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On the Comparison of Uncertainty Criteria for

Active SLAM

Henry Carrillo, Ian Reid and José A. Castellanos

Abstract—In this paper, we consider the computation of the
D-optimality criterion as a metric for the uncertainty of a SLAM
system. Properties regarding the use of this uncertainty criterion
in the active SLAM context are highlighted, and comparisons
against the A-optimality criterion and entropy are presented.
This paper shows that contrary to what has been previously
reported, the D-optimality criterion is indeed capable of giving
fruitful information as a metric for the uncertainty of a robot
performing SLAM. Finally, through various experiments with
simulated and real robots, we support our claims and show that
the use of D-opt has desirable effects in various SLAM related

tasks such as active mapping and exploration.

I. INTRODUCTION

A model of the operative environment is an essential re-

quirement for an autonomous mobile robot. The construction

of this model requires the solution of at least three basic

tasks for a mobile robot, namely localization, mapping and

trajectory planning. The intersection of the first two tasks

defines a key problem in modern robotics: Simultaneous

Localization and Mapping (SLAM).

SLAM is the problem of acquiring on-line and sequentially

spatial data of an unknown environment in order to construct

a map of it, and at the same time, allows the robot to localize

itself in this map.

To integrate the trajectory planning into SLAM allows a

mobile robot to perform common tasks such as autonomous

environment exploration. This approach is known as active

SLAM and specifically refers to the problem of how to give a

mobile robot the capability of generating on-line trajectories

that simultaneously maximize the accuracy of the map and

robot’s localization, regarding a SLAM task.

The active SLAM paradigm was first proposed and tested in

[1]. Since then, different approaches have been done. e.g. [2]

and [3] proposed a discrete and greedy planning methodology.

Huang et al. in [4] studied and tested the feasibility of

multi-step planning. Continuous states planning but with a

discretization in actions space is explored in [5]. Recently,

a continuous planning approach in states and actions has been

proposed by [6].

To the best of the authors’ knowledge, the different ap-

proaches that attempt to produce an active SLAM algorithm,
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rely on criteria or metrics that quantify the improvement of the

actions taken by the robot (e.g. movements). This improvement

is measured relative to (i) the robot and the map localization

accuracy, (ii) the area of the map explored or (iii) the time

that the robot has been navigating. Specifically, the metrics

that relate the improvement of the localization accuracy or the

uncertainty related to the movements the robot makes are of

high value, because their uses allow the reduction of the map’s

error, and therefore the probability to accomplish a given task

is improved.

Until now the preferred criterion to quantify the localization

uncertainty has been the A-optimality criterion (A-opt). This

criterion captures the mean uncertainty of the covariance

matrix of a SLAM system. The choice of this criterion in many

active SLAM related works such as [7], [8], [5], [9], and [6],

among others, had its foundation in the fact that papers such

as [10], [11], and [12] reported that (i) the A-opt applied to

the problems of planning under uncertainty out performs other

well-known criteria such as the D-optimality criterion (D-opt),

and (ii) that the D-opt for the active SLAM case does not

produce a meaningful metric.

However, in the Theory of Optimal Experiment Design

(TOED) [13] [14], it is well-known that the use of the D-

opt has more appealing characteristics than the A-opt or E-

optimality criterion (E-opt). Moreover, Kiefer in [15] demon-

strated that the A-opt, D-opt and E-opt are special cases of a

general family of uncertainty criteria and therefore they share

some properties, but D-opt is the only one proportional to

the uncertainty ellipse of the estimated parameters, and it is

also invariant to re-parametrizations and linear transformations

[14].

This paper shows that is indeed possible to obtain a fruitful

metric from the D-opt for the particular case of a mobile robot

performing SLAM. Additionally, it is shown experimentally,

that the use of D-opt as a metric for quantifying the uncertainty

of the robot and the generated map in an active SLAM context,

performs comparably to the A-opt metric popularized by [10],

[11] and [12].

