the test set dimension, the test cost

is reduced. The test time reduction turns out to be very

important especially in the perspective of online testing. In

the next sections, we present three different approaches for

the Automatic Test Pattern Generation targeting AxICs.

III. AXIC AWARE ATPG TECHNIQUES

As introduced in the previous section, the goal of this paper

is to compare different techniques for generating test sets

for a given approximate circuit, knowing its error metric and

error threshold. This section presents three different ATPG

approaches for AxIC circuits.

A. First Approach: AUT

Figure 2 sketches the overall flow of the first proposed

approach called AUT. It is composed of two main steps: (i) the

Architecture Under Test (AUT) Generator and (ii) the ATPG.

The AUT generator requires as inputs the AxIC netlist, the

original precise circuit netlist, the error metric and the error

threshold.

�������

������	
��	∣��	

Precise

Circuit Netlist

��������	�

������	
��	∣��	

Approximate

Circuit Netlist

��

������	��

AUT

Generator

���∣	
���	
Fault List

���
ATPG

��
AUT

�����
��	�����
Error Metrics/

�������∣��
Thresholds

���	
��	

Test Set

Fig. 2: Test pattern generation for AxIC with AUT generation

As pointed out in the previous section, we have to detect

faults leading to an error greater than the acceptable threshold.

This approach let the ATPG deal with the problem of com-

paring the outputs of the precise and the approximate circuits.

Figure 3 reports a schematic view of an AUT. The basic idea

is to create a new circuit that embeds both the precise and

the approximate circuit, which receive the same inputs. The

outputs of the precise and the approximate circuit are then used

to compute the error metric (Error Metric Comp. in the figure).

Finally, the computed error E is evaluated w.r.t the given error

threshold (Thr in the figure). If E is lower than Thr, then

the output O will be set to “Acceptable”, otherwise it will

be set to “Non-acceptable”. As a consequence, by targeting

all the possible faults affecting the AxIC within the AUT, the

ATPG will find patterns for testing only faults leading to an

observable output (i.e., leading to a non-tolerable error).

������

�����	�

��∣

Error
Metric
Comp.

AxICAxIC

Precise

IC

Precise

IC

≤ Thr≤ Thr
�		�∣������

���� �		�∣�����

Acceptable/
Non-acceptable

��∣���

Inputs

�

E �

O

Fig. 3: Architecture Under Test (AUT)

Analysis: We applied this approach on 430 non-dominated

8-bit approximate adders (created from 13 conventional

adders) and 471 non-dominated 8-bit approximate multipliers

(created from 6 conventional multipliers) downloaded from the

EvoApprox8b [16]. We target a single error metric that is the

Worst Case Error (WCE). WCE is the maximum arithmetic

difference between precise and approximate outputs. It is

formally defined in Equation 1.

WCE = max
∀i

∣

∣

∣
O(i)

approx −O(i)
prec

∣

∣

∣
(1)

Where Oapprox and Oprec are the outputs of the AxIC and

Precise circuit respectively.

We instrumented the ATPG using the classical options

(static and dynamic compaction) targeting Stuck-at-Faults.

First, we ran the ATPG for each approximate circuit in order

to test for all the possible faults independently on the induced

error. We refer to this step as classical test approach. Then, for

each of them, we built the AUT and we apply the proposed

approach. The goal is to show the reduction of test length

between the AUT approach against the classical one. We got

the results of Figure 4a and 4b.

For each chart, the horizontal axis plots the % of reduction

and the vertical axis the distribution associated with the

achieved reduction. This means that for a given reduction (i.e.,

a given X value) we plot the percentage of circuits achieving

that reduction w.r.t. to the total amount of circuits.

First of all, we can note that a significant test reduction

can be achieved (i.e. up to 80% for the multipliers). On the

other hand, for some cases the number of test vectors increases

instead of decreasing. The worst case is -166% meaning that

we increase the number of vectors of about 166% (for this

specific case we increase from three test vectors to 8).

To explain the reason behind this result, we can resort to a

simple example. Let us consider that three faults (f1, f2 and

f3) are targeted in the classical approach while only f2 and

f3 are targeted in our approach. Now, in the former case, it is

possible that the test vector targeting f1 can also detect f2 and

f3 leading to having only 1 test vector. On the other hand, in

the latter case, it is possible that the test vector generated for

3

(a) Test Reduction add8 1
st technique (b) Test Reduction mul8 1

st technique

(c) Test Reduction add8 2
nd technique (d) Test Reduction mul8 2

nd technique

(e) Test Reduction add8 3
rd technique (f) Test Reduction mul8 3

rd technique

Fig. 4: Obtained Results for the Approximate 8-bit Adders and Multipliers

f2 does not cover f3 and thus the ATPG has to generate two

test vectors.

