ON THE COMPARISON OF SEVERAL EXPERIMENTAL
CATEGORIES WITH A CONTROL!

By Epwarp PauLson
University of Washington

Summary. This paper investigates certain statistical problems arising in the
determination of the ‘“best” of k categories when comparing £ — 1 experimental
categories with a standard or control. The discussion is limited to the case of
a single stage sampling procedure with an equal number of observations on
each of the k categories. Results both of an exact and of an approximate nature
are obtained when (a) the observations’with each category are normally dis-
tributed, and (b) the observations with each category have a binomial dis-
tribution.

1. Introduction. In this paper we will be concerned with the problem of the
selection of one of the k categories II; , I, - - - , II; as best when category II,
plays a special role, since it represents the standard or control, while IT, , II;,
-+« , II; represent &k — 1 experimental categories. For the type of application
we have in mind, the k categories might represent k varieties of wheat, or k
drugs, or k& machines; the “goodness” of a category will depend on some param-
eter of the probability distribution associated with that category. The experi-
mental categories can be classified into two groups: one group consisting of
those categories which are superior to II; and a second group consisting of those
experimental categories which are inferior to or at most equal to II; . In such a
situation it will usually be desirable to have special protection against the
selection of an experimental category as best when it actually is inferior to II, .
This will be accomplished by requiring that the statistical procedure used pro-
vide a special assurance that II; will be selected as best if the second group
happens to consist of all & — 1 experimental categories, that is, none of the
experimental categories is superior to II; . Situations of this type are believed to
be fairly common in experiments in medicine and agriculture.

We will therefore consider the following statistical problem: given a sample
consisting of kn independent observations {z;;} ( = 1,2, --- ,k;j=1,2, -+,
n), where z,, is the jth observation with category II;, to devise a statistical
procedure for selecting one out of the k categories as best so that if none of the
experimental categories Il, , II; , - - - | II; is actually “superior” to II; , then the
probability that I, is selected will be =1 — «. We will also consider the related
problem of deciding how large a sample will be required so that when one of
the experimental categories is really superior to all the others including IT; by
a specified amount the probability will also be =1 — S that this experimental
category will be selected as best. The constants « and 8 might be considered as
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240 EDWARD PAULSON

roughly analogous to the type I and type II errors in the Neyman-Pearson
theory of testing a hypothesis. However the present problem is of a multiple
decision type, and is not equivalent to one involving the testing of a hypothesis
unless k£ = 2.

For the most part the discussion will be confined to the normal case, when
the n observations with category II; (z = 1, 2, --- , k) are assumed to be nor-
mally and independently distributed with mean m; and common variance o°;
the best category is defined to be the one associated with the greatest value of
m; . A brief discussion will also be given of the binomial case, when each obser-
vation with category II; is classified as a ‘“‘success’ or ‘‘failure” with a probability
P; of being a “success’’; the best category is defined to be the one associated
with the greatest value of P;.

2. The normal case with known variance. We will first treat the problem when
o is assumed to be known a priori. Let &; = 2%, Zi/n, 8 = max (F2, &, -,
), 1 = a/(k — 1),and forany a (0 < a < 1) let v, be defined by the equation

1 0
1 —4e2 dt = .
\Vor j:,, ¢ “

Let II* be the experimental category whose mean is £*, and let A be a constant

whose value will be determined in a moment. The following statistical procedure
is proposed for the selection of the best category:

If3* — %, = Mo /‘/%, select IT*;
(1) _
Ifz* — 3, < \o V%,select 11, .

We now complete the specification of the statistical procedure by determining A.