The reminder of the paper is structured as follows: section

II gives an overview of the active SLAM problem and its

connection to the TOED. Section III shows how to compute

D-opt in order to be compared correctly, and to allow its use

in an active SLAM or path planning under uncertainty context.

Sections IV and V report several experiments with simulated

and real robots that support our claims. Finally, section VI

presents the conclusions.



II. ACTIVE SLAM

The SLAM problem does not establish which trajectories

a robot has to follow. Usually, they are chosen randomly or

beforehand. However, it is well-known that the trajectories

selected and the order they are executed by a robot, are critical,

among other things, firstly for a rapidly convergence of the

uncertainty of a SLAM algorithm, secondly for increasing the

area of the environment explored by the robot, and thirdly to

improve the possibility of fulfilling tasks.

The integration of the trajectory planning task into SLAM

was first proposed in [1] and the term active SLAM referring

to the aforementioned integration was coined by [8]. The

general idea of active SLAM can be summarized as follows

in algorithm 1:

Algorithm 1 The active SLAM algorithm

Require:
• A complete or incomplete stochastic map of the environment

Mk = {x̂Fk
,Σk}.

• The length i of the horizon of planning.

Ensure:
• A policy class of trajectories π.

1: Create a set πs of s different policy classes with i trajectories in each
one. The initial trajectory of each policy starts at x̂Rk

.
2: Perform a SLAM algorithm using each policy class and the given map

Mk .
3: Compute a value function J for each policy class of πs, using the

information of each simulated trajectory and the final covariance matrix
associated to the SLAM algorithm.

4: Select the policy class πopt that optimizes J .

The SLAM approach taken above is based on a probabilistic

state-space model, where the robot R and a set of features

or landmarks in the environment F = {F1, . . . , Fn} are

represented by a stochastic state vector x with an estimated

mean x̂ and associated covariance matrix Σ. Furthermore,

x̂ =

[

x̂R

x̂F

]

; Σ =

[

ΣRR ΣRF

ΣFR ΣFF

]

(1)

where x̂R and x̂F are the estimated locations of the robot

and the landmarks respectively, ΣRR is the covariance matrix

of the estimated robot pose (e.g. x, y, θ) and it has a size of p×
p that is invariant with respect to the time, ΣFF represents the

covariance matrix of the estimated locations of the discovered

landmarks and it has a size of n × n that varies over time.

Finally, ΣRF and ΣFR are matrices that encode the cross-

covariance of the robot pose and the landmarks estimations.

The covariance matrix Σ has size l × l, where l = p + n,

and its value is variable with time. Moreover, it is a positive

semi-definitive matrix with eigenvalues {λ1, . . . , λl}.

A. The Value Function J

As mentioned above, the integration of trajectory planning

or, what is equivalent, applying the active sensing paradigm

[16] [10] to the SLAM problem, involves the optimization of

a multi-objective performance criterion or value function J .

This value function is used to decide which trajectories have

to be followed by the robot. A definition of this value function

can be as follows:

J =
∑

i

αiUi +
∑

i

βiTi (2)

Where the index i defines the length of the planning horizon

(i.e. the numbers of consecutive trajectories planned ahead).

The first term, Ui characterizes the expected cost of the

uncertainty in the parameters of the system. The second term,

Ti includes other expected costs such as trajectory length, nav-

igation time, and energy consumption, among others. Finally,

α and β are weight coefficients for tuning the parameters and

are task dependant.

The Ui term can be further specified as a metric of the as-

sociated covariance matrix Σ (e.g. the determinant, the trace).

This metric needs to encode the robot and the landmarks’

estimated locations uncertainty and can be defined as follows:

Ui : Σ → R (3)

The different ways to compute the above metric and their

properties in relation to the goals of the active SLAM approach

is the target of the following sections of this paper. Moreover,

a clarification in the computation of one of them is pointed

out in section III.

The second term Ti, as done previously, can be further

specified and constrained as a metric that represents the cost

of performing a free collision trajectory Γ by the robot,

Ti : Γ → R (4)

This metric can be constrained to be a function only of the

distance travelled, since its cost is directly related to the power

and navigation time of the robot while it performs a task.