This problem led us to adopt a different approach detailed

in the next subsection.

B. Second Approach: FS

After analyzing the results of the AUT approach, we applied

a different method: we executed the ATPG on the AxIC circuit

only (i.e., without the AUT) and we tried to extract a test

vectors subset able to detect all the faults leading to a Non-

Acceptable error. The technique is implemented in two steps:

(i) the classic ATPG phase and (ii) the fault simulation phase.

For this reason we refer to this approach as Fault Simulation

(FS) approach. Figure 5 describes the second technique. The

key point is fault simulation of the test set generated by the

ATPG. The generated test set detect all the possible faults

affecting the AxIC. Thus, the fault simulation is used to

determine what are the faults leading to non-acceptable errors

(i.e., the faults that must be detected). To do this, we need

to determine the errors due to the presence of faults w.r.t. to

the precise circuit. Figure 6 depicts how Fault Simulation is

exploited to select the test patterns for detecting the faults

leading to unacceptable errors (i.e., greater than the given

threshold). Test patterns are applied in input to both precise

and approximate circuits. For each pattern, the corresponding

precise and approximate outputs are compared and, if the

difference results greater than the error threshold, the pattern

is kept. Otherwise, it is discarded since the error induced by

the fault is acceptable.

Test
Set

Fault
List

Precise
Circuit Netlist

Approximate
Circuit Netlist

Reduced
Fault List

Fault

Simulaton

Reduced
Test Set

Error Metrics/
Thresholds

ATPG

Fig. 5: Test pattern generation for AxIC with fault simulation

Error
Metric
Comp.

IC

AxICTest Paterns

Fault
List

≤ Thr

Keep
Patern

Discard
Patern

Yes

No

Threshold

out

out’

Error

Fig. 6: Fault simulation phase

In the above mentioned case the Error Metric Comp. block

calculates the WCE using Equation 1. The fault simulation is

performed applying the test patterns generated in the ATPG

4

phase to the netlists of both circuits. In this way, the patterns

that are not necessary (i.e., they test only for fault already

tested by other patterns and for those which are tolerable) are

discarded leading to a pattern reduction. Let us now present

some experimental results.

Analysis: We applied the FS approach on the same set

of circuits and conditions exploited in the III-A. Results are

shown in Figure 4c and 4d. The histograms clearly show

the efficiency of using the FS approach. Indeed, there is

not anymore an increase of test vectors as for the AUT

approach. On the other hand, the reader can notice that for

the majority of circuits (especially for the adders), there is no

test length reduction. And the number of circuits for which

the test reduction is greater than 0 is lower than the AUT. To

summarize, compared to the AUT approach, we really avoid

the increase of the test vectors (this is a good point) but the

efficiency is lower since AUT achieved higher test reduction.

We thus deeply investigated the approach and we found

out that the achieved test reduction of the FS approach

depends on the order of fault-simulation of the test patterns.

Indeed, changing the order, a different pattern reduction can

be obtained. This is the basic insight for the third approach

described in the next section.

C. Third technique: PS

As shown in the previous section, by using the FS approach

we are able to avoid any increase of test patterns but the

maximum amount of test reduction is lower compared to

the AUT approach. While performing experiments with FS

approach, we remarked that the order of the fault simulated

test vectors affects the results in terms of test reduction. In

Figure 7 we report an example from a tiny circuit and we refer

to that figure for better depicting the issue and to introduce

the third approach.

By fault-simulating test patterns in the same order as

provided by the ATPG, we noticed that they were not sorted

by the non-tolerable-fault coverage of each pattern (AF in the

figure). The Error Metric Comparator makes the decision of

SortingSorting

* NF: New faults detected (w.r.t. previous patterns) – AF: All faults detected

1111..00 0 26(26)
0101..10 1 9(22)
1000..01 2 9(25)
1011..10 3 3(23)
0110..00 4 0(23)
0101..01 5 1(24)
0110..10 6 3(29)
1001..11 7 0(24)
1010..00 8 0(24)
0001..11 9 1(24)
1000..00 10 1(28)

Pattern ID NF(AF)*

0110..10 6 29(29)
1000..00 10 13(28)
1111..00 0 6(26)
1000..01 2 4(25)
0101..01 5 1(24)
1001..11 7 0(24)
1010..00 8 0(24)
0001..11 9 0(24)
1011..10 3 0(23)
0110..00 4 0(23)
0101..10 1 0(22)