It is obvious that when m; = max (m,, my, -, my,), the greatest lower bound
of the probability that £* — & < e /2/n will occur when my = my = - -+ =
mi . In order to evaluate P{Z* — & < Ne\/2/n|m = my = -+ = my} we

use the fact that £* and &, are independent, and find, after some simplifications,

P{f*—.il<)\a1/%!m1=m2= =mk}

—jr2

© ¢ r+)\\('2' e—%z?' z ‘2 k—2
- [ V?/ (=1 [f o dt:l dz dr
| 0 T Y- T — o0
32

© g rvE i :|k~1
= e =t dt dr-
[w \/21r [f-w \/21r

The constant A will therefore be given as the root of the equation

1 o o 12 1 TN/ T ' 2 k~1
(2) \/3f ' [\/af ¢ (lé} dr =1 — a
LT J—n LT J-o0
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From equation (2) it is possible to tabulate the values of A as a function of «
and k. Pending the construction of adequate tables, we will give an approximate
method for finding A with a definite limit of error. For this purpose, let A, stand
for the event &, — &, = Ao v/2/n. We have P{3* — % < XAo V/2/n} = 1 —
P(A; + Az + --- + Ay), where the probabilities involved are to be caldulated
for the case when all the k¥ means are equal. Makihg use of Bonferroni’s In-

equality (see [1], p. 75) we have
i k
)\a,‘/ﬁ} 21— 2 P(4).

Due to the symmetry when the means are equal, this becomes

k

L= 5P+ BT Pca) 2 P{r —

IIA

=2
iz

1 - G~ DP(y) + EZDE =2 pig, gy
(3)
;P{a‘:*——i1§)\(r %}Zl“(k—l)P(A2)~

Since (£ — %) and (&; — #;) have a bivariate normal distribution with correla-
tion = 1, we obtain

1 ©
P4, = \75;./)\ et

1 © oo
P(4;A45) = /3 _/; j; e 1D e dy.

If we use as the approximate value for A the solution X of the equation

L2 e -
(4) _\/2—1'_‘/;" € dt = al,

then from (3) it follows that P(A\) = P{&* — % < Ao v/2/n} willexceed 1 '— «
by an amount which is not greater than 2(k — 1) (k — 2) P(4.4;). This quantity
can be calculated from the tables of the volumes of the normal bivariate surface
[2]. The calculations for several values of o and & are summarized in Table I.
It appears that the approximation yields good results for values of « which
ordinarily are of interest if k is not too large, say = 6.

Any statistical procedure for selecting one of the & categories can, of course,
lead to other types of error than that of selecting an experimental category as
the best when it actually is inferior to the standard or control. In particular,
the error in not selecting a particular experimental category as best when it
actually is superior to all the other experimental categories and the standard or
control by at least a specified amount is of considerable interest. For a fixed
value of «, this new type of error can be reduced only by increasing n, the sample
size. Suppose for convenience that II, is the particular experimental category
that exceeds the others by an amount Aj; that is, m; = max (m,, my, -+,
mi—1) + A. Using the statistical procedure of (1), it is easy to see that for a
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fixed A, A, k, and n the greatest lower bound of the probability that II, will be
selected as best will occur when m; = my = -+ = my_, = mand my = m + A.

TABLE 1
Limits for P(\)

\ '02 .05
k
3 - A = 2.326 A = 1.960
981 = P(A) = .98 955 = P(A\) = .95
6 A= 2.652 A = 2.326
984 = P(\) = .98 .963 = P(A) =

If we denote this greatest lower bound by P(n; A, k, A), we easily obtain
P(n; \, k, 4)

=P{fk—$-1> )\a/‘/%and:ik> max(fg,a’:g,-w,a':k_l)lmk = m1+A}

T e
6 Lo {Vorla
» ~ 32 s —}e2 k—3 ~ Hw-(Ale)y )2
{f ) 21r \/21[’

w+(A/a)\/n—-)\\/2 e w+(Ale)/ “2 k-_2e——;w2
_f [ [ b dt_l [ f dt] ° _ dw.
Vor V2 V2w

In order to decide in advance of the experiment how large a sample should be
taken, we might try to find n so that P(n; \, k, A) = 1 — 8 where «, 8, and A
are determined by practical considerations depending on the particular experi-
mental situation, and A is found from (2) or (4). It will be very difficult to find
n directly from (5) until tables are made available. However we can usually
obtain a good approximation 7 to the required value by solving the equation

(6) P{a’:k—:ilé)\o/‘/i L

._“z dt = 6.