Finally, summarizing all the above definitions, the statement

of the active SLAM problem can be formulated as: the task of

choosing a single or multiple step policy class π of robot’s

trajectories that optimize a value function J .

B. Theory of Optimal Experiment Design and Active SLAM

In the Theory of Optimal Experiment Design (TOED) [13]

[14], a single trial of an experiment is the process of changing

the input parameters of a system perturbed with unknown

noise, with the purpose of observing the variation in the output

parameters. In this context, the particular values of the input

parameters are known as a particular design ξ.

In the active SLAM context, the ξ design is a particular

policy class π commanded to the robot, the unknown noise

is the commonly assumed zero mean Gaussian noise and the

variation of the parameters is encoded in the covariance matrix

Σ.

Based on the TOED, it is possible to know if a design ξ1
is better than a design ξ2 [13] [14]. Applying this concept in

the active SLAM context, a policy class π1 is better in terms

of uncertainty than a policy class π2 if :

Cov(π1)− Cov(π2) ∈ NND(l) (5)



Where Cov(πi) is the covariance matrix of size l × l after

the robot has followed πi and NND(l) stands for the group of

non-negative definite matrices of size l× l. NND matrices are

also known as positive semi-definite matrices [14].

As this criterion only tells if a policy class is better than

another but does not quantify how much, it is advantageous

to define a function φ that maps a NND covariance matrix of

size l × l to a scalar,

φ : NND(l) → R (6)

This function has to capture the idea of whether or not the

uncertainty of a covariance matrix is large or small. Moreover,

this function has to be positive homogeneous, isotonic (i.e.

order preserving) and concave [14].

A compendium of functions fulfilling the above require-

ments can be found in [13] or [14]. Among the most

commonly used functions or uncertainty criteria are the A-

optimality criterion (A-opt), the D-optimality criterion (D-opt)

and the E-optimality (E-opt) criterion.

III. UNCERTAINTY CRITERIA FOR ACTIVE SLAM

In the planning under uncertainty or active SLAM context,

previous works such as [10], [11] and [12], have done com-

parisons between uncertainty criteria, in order to determine if

there is a criterion that for that specific task, converges faster

to a desired solution. In all the aforementioned papers, the

D-opt - defined by them as the determinant of the covariance

matrix - has been disregarded as a fruitful metric for mainly

two reasons:

i) The D-optimality criterion does not allow the checking

of task completion as the A-optimality criterion does.

ii) The D-optimality criterion can be driven rapidly to zero,

so no fruitful information is provided by this criterion.

The authors believe that the above two reasons are miscon-

ceptions stemming from a misuse of the TOED.

For the first reason, the misuse lies in that the determinant

of a matrix l × l is homogeneous of degree l; hence the

comparison of the determinant of a matrix l × l and a matrix

m ×m is unfair. Specifically in the case of a SLAM system

this is relevant, because the size of the covariance matrix varies

over time, so the evolution of an uncertainty criterion based

on determinants has to be normalized in order to be compared

fairly [14].

Recently, Vidal-Calleja et al [17] intuited this, and proposed

a solution that needs to suppose the maximum number of

landmarks in the environment and initialize its covariance with

a constant number. This solution is effective to fairly compare

the determinant as the matrix size does not vary in time, but

adds complexity to the computation of the metric and fails if

the number of landmarks is greater than the initial assumption.

A proper solution, as pointed out by [14], is to take the lth

root of the determinant of Σ (with size l × l) before making

any comparison. This solution rises naturally if the D-opt is

derived from the family of uncertainty criteria proposed by

Kiefer in [15],

φp(ξ) = [l−1trace(Σp(ξ))]1/p (7)

This family of uncertainty criteria is valid in the range of

0 < p < ∞ for a covariance matrix (Σ) of size l× l associated

to a design ξ (e.g. π). Moreover, the case φ1 and the boundary

cases φ0 and φ∞ are the already known A, D and E-optimality

criteria, respectively.