Pattern ID NF(AF)*

a) Fault simulation technique b) Enhancement

Fig. 7: Pattern Sorting

discarding the pattern xi if it does not increase non-tolerable-

fault coverage compared to the subset [x1, ..., xi−1] already

fault-simulated (NF = 0, in the figure). Thus, the insight

is that fault-simulating patterns, sorted by their non-tolerable-

fault coverage (AF), allows detecting more faults with the first

patterns, so that subsequent ones result as superfluous (i.e.,

they test only already covered or tolerable faults), producing a

further pattern reduction. We call this approach Pattern Sorting

(PS) approach. As we can remark in Figure 7, sorting patterns

by their non-tolerable-fault coverage allows to increase the

pattern reduction from 27.27% of the FS technique to 54.55%.

The extra cost is an additional fault simulation of the sorted

patterns.

Analysis: We apply the PS approach on the same set of

circuits and conditions exploited in the III-A. Results are

shown in Figure 4e and 4f. The histograms clearly show the

efficiency of using the PS approach compared to FS. It can

be noticed that the percentage of achieved test reduction is

higher than FS approach. The next section will present a more

extensive set of experimental results to further compare the

proposed approaches.

IV. EXPERIMENTAL RESULTS

In this section, we report pattern reduction statistics for the

third technique (i.e., PS) and we compare the three described

techniques. By exploiting the public library of approximate

components called EvoApprox8b [16], we carried out exper-

iments. More than 1100 different approximate circuits are

available within this library, including 8-bit adders, 8-bit, 16-

bit and 32-bit multipliers. As for the previous experiments, we

focused on the WCE as error metric. Two fault models have

been used: Stuck-at-Fault (SaF) and Transition Fault (TF).

All the circuits have been synthesized using Synopsys Design

Compiler and a 65-nm industrial CMOS technological library.

TABLE I: EvoApprox8b Statistics

Faults WCE
Circuits Qty

Min Max Min Max

8bit Adders 448 30 410 1 168

8bit Multipliers 471 464 1662 1 3204

16bit Multipliers 60 128 128 38804 8.5 · 108

32bit Multipliers 153 256 256 7.3 · 1010 1.8 · 1018

In Table I we report the main statistics on the circuits. We

report the number of circuits for each group, the Minimum/-

Maximum number of faults (SaFs and TFs) and the Mini-

mum/Maximum WCE. Please note that there is no relation

between the latter two parameters (i.e., the maximum number

of faults is not related to the circuit having the minimum WCE

and vice versa). Moreover, the number of SaFs is equal to the

number of TFs. For further details, please refer to [16].

The experimental flow that we adopted is the following.

Firstly, we set a the ATPG tool [18] using classical options

(static and dynamic compaction) targeting SaFs as well as TFs,

following the classical test approach already used for obtaining

results shown in Figure 4. Then, for each circuit, we applied

the three described approaches, i.e., test pattern generation

with AUT (AUT, henceforth), test pattern generation with

fault simulation (FS, henceforth), and test pattern generation

with fault simulation and pattern sorting (PS, henceforth).

In Table II, we show firstly the pattern reduction statistics

considering the proposed method (PS) compared to the classic

testing approach (i.e., testing all the faults). As shown in

5

(a) Results for SaFs (b) Results for TFs

Fig. 8: Test reduction comparison by WCE

TABLE II: Pattern Reduction Statistics for PS

(a) Pattern Reduction SaFs (%)

Circ Add8 Mul8 Mul16 Mul32

Min. 0.00 0.00 0.00 0.00

Q1 0.00 16.67 25.00 28.57

Med. 11.11 31.82 33.33 38.46

Q3 33.33 40.00 38.85 50.00

Max. 87.50 63.16 50.00 66.67

Avg. 20.32 29.13 30.53 38.84

(b) Pattern Reduction TFs (%)

Circ Add8 Mul8 Mul16 Mul32

Min. 0.00 10.53 27.27 30.77

Q1 8.33 37.50 40.00 55.00

Med. 16.67 45.83 50.00 60.00

Q3 27.27 54.23 56.25 66.67

Max. 93.94 73.17 68.18 77.42

Avg. 19.37 45.60 48.95 59.26

the table, test reduction is slightly better when considering

TFs. On average, we obtained reductions from 20% to 38%

for SaFs and from 19% to 59% for TFs. The maximum

achieved reduction is 87% for SaFs and 93% for TFs, both

with 8-bit Adders. Better results are achieved with Multipliers,

in general. Indeed, in the range Q1-Q3 (i.e., 50% of the

circuits) we can observe better reductions for multipliers. 8-

bit adders show a test reduction for SaFs (TFs) between

0% and 33% (8%-27%), while in the same range we find

a test reduction between 14% and 40% (37%-54%) for 8-

bit multipliers, between 25% and 38% (40%-56%) for 16-bit

multipliers and between 28% and 50% (55%-66%) for 32-bit

multipliers.