my = m; + A
\/21r (A/o)V/ nl2—\

The solution can be written # = (202/A2)()\ + »)* which reduces to 7 =
(20°/A%) (va, + 5)° when X is used for . The adequacy of this approximation
can be estimated with the help of the inequality’

n
(7) . /5
< Pi{m\Nk A} < P{a‘:,, — & = o 4/5}

2 The writer is indebted to the referee for this inequality, which is an improvement over
the one originally used.
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which holds when m; = my = -+ = my_;, mi = m; 4+ A. To derive this in-
equality, it is obvious from the definition of P{n;X, k, A) that P{n; \, k, A} <
P{% — & > Ao A/2/n}, while from Bonferroni’s Inequality we have

—~ k—1
P{n; Nk, A} 2 1 — P{ik“il§>\a/‘/%}_zp{ik§ij}

=2

pfaanzneg/D G wrins

Hence when 7 is found from (6), it follows from (7) that [I — P(7; A, k, A)]
will exceed 8 by an amount which is less than
(k - 2) © —}¢2
kE—2)P{T, £ %) = —F— dt.
( )P {Z), < T} \/ﬂ (A/a)vg/ze

We have attempted to indicate the adequacy of the approximation # found
from (6) by computing the upper bound for [I — P(#; \, k, A)] for several

TABLE II
Upper bound for [1 — P(#; A, k, A)]

k \ 05 02
ﬂ -
3 .20 .2025 .2008
.05 .0502 .0500
6 .20 .2031 .2010
.05 .0501 .0500

values of &, 8 and k; in these calculations the value of X given in Table T was
used for A. The calculations are summarized in Table II.

It appears that for 8 < .20, & < .05, the upper bound for [1 — P(7; A, k, A)]
exceeds the corresponding 8 by a small amount which can be neglected for most
practical purposes.

3. The normal case with unknown variance. The case when ¢ is unknown will
now be briefly considered. Let
k

¢t G - 2
=1 a=1 ]C(n — 1)

be the pooled estimate of ¢° based on n’ = k(n — 1) degrees of freedom. The
statistical procedure in (1) is modified as follows:

select IT* if 7% — &, = A, 1/7%,
® n

select I} if * — £; < A\, 8 ,‘/7%
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The exact equation thal N\, must satisfy in order to have P{i* — & < \.s
V2/n|m = my = -+ = m} =1 — «and an explicit expression for P(n;
An, k, A/g), the probability that II; will be selected as best when m; = m, =

- = my_1, /0 = mi/c + A/e, can easily be found by a procedure similar
to that used for (2) and (5); however the results are complicated and instead
we will proceed directly to discuss approximate procedures. Let C; denote the
event & — &1 > MsV2/n (j = 2,3, ---, k), and let ¢, denote a random vari-
able having the ¢ distribution with n’ degrees of freedom. With the aid of tables
of the ¢ distribution an approximation X, to X, can be found so that P{Z, — & >
As V2/n} = Pft. > A} = a/(k — 1) = oy . Then the probability that IT;
will be selected as best when all the means are equal will exceed 1 — « by an
amount which is less than $(k — 1)(k — 2)P(C,-C;). For bounds on the second
type of error, we have

P{zk~z1;xns4/g @‘=1"—‘+5}—(k—2)P{fk§@ "ﬂ°=’i‘+é}
n g [ ag ag ag ag
§P{n;xn,k,é}§P{zk—i1;xns1/3 ’ﬁf=ﬁ‘+é}.

g n g g ag

All these inequalities are easily obtained as in Section 2. To evaluate the bound
for the first type of error, a good approximation can usually be found by regard-
ing s/o to be normally distributed with mean 1 and variance 1/(2n’); using this
approximation it is easy to verify that

2n/ 2n’
) = > e 4
P(Cy-Cy) P{U z 2\ 1/2n, wooand Tz, 4/%, | V,,}’

where (U, V) has a bivariate normal distribution with zero means, unit vari-
ances and correlation p = (0’ 4 A%)/(2n’ 4+ \%). This same device might also
be used to approximate the upper and lower bounds for P(n; A\, , k, A/¢) as an
alternative to evaluating the bounds by using tables of the non-central ¢ dis-
tribution. Finally, to obtain the value of n so that P(n; X\, , k, A/o) = 1 — 8
a good first approximation will usually be given by ne = (26°/4% (va, + )%
after computing X, and the corresponding upper and lower bounds for P(n;
Aoy k, A/c), the first approximation no can be modified if necessary and the
process iterated.