Taking the above into account, the normalized D-optimality

criterion proposed by Kiefer is,

φ0(π) = lim
p→0+

φp(π) = [det(Σ(π))]1/l

= (
∏

k=1,...,l

λk)
1/l (8)

The misuse of TOED for the second reason, usually used to

disregard the D-opt, lies in the fact that this criterion considers

the global variance. Geometrically, this means the volume of a

n-dimensional ellipsoid [13]. The latter implies that estimated

parameters with low uncertainty will produce very low value

of D-opt, hence making its computation prone to round-off

errors.

Specifically in the SLAM case, as the landmarks get corre-

lated the eigenvalues of Σ become quite small values near to

zero. A zero eigenvalue would mean that without doubt the

position of a landmark is known, but this does not happen in

practice. Examples of the above are presented in section IV,

where we reported several experiments with simulated and

real robots. Regarding the computation of the determinant, it

is possible that a small value of an eigenvalue can cause a

round-off error in the computation, so the D-opt gets stuck at

zero. One way to overcome this issue is to use the logarithmic

space to compute the determinant, using a similar approach as

in [13]. Thus, the resulting equation to compute the criterion

would be,

exp(log([det(Σ(π))]1/l)) (9)

Summarizing, for the particular case of measuring the

uncertainty of a SLAM system, the D-opt should be computed

using the definition of Kiefer [15] and as presented in (9).

In the following, two experiments are presented in order

to (i) support the claims about the computation of the D-

optimality criterion of a SLAM system, and, (ii) to point

out some properties of the D-optimality criterion. The first

experiment investigates the evolution of different uncertainty

metrics in simulated and real robots performing SLAM. The

second experiment is related to performing active SLAM using

solely the uncertainty as a guiding factor.

IV. FIRST EXPERIMENT: ON THE COMPUTATION

With the aim of showing that it is feasible to compute

the D-opt in a robot performing SLAM, in the following,

the evolution of the aforementioned uncertainty criterion is

computed for simulated and real robots performing SLAM.

For completeness, the A-opt, E-opt, the determinant of the
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Fig. 1. Resulting stochastic map (25x25 m) for the experiment with a
simulated robot in an indoor environment. In red is the estimated trajectory
of the robot and in blue is the graphical representation of the covariance for
each landmark.

covariance matrix, entropy and mutual information are also

computed.

In each of the following experiments the aforementioned

uncertainty criteria are computed at each step update of the

covariance matrix Σ associated to x̂R and x̂F .

A. Simulated Robot in an Indoor Environment

The simulation environment was created using C++ and the

Mobile Robot Programming Toolkit (MRPT) v0.9.4. The data

of the covariance matrix were gathered while the robot was

performing EKF-SLAM with a predefined trajectory, within a

map with static landmarks and using a limited range sensor.

Specifically, the robot was moving at 0.3 m per step and

travelled along a square-shaped trajectory of 25x25 m. The

navigation environment was composed of 2-D point features,

located in both sides of the trajectory with a distribution of

1.8 feature/m. The robot was equipped with a range-bearing

sensor with a frontal field of view of 360o and a maximum

range of 3 m. Synthetic errors, with a Gaussian distribution,

were generated for the odometry model of the robot (standard

deviations of 0.1o in orientation and 0.2 m per m in displace-

ment) and the sensor measurements (standard deviations of

0.125o in orientation and 1 cm per m in range), but known

data association is assumed. The resulting stochastic map after

one loop is shown in Fig. 1.

Fig. 2 shows the evolution of the different criteria as stated

above. Each point of the evolution gives an indication of the

amount of uncertainty the SLAM system has at that step.

As expected, once the robot starts navigating, the uncertainty

related to the landmarks and robot’s localization starts increas-

ing. The evolution of the tested criteria behaves similarly at

this stage.

Around the step 350 a loop closing event occurred, and

therefore a decrease in the uncertainty of the system is

produced as expected. This drop is sensed by all the metrics

but at different magnitudes, A-opt and E-opt had a major

reduction, but D-opt had a minor one.