Then, in Figure 8 and Table III, we report the comparison

between the three discussed techniques from two different

points of view.

a) : As showed in Figure 8, we sorted the circuits by

their WCE value and made 10 groups composed by the same

number of circuits. Each group is composed by about 113

circuits. For each group, we reported the percentage of circuits

for which each method shows better performance in pattern

reduction. Taking as an example the Figure 8a which shows the

SaF case, regarding the group of 113 circuits having a WCE

between 3 and 7 the PS method shows better test reduction

in 60% of the cases (about 66 circuits), the FS method in

30% of the cases (about 33 circuits) and the AUT method

in 10% of the cases (about 11 circuits). We can remark that,

concerning SaF faults, the PS method acts better than the FS

in the majority of the cases. Morover, when the WCE of the

target circuits is not high (up to 40), the PS acts often better

than the AUT method. Starting from that point, the trend is

inverted showing the AUT method achieving better results.

Regarding the TF faults, up to a WCE of 16 the FS methods

frequently behaves better that the others, from WCE values

of 16 to 3075 the PS method acts better than the others and,

finally, the AUT method gains a lot for very high WCE values

(from 3075 to 1.8 ∗ 1018).

b) : On the other hand, in Table III we report the same

comparison by considering the different types of circuits (8-

bit adders and 8-16-32 bit multipliers). The first two rows of

TABLE III: Test reduction comparison by type of circuit
(a) Test Reduction SaFs

SaF

Circ. Best

PS

Best

FS

Best

AUT

Add8 60.38% 28.13% 11.50%

Mul8 22.26% 6.76% 70.98%

Mul16 2.78% 1.94% 95.28%

Mul32 0.00% 0.00% 100.00%

(b) Test Reduction TFs

TF

Circ. Best

PS

Best

FS

Best

AUT

Add8 44.35% 48.03% 7.63%

Mul8 71.59% 19.89% 8.53%

Mul16 11.11% 25.28% 63.61%

Mul32 0.98% 1.63% 97.39%

Table IIIa can be compared with graphs in Figure 4. Indeed,

the graphs show not very good performances of the AUT

method with 8-bit adders (often it produces an increase of the

test patterns), while FS and PS get better results in the majority

of the cases. Only in 11% of the cases AUT acts better. For 8-

bit Multipliers, FS and PS fix the AUT problem of increasing

the test patterns but, in a lot of cases, the latter shows better

results. For TFs, in the first two rows of Table IIIb, we can

observe a similar trend for both 8-bit adders and multipliers.

Indeed, PS and FS achieve better results than AUT in the

majority of the cases. In particular, PS obtains better results

over others for 8-bit multipliers (71%). Finally, concerning 16

and 32 bit multipliers, the AUT method shows almost always

better results than the other techniques.

Lastly, in Table IV we report execution time statistics (i.e.,

minimum, maximum and average) for all the discussed tech-

niques applied to the four groups of AxICs (i.e., 8-bit Adders

and 8-16-32-bit Multipliers). The column labeled as classic

6

TABLE IV: Execution time comparison (seconds)

(a) Execution time SaFs (seconds)

SaF

Classic AUT FS PS

Min 0.56 0.57 0.55 0.56

Max 1.14 1.07 1.06 1.00Add8

Avg 0.62 0.64 0.63 0.63

Min 0.56 0.69 0.58 0.58

Max 1.05 1.54 1.09 1.14Mul8

Avg 0.64 0.91 0.66 0.66

Min 0.59 0.70 0.62 0.62

Max 1.05 1.59 1.44 1.53Mul16

Avg 0.64 0.96 0.82 0.82

Min 0.57 1.20 0.77 0.77

Max 1.01 8.28 7.02 7.01Mul32

Avg 0.64 2.60 1.91 1.91

(b) Execution time TFs (seconds)