It should be noted that in order to find the sample size required to control
the second type of error, either an approximate value of ¢ must be known from
past experience, or else it must be sufficient for the practical problem under con-
sideration to know the probability of selecting the best experimental category
as a function of the ratio of A to o. It is possible to eliminate the dependence of
the result on ¢ by making use of a two-stage sampling scheme due to Stein
(3]; this and other sequential procedures may be considered in another paper.

4. The binomial case. In this section a brief treatment of the binomial case
will be given, based on the use of the inverse sine transformation. That is, we
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will use the fact that if 5 is the observed proportion of successes in n independent
trials with a constant probability P of a success, then arc sin 4/5 is for large n
approximately normally distributed with mean (arc sin v/P) and variance
1/(4n) (provided the angle is given in radian measure). This transformation
was previously used by W. Allen Wallis and the present writer [4] to design
experiments for comparing the percentages associated with one experimental
and one standard category. The material in this section can be regarded as one
possible extension of that work to the case where we are dealing with more
than one experimental category.

Let r; be the number of successes in the n observations with category II; .
Let p; = (r:/n),let u;, = arcsin v/p,and let P, = the true probability of a success
with category II, . Let p* = max (P2, Ps, -+, Pr), ¥ = max (uy, us, - -,
u), and let II* be the experimental category with observed percentage of suc-
cesses p*. If there should happen to be more than one category with the ob-
served percentage of successes = p*, select IT* at random from the subset
having p, = p*.

We now propose the following statistical procedure for selecting one of the
k categories.

2n

©) 2n
select T, if a* — w1, <A 4/ -,

2n

where X\ is to be chosen so that if Py = max (Ps, P;, - -+, Py) the probability
that IT; is selected as best will be =1 — a. We assume that n is large enough so
that the set {u;} can be regarded as normally distributed with common variance
1/(4n) and means arc sin \/P;. Therefore the problem is once again essentially
equivalent to the normal case with known variance, which was treated in Sec-
tion 2, and the value of \ is given by the solution of (2). To find the sample size
nsothatif Py =Py = --- = Py, = Pand P, = P + 6 (§ > 0), the probability
that II; is selected as best will equal 1 — 8, set A = arc sin /P + & — are sin
/P, and the required n will be given by (3) when e4/2/n is replaced by v/1/2n.
For values of «, 8, and £ so that « < .05, 8 £ .20, and & = 6, it has been shown
in Section 2 that if we use approximate values of A and n given by (4) and (6),
the change in the probabilities considered will be small, and will ordinarily be
of little practical importance. Using the notation of the last section, (4) and (6)
for the binomial case are equivalent to X = vq, and n = (va, + v5)°/(24°).
We conclude this section by discussing a specific problem. Consider a situa-
tion in which we are interested in investigating the effect of three experimental
treatments on a certain disease, where it is known from previous experience
that the probability of survival with the standard treatment is of the order of
magnitude of .75. The problem we wish to consider is that of designing a statisti-
cal procedure (based on a single stage of sampling) for selecting one of the
4 treatments which will have the following properties: (a) the probability of
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selecting an experimental treatment as best when in fact it is inferior to the
standard treatment is to be <.05; (b) if one of the experimental treatments
should happen to increase the probability of survival to .90, while the prob-
abilities of survival for the three other treatments is <.75, then the probability
that the superior experimental treatment will be selected as best should be
=.95. Upon setting @« = .05, 8 = .05, and £k = 4 we find A\ = 2.128, A =
202, n = (2.128 + 1.645)’/(24%) = 174.

The required statistical procedure having properties (a) and (b) is the follow-
ing. A group of 696 animals are all innoculated with the specific disease under
consideration, and then the animals are subdivided in some random manner
into 4 groups each consisting of 174 animals. The first of these groups is given
the standard treatment, and the remaining groups each receive one of the
experimental treatments. After the experiment is completed, if arc sin v/p* —
arc sin \/p; = 2.128/4/2(174) = .114, we conclude that the experimental
treatment with observed percentage of success = p* is best, otherwise we con-
clude that the standard treatment is really better than any of the experimental
treatments.
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