The difference in magnitude is due to the opposite definition

of the metrics. D-opt in general, takes into account the

uncertainty of each element of the system multiplicatively,

i.e. every element has an equal chance to contribute to the

uncertainty. This definition allows encompassing the global

uncertainty in the D-optimality criterion.

On the other hand, A-opt gives independent and additive

contribution to each element of uncertainty. Giving the possi-

bility of a single component of the system to drive the whole

uncertainty. In fact, in Fig. 2a and Fig. 2b, A-opt and E-opt

resemble in shape and scale, thus giving a numerical example,

although qualitative, of the above, as E-opt represents the value

of the single maximum eigenvalue. Moreover, the correlation

between A-opt and E-opt is 0.9655, giving a quantity value of

its resemblance.

Fig. 2d shows an example of computing the determinant

of the covariance matrix as reported in [10], [11] or [12], as

can be seen after few steps -in this case 8- the value of the

criterion goes to zero. In contrast, Fig 2c shows an example of

meaningful values of uncertainty using the logarithmic based

computation method presented in (9).

B. Real Robot in an Indoor Environment: DLR Dataset

In this experiment the Deutsches Zentrum fur Luft und

Raumfahrt (DLR) dataset [18] is used. This dataset was

recorded at the DLR with a mobile platform. The environment

(see Fig. 3) is a typical office indoor environment and covers

a region of 60x45 m. To estimate the trajectory and the map

of the environment an EKF based SLAM algorithm coded in

python is used.

Fig. 4 shows the evolution of the different uncertainty cri-

teria associated to the uncertainty of the robot and landmarks

for the DLR dataset that has a path length of approximately

505 meters.

C. Discussion

The above results give numerical examples about the fea-

sibility of computing the D-opt in the SLAM context in

simulated and real data. Also, the results give some insights

between the relation among the A-opt and E-opt. Although

this relation (shape and magnitude of the plots) is qualitative,

a quantitative relation via the correlation of the data can be

obtained.

The correlation between the A-opt and the E-opt for all the

experiments has a mean of 0.9798±4.0612×10−4. The latter

means that exist a strong relation between these two criteria in

the SLAM context. Moreover, based on the definition of the

E-opt, the uncertainty measured by the A-opt is dominated

by a single eigenvalue. In our context, the above implies that

a single feature - in the case of a probabilistic feature based

SLAM - can drive the complete SLAM uncertainty. The effect

of the above property could lead an active SLAM algorithm

using an A-opt based metric to get stuck in a local minima.

An example of this is shown in the next experiment.

For the above experiments, the A-opt and D-opt correlation

has a mean of 0.6454 ± 0.1359, which means that exist

a correlation but neither is weak or strong. Moreover, it

gives an example of the main characteristic of the criteria

according to the TOED: The A-opt measures the mean of the

Fig/estimado_simulado.eps
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Fig. 2. (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI for the experiment with a simulated robot in an indoor environment

(a) (b)

Fig. 3. (a) Resulting stochastic map with uncertainty regions for each
landmark. (b) Blueprint of the environment with a superimposed sketch of
the trajectory

uncertainty and the D-opt measures the complete dimension

of the uncertainty (e.g. Area in a 2D case).

V. SECOND EXPERIMENT: ACTIVE APPROACH

In this experiment we perform a comparison between an

active SLAM approach driven by the A-opt, D-opt and en-

tropy. The active SLAM approach used follows the algorithm

outlined in section II, therefore assumes a priori and probably

incomplete, stochastic map of the environment. This map is

generated by commanding the robot to follow a predefined

trajectory in the environment, while performing EKF-SLAM.

Once the predefined trajectory is completed, the robot begins

the performance of active SLAM and therefore starts planning

autonomously trajectories that achieve an accurate map.

Each time the robot is planning which trajectory it has to

follow, in order to fulfil the active SLAM objectives, it needs

to consider every possible path in the navigation environment.