TF

Classic AUT FS PS

Min 0.56 0.57 0.57 0.56

Max 1.03 1.06 1.00 0.99Add8

Avg 0.62 0.64 0.63 0.63

Min 0.56 0.74 0.59 0.58

Max 1.03 1.80 1.14 1.18Mul8

Avg 0.64 1.01 0.68 0.68

Min 0.58 0.73 0.62 0.63

Max 0.83 1.68 1.40 1.43Mul16

Avg 0.62 1.04 0.84 0.83

Min 0.58 1.23 0.80 0.78

Max 1.00 8.89 7.18 7.05Mul32

Avg 0.64 2.78 1.94 1.94

reports execution time statistics (in seconds) for producing

test patterns for all the faults (i.e., tolerable and non-tolerable)

of an AxIC. AUT, FS and PS columns report execution time

statistics (in seconds) for the respective techniques. More in

details, AUT column reports absolute execution times (i.e., the

technique can be used independently from the others). On the

other hand, FS and PS execution times are intended as over-

head. Specifically, FS column reports the overhead comparing

to the classic technique as we have to fault simulate vectors

obtained in the ATPG phase (i.e., classic technique) to discard

the superfluous ones. Finally, PS column reports the overhead

comparing to FS as we have to know the non-tolerable-fault

coverage for sorting patterns accordingly. Looking at the big

picture, execution times are fairly acceptable as, on average,

the overhead results to be always in the order of few seconds.

V. CONCLUSIONS

In this paper, we presented and faced problems related to

the test of approximate digital circuits. The core problem is

to ensure that faults introduced in the manufacturing phase do

not introduce errors greater than the acceptable error threshold.

From this perspective, we are allowed leave tolerable faults

un-tested. The proposed techniques aim to produce sets of

test vectors capable of covering only non-tolerable faults. The

main advantages are (i) the yield increase, as we accept circuits

that would have been declared faulty due to faults which are

indeed acceptable w.r.t. the error threshold and (ii) the test

cost reduction, as we aim to reduce the number of test pat-

terns. Experimental results compared the three techniques and

showed a significant reduction of test length. Moreover, results

showed that each technique works differently depending on

diverse aspect as the metric threshold (e.g., Worst Case Error),

the type of circuits under test (e.g., adders, multipliers) and

the considered fault model (e.g., Stuck-at-faults, Transition-

Faults). Finally, the presented techniques introduce a fairly

acceptable time overhead compared to the advantages (i.e.,

yield and cost). In the future, we aim to focus on considering

multiple error metrics in order to investigate how to correctly

model them in order to exploit classical testing tools.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM

Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2893356

[2] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test

Symposium (ETS), May 2013, pp. 1–6.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in Proceedings of the 50th Annual Design Automation

Conference. ACM, 2013, p. 113.

[5] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Approximate computing: An integrated hardware
approach,” in Asilomar Conference on Signals, Systems and Computers.
IEEE, 2013, pp. 111–117.

[6] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and anal-
ysis of approximate compressors for multiplication,” IEEE Transactions

on Computers, vol. 64, no. 4, pp. 984–994, April 2015.

[7] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in 2011 24th Internatioal

Conference on VLSI Design, Jan 2011, pp. 346–351.

[8] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in 2010 Design, Automation Test in Europe Conference

Exhibition (DATE 2010), March 2010, pp. 957–960.

[9] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
DAC Design Automation Conference 2012, June 2012, pp. 796–801.

[10] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality config-
urable circuits,” in 2013 Design, Automation Test in Europe Conference

Exhibition (DATE), March 2013, pp. 1367–1372.

[11] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in 2014 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), Nov
2014, pp. 504–510.

[12] Y. Wu and W. Qian, “An efficient method for multi-level approx-
imate logic synthesis under error rate constraint,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016,
pp. 1–6.

[13] D. Shin and S. K. Gupta, “A new circuit simplification method for error
tolerant applications,” in 2011 Design, Automation Test in Europe, March
2011, pp. 1–6.

[14] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in 2014 Design,

Automation Test in Europe Conference Exhibition (DATE), March 2014.

[15] L. Holik, O. Lengal, A. Rogalewicz, L. Sekanina, Z. Vasicek,
and T. Vojnar, “Towards formal relaxed equivalence checking in
approximate computing methodology,” 2nd Workshop On Approximate

Computing (WAPCO), 2016. [Online]. Available: https://wapco.e-
ce.uth.gr/2016/papers/SESSION2/wapco2016_2_1.pdf

7

[16] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approx adders and multipliers for circuit design and bench-
marking of approximation methods,” in Design, Automation Test in

Europe Conference Exhibition (DATE), 2017, March 2017, pp. 258–261.
[17] B. Barrois, O. Sentieys, and D. Menard, “The Hidden Cost of

Functional Approximation Against Careful Data Sizing – A Case
Study,” in Design, Automation & Test in Europe Conference &

Exhibition (DATE 2017), Lausanne, France, 2017. [Online]. Available:
https://hal.inria.fr/hal-01423147

[18] (2017) Tetramax. [Online]. Available: https://www.synopsys.com/