In order to make the problem computationally tractable, the

possible destinations are constrained to positions near the

landmarks already discovered.

If each time we plan only the next movement, this is known

as greedy search or one step look-ahead [4]. It is also possible

to plan several steps ahead that will result, as has been pointed

out by [4], in a faster convergence of the active SLAM goals

but with an increase in the complexity of the computation.

Independent of the one step look-ahead or multi-step look-

ahead planning, each time the next movement is chosen as

the one that minimizes an uncertainty metric, in this case the

value of A-opt or D-opt or entropy related to the SLAM.

In this experiment, the paths follow autonomously for the

robot are generated via an A* based path planner. Specifically

the environment is discretized and the only forbidden areas are

the positions of the landmarks. Two test environments were

used for this experiment: the first test environment consists of

a 30x30 meters obstacle free square area with 104 landmarks

distributed around the perimeter of a 25 meters square. The

second test environment consists of a 20x20 meters obstacle

free square area with 72 landmarks distributed on the perimeter

of a 15 meters square. The Mean Squared Error (MSE)

between the two initial stochastic maps has a ratio of 9.65,

with the first environment having a bigger MSE. The initial

position of the robot is (X=1,Y=0) in both environments. The

ground truth position of the landmarks and their estimated

positions from the EKF-SLAM are depicted in Fig. 5.
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Fig. 4. (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI for the experiment using the DLR dataset
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Fig. 5. (a) Ground truth of the landmarks and (b) initial stochastic map of
the 30x30 m test environment

The strategy for active SLAM described above can be

summarized in the following steps:

• Hallucinate paths from the current estimated position of

the robot to all the landmarks, except those which are

below a radius of X (i.e. 1) meters from the current

estimated position.

• Measure the uncertainty at the end of each hallucinated

path.

• Select the path that produced the lowest uncertainty

according to the chosen metric.

• If the number of path planned is greater than i (i.e. 100),

exit. In any other case, execute again.

A. One Step Look-Ahead Results

Performing active SLAM with a one-step look-ahead ap-

proach leads to completely different trajectories using the A-

opt and D-opt. The A-opt plans trajectories with a distinc-

tive local behaviour, while the D-opt plans trajectories more

globally, often revisiting previous landmarks. Regarding the

entropy, this generates paths similar to the D-opt.

An example of the above behaviour is illustrated in Fig. 6.

There, the active SLAM starts after the robot has executed one

loop (i.e. X=1,Y=0) and has an estimation of all the landmarks

in the environment. The resulting trajectories for the A-opt, D-

opt and the entropy are shown in Fig. 6a, Fig. 6b and Fig. 6c,

respectively. Each generated trajectory is identified by a dif-

ferent colour. A video of the incremental construction of each

trajectory can be seen in http://webdiis.unizar.es/∼hcarri/1.avi.

In addition to the above qualitative assessment of the effect

derived by using each criterion, we can quantify the effect of

using each criterion by measuring the quality of its resulting

maps.

To measure the quality of the map we use the guidelines

proposed in [19] that urge for the use of the MSE and χ2

together in the assessment of the maps quality generated by a

SLAM algorithm.

In order to compare the three criteria, we compute the ratio

between them for each quality metric at each update step of

the active algorithm. Therefore we have the A-opt/D-opt ratio,

the A-opt/entropy ratio and the entropy/D-opt for the MSE and

χ2 metric.

Fig. 7 presents the result of 10 Monte Carlo runs for

each ratio related to the MSE and χ2 metric of the 30x30

m test environment. Respectively, Fig. 8 presents the same

information for the 20x20 m environment.

Finally, Fig. 9 shows the resulting path for the active SLAM

strategy presented in this section using a limit of 10000 steps

Fig/trace_DLR.eps
Fig/E_DLR.eps
Fig/det_opt_DLR.eps
Fig/D_DLR.eps
Fig/Entropy_opt_DLR.eps
Fig/MI_opt_DLR.eps
Fig/g_30gt.eps
Fig/g_30est.eps
http://webdiis.unizar.es/~hcarri/1.avi


0 5 10 15

0

5

10

15

(a)

0 5 10 15

0

5

10

15

(b)

0 5 10 15

0

5

10

15

(c)

Fig. 6. Resulting paths from each uncertainty metric: (a) D-opt, (b) A-opt and (c) Entropy. Each colour represents an executed path. The planning area was
20 x 20 m.
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Fig. 7. Evolution of the MSE ((a)-(c)) and χ2 ((d)-(f)) ratios related to
the map (30x30 m) after each active step. The ratios are computed for each
possible uncertainty metric combination. The average of 10 Monte Carlo runs
is depicted for each ratio.

and a continuous path planner based on an attractor/repulsion

technique. This last experiment illustrates another example of

the quasi-opposite behaviour of an active SLAM strategy using

the A-opt and D-opt.

B. Discussion

An explanation of the difference in the path planning be-

haviours due to the A-opt or D-opt used relies on the definition

of the metric itself. As pointed out in the previous section,

D-opt encompasses the global uncertainty therefore revisiting

previous landmarks (closing the loop) helps in decreasing the

value of the metric. On the other hand, A-opt criterion can be

driven by a single eigenvalue, and therefore the uncertainty of

the covariance matrix can get stuck in a local minimum.

Regarding the quality of the maps, the results show an

advantage in the use of D-opt and entropy over the A-opt. Also

in this specific experiment the D-opt and entropy share similar

results. This similarity does not come as a surprise, because
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Fig. 8. Evolution of the MSE ((a)-(c)) and χ2 ((d)-(f)) ratios related to
the map (20x20 m) after each active step. The ratios are computed for each
possible uncertainty metric combination. The average of 10 Monte Carlo runs
is depicted for each ratio.

the EKF-SLAM assumed gaussianity as well the noise used

in the experiment, therefore the D-opt and the entropy have

an explicit relationship through the determinant as can be seen

comparing (9) and the entropy of a multidimensional Gaussian

distribution (i.e. Nn(µ,Σ)):

H(x) =
1

2
log(2πe)n|Σ| (10)

VI. CONCLUSION

In this paper a clarification on the use and computation of

the D-optimality criterion for a covariance matrix with variable

size in time, in order to make comparisons of uncertainty evo-

lution in a SLAM context, is presented. This paper highlights

that computing the D-optimality criterion in the SLAM context

as reported in previous works such as [10], [11] and [12]

leads to wrong results because it does not take into account

the change in dimensionality of the determinant. Instead of
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Fig. 9. Resulting trajectories for a 10000 steps active SLAM simulation. (a). Predefined trajectory and landmarks ground truth. (b). A-opt based active
SLAM. (c). D-opt based active SLAM. This figure is best viewed in colour.

the above definition, a method that produces fruitful results is

the one proposed by Kiefer [15]. Furthermore, a solution for

the problem of round-off errors in the computation of the D-

optimality criterion is achieved by proposing its computation

in the logarithmic space.

This paper demonstrates via several experiments with simu-

lated and real robots the above claims, and point out appealing

characteristics (e.g. encompassing global uncertainty) for the

use of D-optimality criterion as a measurement of the uncer-

tainty of a SLAM system. Besides, it is shown that the use of

D-optimality criterion, instead of the A-optimality criterion,

to drive an active SLAM approach seems more rewarding

towards the fulfilling of the active SLAM objectives. Also

in the active SLAM context is shown through examples the

similarity of guiding a greedy active SLAM strategy with the

D-opt and the entropy.

Finally, with the clarification reported in this paper, the D-

opt rises as an alternative to quantify the uncertainty of a

SLAM algorithm. Its use has a strong background from the

TOED and its properties allow it to be used instead of the

commonly used A-opt.

As a future work, firstly we aim at developing a more

complex guiding factor for the active SLAM strategy that will

include beside the uncertainty, time and obstacle constraints.

Secondly, we want to include within the assumptions of the

active SLAM, dynamic landmarks and obstacles.
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